200 J. Meder
References

[1] G. Alexits, Uver Transformierten dev arilhmetischen BMittel von Orthogo-
nalreihen, Acta Math. Ac. Hungaricae 2 (1951), p.1-8.

[2] 8. Borgen, Uber (€, 1)-Summierbarkeit von Reihen orthogonaler Funktio-
nen, Math. Annalen 98 (1928), p. 125-150.

[3] L. 8. Bosanquet, Nole on convergence and summability factors (I1T), Proc,
of the London Math. Sec. Ser. 2, 50 (1949), p. 482-496.

[4] T. M. @uxrenvonwn, Hype duffiepenyuaasioso w unmezpaavuozo uewuc-
aenus I, Mockpa, 1951,

[6] 8. Xaczmarz, Uber die Konvergenz der Reihen von Orthogonalfunklionen,
Math, Zeitsch. 23 (1925), p. 263-270.

[6] — Sur la convergence el sommubilité des développements orthogonaur, Studia
Math. 1 (1929), p. 81-121.

[7] — und H. Steinhaus, Theorie der Orthogonalreihen, Warszawa - Lwdw
1935.

[8] L. Kronecker, Quelques remarques sur la délermination des valeurs moyen.-
nes, Comptes Rendus Paris 103 (1886), p. 980-987.

[9] Gen-ichiro, Sunouchi and Shigeki, Yano, CUonvergence and summa-
bility of orthogonal series, Proc. Japan Acad. 26, No.7 (1950), p. 10-16.

[10] 0. Tooplitz, Uber allgemeine lineare Mittelbildungen, Prace Mat.-Fiz.
22 (1911), p. 113-119.

[11] A. Zygmund, Prigonometrical series, Warszawa 1935,

[12] — Remarque sur un théoréme de M. Kaczmarz, Math, Zoitschr. 25 (1926),
p- 297-208.

[13] — Remarque sur la sommabililé des séries, Bull. Ae. Pol. (1926), p. 186,

[14] ~ Sur Vapplication de la premidre moyenne arithmétique dans lo théorie
des séries de fonctions orthogonales, Fundamenta Math. 10 (1927), P. 356-362.

Le¢u par la Rédaction le 16. 7. 1956

A note on some properties of the functions
®(n), o(n) and 0(n)

by A. Scminzer (Warszawa) and Y. Wane (Peking)

§ 1. Introduction. A. Schinzel has proved in [4] that for every se-
quence a of h positive numbers a,, @, ..., a, and & > 0 there exist natu-
ral numbers n and »' such that

p(n+i) ‘

—_—

p{n+i—1) |

B ‘T(”’f@_‘_ _‘ S X
o Fi—1) a¢:<e (t=1,2,...,h)(®).

< &,

Professor Hua Loo-Keng has pointed out that by Brun’s method
we can prove the existence of positive constants ¢ = ¢(a, &) and X,
= Xy(a@, ¢) sueh that the number of numbers = satisfying the first
of these inequalities in the interval 1 {n < X is greater than

cX[log"*'X  for X > X,.

In the present paper we give the proof of this theorem, of an analo-
gous theorem on the function o(n) and of a theorem on the function
0(n)(?) which is weaker but gives a positive solution of the problem put
forward in paper [2] of A. Schinzel and comprises the theorem from pa-
per [3] of A. Schinzel.

The question whether a theorem analogous to the theorems on funec-
tions ¢ and o is true for the function 6 remains open. i

§2. An auxiliary theorem. Let -
Ay =0y o Qofor - Qory Ai=du- Quy (1<i<Dh)

be positive integers, where ¢y, gz, ..., qs are all the prime numberf; in
the interval 0 < < 10(h+1) and gy (0 << A, 1 < j <) are prn.nes
greater than 10(h--1) such that 4,, 4., ..., 4, > 1 are relatively prime
in pairs.

(*) @(n) denotes Lho Tuler function, o(n) — the sum of divisors of number n.
(%) 6(n) denotes the number of divisors of n.
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It Z > A.d%... AL, then let us denote by Nyz(X) the number of in-
tegral solutions (z,, ..., %) of the system of equations

(1) Ay i =A@y (125 h)

satisfying the conditions

2) 1°P1< e <X, and 2°if ploy, then p = Z (0 =<4 < h),

where p denotes a prime.

THEOREM 1. There exist positive constants oy, depending on h only,
and 6y, Xy, depending on Ais only, such that

Nxey(X) > 6, X [log"M' X (X = X).

Proof. If Z> A,A%... 43, 1 is a given integer in the interval
0<A< 442, A} and p, < py < ... < p, are all prime numbers not
dividing 4,4, ... 4; and not exceeding Z and if a; (1 <j < v, 0 i< h)
are given integers satisfying the conditions 0 <ay<p; (L <j<r,
0 <4 <<h) and ay) # ay, for 4y % 4, (1 < § <7), then we can define My(X)
a8 the number of « satisfying the conditions

(3) 1<ae<X, «=Ai(modded?...AD),
I<i<r,0<i<h),

&=ty (o py)

It is evident, that theorem 1 is a consequence of the following two lemmas:
Lemma 1. There ewist A and a;s such that
Ny(X) = Mz(X).
Lemma 2. There ewist positive comstamts ¢, depending on h only,
and ¢y, X, depending on A;s only, such that
Mxe (X) 2 6, X/log"t' X (X = X))
Jor any given A and ajs.

Proof of lemma 1. First we shall define 1 and a8 a8 follows:
By lemma 2 [4] there exists m such that

. ‘mg , ,
Agmd, (Au A) =1, Ajd}.. A} mAdne 0 (0 54w h).
i
Let 1 = m/d,. The solution of the following congruence
{4) Ay +0 = 0(modp;) (0 <y < py)

will be denoted by ay; (1 <Ij < 7,0 <4 <<h). It is evident that ay = 0
I <j<7). It 4 # 4, and a4y = a,, then from (4) we have p,|i,—iy-

We obtain -a contradiction since 0 < |i,—is| << h and p; > 10(h+1).

icm
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We take x satisfying (3) with these A and a;;s and define £ = z,. From
{1)-(3) of [4]

{5) Aoty i =dd,e; (1< i< h),
where
(6) (@ Aody ... 4p) =1 (039 <h).

From (4), since z 5= ay(modp,) (1 < <7, 0 <4< h), we have

{7 (Aowo{Aom+1) ... (Ao@+h), Py ... p,) = 1.

From (B), (6), (7) we find that if p|z;, then p > Z (0 < i << h). Thus we
have proved that there exist 2 and ajs such that from any » satisfying
conditions (3) we can construct a solution of (1) satisfying (2) and diffe-
rent # correspond to the different solutions of (1). Thus we have proved
lemma 1. In §6 a proof of lemma 2 is given. This proof is obtained
by a modification of a method elaborated by H. Rademacher [1]
in the case h = 1. We ghall precede it by lemmas and estimations
in §3-§5. :

§ 3. Some lemmas. Let 4 = 4,4%... A} and write
{8) Mp(X)=P(A, 0,4, X;p1,y...,Dr)

for given 4 and ay; (1 <j <7, 0 <17 << k). In particular, let P(4, 4, X)
denote the number of a2 satisfying the conditions 1 <o << X and
2 = A(mod A). ,

Lemma 3. There exist integers A; (0 < ¢ << h) satisfying 0 << 4; < Ap,
(0 < <<h) and Ay # A, (4 # 4s) Such that

9 Pl,a,4,X;p1,..,0) =P(A,a, 4, X5P1, 005 Pra)—

“h
- ZP()%’ @y Apry X5 D1y -5 Proa)-

i=0

Proof. B}lf definition, P(4,a, 4, X;py,...,p,) 18 equal to the

difference between the number of z satisfying the conditions
10) 1<e<Xd,

2 = A(modd), == a;(modp;)

A<i<r=1 0Ki<h)
and the number of @ satisfying (10) and one of the following congtuences:
(1)

& = g (modp,) (0 <4 <h).
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Since (4, p,) = 1, each of the following systems of congruences is sol-
vable and has a unique solution in the interval 0 <o < Ap,

% = A(mod4),
= dyy (Modp,),

@ = A(mod 4),

T = @, (mod p,),

@ = A(mod 4),
Z = Gy (Modp,).
Denote these solutions by 1y, 4y, ..., 4 respectively. Since
(4 # iy)

we have ;5% 4;, (4, # i,). Hence P(4,a, 4,

“1'121 * ‘Zri2 (mo(lpr)

X5 pyy .oy py) I8 equal to

the difference between the number x satisfying (10) and the number

of » satistying one of the following conditions (as i = 0,1, ...,):

(12) 1<€e <X, = A(mod:dp,), = a;;(mod py)
I<i<r—1,0<i<h).
This proves lemma 3.
Briefly we write
.P(Z, a,,D, X;ph "';pr) :P(Dy X;ph T
P(4,D,X)=P(D, X).
Hence, it follows from (9) that, with the usual convention in notation,
we have

(13) ) D)y

(14)  P(4, X;p1,..., py)
=P(4, X;p,,..., Proa) —(h4+1)P(Ape, X5p1yoeny ppoy).
Using lemma 3 r times successively we get
LEvmma 4.

P(AJ-XQPI;---ipr) =P(4,X)—

(h+1) ZP (AP0s X3 1y s D).

a=1

Let
(15) r=rzrnz..z2n=1
be any given sequence of t positive integers.
Lemma 5.
1
P4, X;pyy oy pr) 2 P4, X)—(h+1) S P(4p,, X)+

a=l

+(h+1 2 2 P( Apapulv X7 l’la .11-1\'

a=1a1<ry
ay<<a

icm®
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Funotions p(n),
Proof. By lemma 4, we have
P4, X591y P0) = P(4, X)—(h+1) } P(4p,, X)+
a=1

»

+h41 D' N P(App., Xipy, ..

a=1 ayj<a

1 pal—l) -

This proves lemma 5.
Using lemma 5 ¢ times successively and observing that r, = 1, we
get .

LEMMA 6.

”

1 Pr) = P4, X)—(h-+1) Y P(Ap,, X)+

as==

P4, X5, ...

i

-

+(h+1) z\j > P(dp,p,,, X)— (10D D' N P(Apapuppy X) -+

n-\l algl a=laj<ry §1<r]
a)<a q<a <oy

N
4 \ Y 1,
(R D MDD NI ) D D P(APDpy D - Doy X)-
i “1’2'1 frsry 1SN~ PL—-1STi~1 @<<TY
m<a pr<a 1<Bt—p Bi—1<ap—1 @<fi-|

By the definition of P(1, D, X) we have

P, D, X)=[X[D]+6,, 8,=0 orl.
Hence, for all A, we have |P(1,D,X)—X/D| <1 and from lemma 6
we get
LeMma 7. For any given A and azs
E
MAX) = P(4, X;psyocosp) > X =R
where
’,1- 1 1’1 1
)/ I e \ A (h--1)? ; -
B (bt 1) N (0 ’szal
tea ] aml a1y
ap<<a
A" . - 1
~thg 1 NN PSS
papalpﬂl

R 1111@’1 nsn
aj<a fiy<ay

[ . 1
NV YLV D o
ARSI NN 2 PBoiBrs - Pu

=l apry ﬂ;[ﬂ"]
aj<a fy<ay

e a;'t 1 Bt—1Srg—1 w<Tt
af— i<ﬂt 2 Bf-1<0f— ﬂt<ﬂt——
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and
r 1
R <1+ (h+1) 31+ 041 D) D 1+ (ht1)? PY Y Nt
a=1 a=1 aj<ry a=1 q1ry frry
ay<a aq<a fi<o

REE DD D WP

a=1 aj<r) f1<7) e 1T ) B ISP ] STy
aq<a fr<a Bt—-1<at—1 Bt—1<af) Of<Pi.y

< [+ (+1)r] n [1+(h-+1)r, .

Nom=1

§ 4. Estimation of R. In this section and the next we shall always
assume that ¢, ¢4, ... are positive constants depending on % only. Let
r, denote the least positive integer for which

(1_”“) > 1
B )7 13

Ty =
r1<8<ry

Similarly, we define 7, as the least positive infeger for which

h+1 1
(18) Ty = (1— i)>i—3~ A<n<i—1),
rps<tn_y Ps y
h+1 1
17 Ty = 1— >,
an ’ rﬂg ( pa)/113
-1
(Since 1—(k~1)/p, > 1—(h+1)/10(h41) = 9/10 > 1/1,3, we finally have
7, = 1.) From the definition of »,, we have
9 h+1 h+4-1 1 4
— ity =1 ———- —_ e - —
1071: ( 10(h+1))m,,<(1 p'n)irn<1,3<5 1<n<i-1)
or
(18) <) (A<n<<i-1).
Hence

.
log[1+(h-+1)7,T < egloghr, < alogp,, < ¢ I,i (1“1/103)”1” (1—1/p)*

8l |4
<csﬂ f [J (L=A+1)[pe) [ | (L —+1)fpef [] (L—(B41)/p)™
=1 rj<8<rj_; 8=1 Did
< 05132 (1—(a42)/p)"}(8/9)" (0 < n < t—1).

icm
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153
=3
-1

Then by lemma 7

i1

log & < Jog {[L+ (b)) [ | [1-+(hekdyra (2]

<o [[a—1/p) 2 (8/9)" = 90, [ [ (1—1/p)

<z = p<Z

! < glogZ (3)
B €.,
(19) ‘R < exp(e,logZ) = Z°.

§ 5. Estimation of B. Let 80 (L <n<
ry symmetric function of

. {(h+1)/(pr,,.;.1)y ERR) (h“*‘l)/(Pr,,,Hl)l

and let S be the I-th elementary symmetric function of

t—1) be the I-th elementa-

{(4+1)pryy oy (A1) [Py} -
Put
(20) B =8, H=E"—B)+.. —BD4E

where B =1 (1< n<1), B (1 <n<t—1) denotes the absolute
value of the sum of terms of B with exactly » prime factors the indices
of those prime factors being greater than r,, and E{ denotes the abso-
lute value of the sum of all terms of E with exactly » prime factors. We
have

(21) BY = B9, B D8P4 .. +BD 8L V+8)

2<<n<t, 1<y < 2n-1).

It is clear that BY = 0 if n < t—1, » > 2n and

B < B BSOS + o+ B SP+SEY,

(22)
EP=0

(v > 21).

(*) The fact that ]](1~~1/1rz)“1

positive constant, 1mphos that

alogw, for # > 2, where @ is an absolute

1\-1 .
(1— l‘i—) < a(h)logh+lm,
hplepse P

for » > h4-1, where a(h) is a positive constant depending on b only.
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From (16) and (17) we have

h41
89 = Y Mo ogm, <log13 <03 (1 <a<io,
. S M o
(23)
h+1
8y = M + < —logm, < logl,3 < 0,3.
S, Pe
[ASASI S|
va>1 and 1 <n<t—1, we get .
PSR \ED YLLa= A =14
pig'=q¢ ¢ g 5,0’ Psd
(pg,0)=1
»—1
Z h+1 h—}~}) — SDgL-Y,
l’s’ ps q' q

where p; runs over all pmne numbers such that P, < P < p,n_l, ¢ runs
over all products pl...p,, of v different prime numbels, q Tuns over
all products p;...p,_; of »—1 different prime numbers.

Similarly, we have »8%) < S8~ (»> 1). Hence, by (23), we
have

(S‘?) _ {03y
»! »!

29 8P <8 p>1), U<

A<ty =1,2,...).
From (24) we immediately get

(25) D (ISP <8 <a <),

izn—i

By (20) and (21), if 2 < n <t—1, we have

an—-1 P )
B, = 2‘; (—1yED = 2; (—1) 2 BY 80 — Z’ (—1) 8D B |
. v THi=y T+fin

I

D (—uER, N (—1y8

i<en-2 j<mm—i
- (— 1E(t) o —_1)igth
’“<"Z"; 73;_ ( ) n]
=mBaa— N (1B, 3 (1789,
i<2n—2 i=2n—1 . 4

Funetions ¢{n),

Similarly we have
2t

By = Y (—1VBY = mB,_, — _Sj

p=0 12—

Hence, from (24) and (25), we have

(26) B, > w, B, ,—®,
where
(27) B, = D BP,8D

i<on—3

Hence, we get

o(n) and 8(n) 209

L) (=178 Bp.

(2 <n <)

(28) B =B > mB_ =D 2 m By —Pyy) — D,

D, @
= 3
=% Ty vew Ty {—”1 e .

Ty Ty

=1

]( h+1){1_§(]”_ by

&, }
Ty Ty o ve Tg

@, 2, }
Tt ’

Ty Ty TCaTg ...

From (21), (22), (23), (24), Wwe have for all w >0, £ > 2

2“(0’3) W’E(u) < 211(0 3)~ \ E(l) S(;) < 51 E(,L)

L+]_

2" | (0,3)2%0,3)”"

Sl (u—1)!

By induction we get

(29) 2(0,3)BY < 6™ (t=n=

3)*5
x+7 u 7'
Zu 2u

Tl (w—1)! <6

2)  for all ».

We have shown that (29) is true for n == 2. Now suppose it is true

_ for # > 2; then

12

2(0,3) "B, < 2(0,3)7 ) B SYLY
u=0

v

< 2(0,3) Z 6e427(0,3)*

=0
v

rn
e R4
) =)

p==0
It completes the proof.

Annales Polonici Mathematici IV.

(0,377
(v—p)!

2 20—2

14
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If t 2 n =3, we get

n—3 am—3 My
(30) @:,, — Y’ E,‘{”_ISE"'”’ — 61’2" -6 v .;—-v 03)« 03)

= mo (2 n—v)'

0.3\2n m—3 gam—
= 6 2Mn 6 _7_) e zn_

’ (2 Z By < 0027 -5),

and we also easily get
O 3 4 4

(31) = 8P4 808P < L ( ) s (033) < 0,0018.

From (16), (17), (28), (30) and (31) we get

(1— h+1) X
Ps

(32) B>

8=1

x 11-0,3—1,3-0,0018 —6 (¢ —5) 2 g6 "—11
{ , (¢ _2 (0,2 ¢*5 (1,3)

»=3

A1 Bl C
)zoe [T 0" iy

P<Z

> 0,5 ]:I (
8=1

§ 6. Proof of lemma 2. From lemma 7,

& X
A log"t'z
for any given 1 and aj;s. We take 6, = 1/(c;+1) and Z = X, It is ob-
vious that there exist ¢, and X, depending on Als ‘only, such that

C X
log"x
§ 7. Theorems on the functions ¢ and o,

THEOREM 2. For any given sequence a of h non-negative numbers Gy, Uy,
v an and & > 0, there exists a positive integer n such that

(19) and (32) we have

My(X) > —~Z%

Mz (X) > for X> X, q.ed

| p(ntd) i
(33). ——— gl <

pnti—1) M
There emist positive constamts ¢ — cla,e) and X, = Xo(a, &) such that

n any interval 1 < n < X the number of n satisfyin 33)4s greater th
¢X[log"'X whenover ¥ - X,. Tying (33)is greater than

A<i<h).

icm
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Proof. To begin with, by similar arguments ag in the proofs of lemma

3a and of theorem 1 [4], we can choose 4,, Ay, ...y Ay, depending on ais

and e only and satisfying the same conditions as in theorem 1, such that
)4 ! D id,
———-’ 4,14, — | < - and . L4 ZA’)/MTL“

7(do)/4q P2 =) 4, (J)(E-1) 4, ,

2<i<h).

-y &n) is a solution of (1) satisfying

RS

(34)

—_— '
a; <

For those 4js we assume that (z,, ..

(2) with Z = X% If we take A,m, = n, then idz; = n+i (1 <1 < h).
Since (2, 4;) =1 (0 < 4 < h), we have
V{("L+1) _ (p('Alml ( (Al)/-Al)((F(ml)/wl)Alwl
p(n) (Aomn) ( (Ao)/Ao) (‘P(xo)/”o)Au‘”o
AN Ay e(zy) o, n41
35 LA e il bl RN
(85) o)/Au P (@) |20 ‘": !
777777 (n+4) plid;)[id, L e@)fm i
pinti—1)  @[(i—1)A;,1/0—1)4; ; p(@ )|z, nt+i—1
On account of @; < 6, X (0 < 7 < 1) we can choose X,(4) = Xy(a, ¢)

o Xy such that the number of prime divisors (identical or different) of
each @; (0 < ¢ < k) does not exceed ¢, = [1/¢;]+2 for X > X,. Hence
s 1 €10
1 P n (1— ) > (1~ _C—) 1 (a8 X - oo).
; P XA
piZ;
From (34) and (35) we can choose Xj(a, ¢) > X, such that if n = 4,x,
> Xy, then ‘

Thus we have proved that from every solution of (1) satisfying (2) with
Z = X and such that 4,2, > X; we can define a positive integer n = 4z,
satisfying (33), and that evidently different solutions correspond to diffe-
rent n. It is clear that the number of solutions of (1) satisfying (2) with
% = X% and such that Az, < X, is less than Xi+1

Hence, by theorem 1, there exist positive constants X, and ¢, depen-
ding on a;s and e only, such that, it X > X, in any interval 1 < » < X,
the number of » satisfying (33) is greater than ¢X /log"t'X, q.e. d.

THEOREM 3. In theorem 2 the funclion ¢ can be replaced by o (clearly
the constants ¢ and X, must be changed).

The proof of theorem 3 i analogous to the preceding one but based
on the proofs of lemma 3b and theorem 2 [4].
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§ 8. Theorems on the function 6. We now prove

THEOREM 4. For any given positive integer h, there exists a constant
b = b{(h) such that for any given sequence a of h imtegers oy, @y, ..., a3 > 1
there exists a positive integer n such that

(36) 0(i)a; < B(n+i) < bO(D)a; (1 .<i<h). .

There exist positive constants ¢ = ¢'(a) and X, = Xo(a) such that in any in-
terval 1 < n << X the number of n satisfying (36) is greater than ¢’ X[log"t* X,
whenever X > X,

Proof. We can choose 4,, 44, ..., 4;, depending on a;s only and
satisfying the same conditions as in theorem 1, such that 6(4;) = a,
(1 <4 <h). For those Ajs we assume that (,,...,2;) is a solution of
(1) satisfying (2) with Z = X°. If we take Az, = n, then 44,2, = n-+4
(1 <i<h). Since (2;,14;) =1 (1 <4< h), we have

O(n+i) = 0(id)0 () = 0(Daib(w) (1 <i<h).

As in the proof of theorem 2, we can choose X,(a) such that the number.

of prime divisors (identical or different) of each ; (1 <4 << h) does not
exeeed ¢,, for. X > X,. Hence for X > X,

B(i)a; < B(n+i) < 6(i)a, 20 = bO(§)a;, (1 <i<h).

Further proof is analogous to the proof of theorem 2.
From theorem 4 we can directly obtain
THEOREM 5. For any given sequence of h numbers ay, ... » 4y, where
@ =0 or +oo (1 <4< k) there exists an infinite sequence of natural
numMbers ny, Ny, ... such that
lim -0 (M te)

T T =y

koo O(ng+1—1)

|

1 <i<h).

. In fhe course of publication theorems 3 and 5 were proved indepen-
dently by Shao P'in—Tsung {to appear in Shou Hsueh Chin-Chan (Prog-
Tess of Mathematics) and Pei-Ta-Hsueh Pao (Transactions of Peking
University)) (ef. [5]).
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Note added in the proof by A. Schinzel. Theorem 1 easily results from
the following theorem of G. Ricei (see G. Ricei, Su la congetiura di Goldbach e la
constante di Schnirelman, Annali della R. Seuola Normale Superiore di Pisa 6 (2)
1937, p. 83):

Let ayu+by, agx-+by, ..., apx-+by, wheve (a;,b;) =1 (i =1,2,...,f) are | diffe-
rent arithmetical progressions, let 1) be o fired divisor of the polynomial

(@24 by) (agx-+by).. . (ayz + by)
and put ay@+b; = &Py, agotby = dyPy,..., a5 by = &Py, where dydy...ds = D

The number of natural numbers x < & such that all integers Py, P,, ..., Py have
no prime factors <C /+2e() s of the same order of magnilude as &flog! .

In fact, in virtue of lemma 2 [4] there exists a natural number m such that

diym—4i,  (4i, (m+i)/4) =1 (0<<i<<h)
and in virtue of the formulas (1)-(3) of [4]
(A‘Z)A%...A;-’l,m) = A, (Agﬁ‘;’..‘A%, mti) =id, (I<i<h).

Put
a, = 4,4, 43,
aq = A%A%...A?L/(i—l)Ai_l,

by = ImFi—1)J(E—1)4;
We therefore get (g, b;)=1 (1<<i<<h+1) and (44, byby... bag1) = 1 whence
also ((h+1)!, byby ... baga) = 1. From the last equality it follows that the poly-
nomial

b, = m/Ao,
(1< i<h+l).

(a6 4Dy) (@2 +bg) . - (@n12+Dny1)

has no fixed divisor > 1, since such divisor D divides (A-41)!.

Putting in the above mentioned theorem of Ricei di= 1, aiz+by = 243
(1 < i <C k) wo find that the number of natural numbers z < £ such that all the num-
bers x; (0 <<i<Ch) have no prime factors < gU+2r(h+1) i5 of the same order of ma-

gnitude as &/log"t1&. Put
&

_ Agz—m
T ATl AR
As the number z; satisfy the system of equations (1) and for » < & the conditions
(2), we get the inequality

Ngey(X) >

2 = EUQ+2B+D),

cg X
—r (X > X,
eyl 2

where ¢y > 0 and X, are constants  depending only on A; and ¢, is an arbitrary
1

. depending therefore only on h.
1427 (h+1)

constant <
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