Differential inequalities of parabolic type

by W. MIŁAK (Kraków)*

In connection with the stability problem of solutions of parabolic equations some theorems concerning certain differential inequalities have been discussed (see [1] and [2]).

In this paper we discuss some generalizations of the theorems about differential inequalities of the form

$$\frac{\partial^2 z}{\partial t^2} < F_s\left(x, \frac{\partial z}{\partial x_1}, \ldots, \frac{\partial^2 z}{\partial x_i \partial x_j}\right) \quad (s = 1, 2, \ldots, n).$$

1. Notation and definitions. We investigate a hypercylinder of the form $G \times (0, T)$ ($T > 0$) where G is an open bounded region lying in the space \mathbb{R}^m of points (x_1, \ldots, x_m). We write $\mathcal{B} = G \times (0, T)$; \mathcal{B} being the boundary of G we write $\mathcal{C} = \mathcal{B} \times (0, T)$. \mathcal{B} denotes the closure of \mathcal{B}.

Suppose that $F(x, \ldots, x_m, t, u_1, \ldots, u_n, \frac{\partial u}{\partial x_1}, \ldots, \frac{\partial^2 u}{\partial x_i \partial x_j})$, written shortly as $F(x, t, u, p_\alpha)$, satisfies the following condition: For every system of numbers $r_\alpha (i, k = 1, \ldots, m)$ such that the quadratic form

$$\sum_{i, j=1}^{m} (r_\alpha - t_\alpha) \xi_i \xi_j$$

is non-negative for arbitrary ξ_1, \ldots, ξ_m, the following inequality holds:

$$F(x, t, u, q, p_\alpha) \geq F(x, t, u, q, t_\alpha).$$

$F(x, t, u, q, p_\alpha)$ is then called the elliptic function with regard to p_α.

A system of equations

$$\frac{\partial u}{\partial t} = F_s\left(x, \frac{\partial u}{\partial x_1}, \ldots, \frac{\partial^2 u}{\partial x_i \partial x_j}\right) \quad (s = 1, 2, \ldots, n)$$

is called parabolic if every F_s is elliptic.

* I want to express my thanks to J. Starzaki for valuable remarks concerning this paper.
2. The following definition is introduced: a system of functions $H_s(x_1, \ldots, x_n, t)$ ($s = 1, \ldots, r$) satisfies the condition (W) with regard to u_1, \ldots, u_s if for every $s (s = 1, \ldots, r)$ and for $u_i \leq u_i, i \neq s$, $u_s = u_s$, we have the inequality

$$H_s(u_1, \ldots, u_s, t) \leq H_s(u_1, \ldots, u_s, t).$$

Suppose now that $F_s(x, t, u, \xi, \eta, \nu)$ are defined for $\varepsilon \in (0, T)$, and arbitrary $u_1, \ldots, u_s, \xi, \eta, \nu$. We formulate the generalization of the Westphal-Prodi theorem.

Theorem 1. Suppose that the functions $F_s(x, t, u, \xi, \eta, \nu)$ ($s = 1, \ldots, n$) are elliptic with regard to $p_{\alpha \beta}$ and satisfy the condition (W) with regard to u_1, \ldots, u_n. Let $u_1(x, t), \ldots, u_n(x, t)$ and $v_1(x, t), \ldots, v_n(x, t)$ be continuous in \bar{B} and satisfy the inequalities

$$u_s(x, t) < v_s(x, t) \quad (s = 1, 2, \ldots, n).$$

We assume that for $(s, t) \in B$, u_s and v_s possess continuous derivatives

$$\frac{\partial}{\partial x_i} u_s, \frac{\partial}{\partial x_i} v_s,$$

Suppose that for every $P = (x, t) \in B$ and every $s (1 \leq s \leq n)$ for which the condition $u_s(x, t) = v_s(x, t)$ holds, the derivatives

$$\left(\frac{\partial v_s}{\partial t} \right)_{p}, \left(\frac{\partial u_s}{\partial t} \right)_{p}$$

exist and the following inequalities are satisfied:

(a) $\left(\frac{\partial u_s}{\partial t} \right)_{p} \leq F_s \left(x, t, u_1(x, t), \ldots, u_n(x, t), \frac{\partial u_s}{\partial x_i} \right)_{p}$;

(b) $\left(\frac{\partial v_s}{\partial t} \right)_{p} \geq F_s \left(x, t, v_1(x, t), \ldots, v_n(x, t), \frac{\partial v_s}{\partial x_i} \right)_{p}$.

Under our assumptions the inequalities $u_s(x, t) < v_s(x, t) (s = 1, \ldots, n)$ hold for $(x, t) \in B$.

Proof. We prove our theorem by reducing to absurdity. Suppose that the set

$$E = \bigcup_{s=1}^{r} \{E_s(x, t), t \in E_s \}$$

is non-empty. Denote by E_{ξ} the projection of E on the t-axis and put $\xi = \inf E_{\xi}$. We have $\xi > 0$ and for $0 \leq t < \xi$

$$u_s(x, t) < v_s(x, t) \quad (s = 1, 2, \ldots, n).$$

Therefore

$$u_s(x, t) \leq v_s(x, t), \quad x \in \bar{B}, \quad t = 1, 2, \ldots, n.$$

At least one of the functions $z_s(x) = v_s(x, t) - u_s(x, t)$ has at θ a minimum equal to zero. If it was not, then according to (a) we should have $z_s(x) > 0$ for $x \in \bar{B}$, $t = 1, 2, \ldots, n$, and this contradicts the definition of ξ. Hence there exists $s (1 \leq s \leq n)$ and a point $P = (x, t) \in \bar{B}$ such that $z_s(x) = 0$ and

$$v_s(x, t) = u_s(x, t) \quad (t \neq s).$$

According to our assumptions, the derivatives

$$\left(\frac{\partial u_s}{\partial t} \right)_{p}, \left(\frac{\partial v_s}{\partial t} \right)_{p}$$

exist and

(a) $\left(\frac{\partial u_s}{\partial t} \right)_{p} \leq F_s \left(\xi, t, u_1(P), \ldots, u_n(P), \frac{\partial u_s}{\partial x_i} \right)_{p}$;

(b) $\left(\frac{\partial v_s}{\partial t} \right)_{p} \geq F_s \left(\xi, t, v_1(P), \ldots, v_n(P), \frac{\partial v_s}{\partial x_i} \right)_{p}$.

Since $z_s(x)$ has a minimum at ξ, the quadratic form

$$\sum_{i=1}^{n} \left(\frac{\partial^2 z_s}{\partial x_i} \right)_{p}^2 \xi^2$$

is non-negative for arbitrary $\xi_1, \xi_2, \ldots, \xi_n$. But F_s is elliptic — therefore, in view of

$$\left(\frac{\partial u_s}{\partial t} \right)_{p} = \left(\frac{\partial u_s}{\partial x_i} \right)_{p},$$

we have

(a) $\left(\frac{\partial u_s}{\partial t} \right)_{p} \leq F_s \left(\xi, t, u_1(P), \ldots, u_n(P), \frac{\partial u_s}{\partial x_i} \right)_{p}$;

(b) $\left(\frac{\partial v_s}{\partial t} \right)_{p} \geq F_s \left(\xi, t, v_1(P), \ldots, v_n(P), \frac{\partial v_s}{\partial x_i} \right)_{p}.$

According to (a) and (b) we get, because of the condition (W)

(a) $\left(\frac{\partial u_s}{\partial t} \right)_{p} \leq F_s \left(\xi, t, u_1(P), \ldots, u_n(P), \frac{\partial u_s}{\partial x_i} \right)_{p}$;

(b) $\left(\frac{\partial v_s}{\partial t} \right)_{p} \geq F_s \left(\xi, t, v_1(P), \ldots, v_n(P), \frac{\partial v_s}{\partial x_i} \right)_{p}.$
By (5), (6), (7) and (8) we have

\[\left(\frac{\partial u_2}{\partial t} \right)_F \geq \left(\frac{\partial u_1}{\partial t} \right)_F. \]

On the other hand, by (1) and (3) we have

\[\left(\frac{\partial v_2}{\partial t} \right)_F \leq \left(\frac{\partial v_1}{\partial t} \right)_F. \]

We obtain a contradiction of (9), hence \(E \) is empty.

3. We can now formulate the second theorem concerning strong differential inequalities. We introduce the following assumption (A): for every \(\bar{x} \in \Gamma \) and every \(v (1 \leq r \leq n) \) there exists a straight line \(l_r \) such that an open segment \((\bar{x}, \bar{x}_r) \) of \(l_r \) lies \(\in G \) and the derivatives of the form

\[\frac{du_r}{dl_r} = \lim_{x \to \bar{x}_r} \frac{u_r(\bar{x}, t) - u_r(\bar{x}, t)}{|\bar{x} - x|}, \quad \frac{dv_r}{dl_r} = \lim_{x \to \bar{x}_r} \frac{v_r(\bar{x}, t) - v_r(\bar{x}, t)}{|\bar{x} - x|} \]

exist.

Theorem 2. Suppose that the functions \(P_r(x, t, u, q, p) \) are elliptic and satisfy the condition (W) with respect to \(u_1, \ldots, u_n \). We assume that the functions \(q_r(x, t, u_1, \ldots, u_n) \) satisfy the condition (W) with regard to \(u_1, \ldots, u_n \).

The functions \(u_1(x, t), \ldots, u_n(x, t); v_1(x, t), \ldots, v_n(x, t) \) are continuous in \(B \); for \((x, t) \in \Gamma \) they possess continuous derivatives \(\partial^2 u_r/\partial x^2 \partial u_r, \partial^2 v_r/\partial x^2 \partial v_r \).

Let

\[u_r(x, 0) = v_0(x, 0), \quad x \in \Gamma, \quad r = 1, 2, \ldots, n. \]

We assume that the assumption (A) is satisfied. For every \((x, t) \in \Gamma \), \(r = 1, \ldots, n \), let

\[\frac{du_r}{dl_r} \leq q_r(x, t, u_r(x, t), \ldots, u_n(x, t)), \]

\[\frac{dv_r}{dl_r} > q_r(x, t, v_1(x, t), \ldots, v_n(x, t)) \forall. \]

We assume that for every \(P = (x, t) \in B \) and every \(s (1 \leq s \leq n) \) for which \(u_s(x, t) = v_s(x, t) \), the derivatives

\[\left(\frac{\partial u_s}{\partial x^r} \right)_F \leq \left(\frac{\partial v_s}{\partial x^r} \right)_F \]

exist and the inequalities (a) and (b) hold.

Under our assumptions the inequalities \(u_s(x, t) < v_s(x, t) (r = 1, \ldots, n) \) hold for \((x, t) \in B \).

Proof. We prove the theorem by reductio ad absurdum. Applying the same arguments and using the same notation as in the proof of theorem 1 we find that at least one of the functions

\[z_s(x) = v_s(x, \xi) - u_s(x, \xi) \]

has in \(\bar{G} \) a minimum equal to zero. These minima are not reached in \(x \in \Gamma \).

Indeed if it were so, then there would exist \(\bar{x} \in \Gamma \) and \(s (1 \leq s \leq n) \) such that \(z_s(\bar{x}) \) has a minimum in \(\bar{x} \).

We have \(u_s(\bar{x}, \xi) < v_s(\bar{x}, \xi), \quad t \neq s \), \(v_s(\bar{x}, \xi) = u_s(\bar{x}, \xi) \).

Therefore

\[\varphi_s(\bar{x}, \xi, u_1(\bar{x}, \xi), \ldots, u_n(\bar{x}, \xi)) \leq v_s(\bar{x}, \xi, v_1(\bar{x}, \xi), \ldots, v_n(\bar{x}, \xi)). \]

By the boundary inequalities (11), (12) we obtain

\[\left(\frac{du_s}{dl_s} \right)_{\bar{x}, 0} \leq \left(\frac{dv_s}{dl_s} \right)_{\bar{x}, 0}. \]

But \(z_s(x) \) has a minimum in \(\bar{x} \), hence

\[\left(\frac{du_s}{dl_s} \right)_{\bar{x}, 0} \leq \left(\frac{du_s}{dl_s} \right)_{\bar{x}, 0}. \]

Thus we conclude that the function \(z_s(x) \) has a minimum equal to zero in \(G \). Now, applying the same arguments as in the proof of theorem 1, by (a), (b) we come to a contradiction of the definition of \(\xi \). This completes the proof.

Remark 1. It may easily be shown that our theorems remain true for infinite hypercylinders of the form \(G \times (0, \infty) \).

Remark 2. In both theorems we do not assume that the inequalities (a), (b) hold for every \((x, t) \in B \) and \(s = 1, \ldots, n \). If they were satisfied everywhere in \(B \), for every \(x = 1, \ldots, n \), then the assumptions of theorem 1 would be satisfied. Therefore, in this case theorem 1 and theorem 2 remain true. The situation is analogous to the situation encountered in the theory of ordinary or partial differential inequalities of the first order (see e.g. [3]).
Remarque concernant le travail de W. Pogorzelski:
"Sur le système d'équations intégrales à une infinité de fonctions inconnues"

(Vol. II, 1, 1955, pages 106-117)

Les lignes 13, 14, 15, 16, 17 à la page 107 doivent être remplacées par la phrase suivante:

"On peut faire correspondre à tout nombre positif ε un nombre positif η(ε) et un nombre naturel N(ε) tels que

\[|F_k(x, y, y', y'', \ldots) - F_k(x, y', y'', \ldots)| < \varepsilon\]

si

\[|y_v| < \eta, \quad |y_v'| < \eta, \quad |y_v''| < \eta \quad (v = 1, 2, 3, \ldots, N).\]

Cette définition de la continuité est équivalente à la définition de la continuité au sens de la métrique (6)."