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Differential inequalities of parabolic type

by W. Mrax (Krakow)*

In connection with the stability problem of solutions of parabolic
equations some theorems concerning certain differential inequalities
have been discussed (see [1] and [2]). :

In this paper we discuss some generalizations of the theorems about
differential inequalities of the form

0z, 82, 6%z )

—-—<F(mt2 ey Py —
ot S\ T G T Oy Oy,

(s =1,2,...,n0).

1. Notation and definitions. We investigate a hypercylinder of
the form GX (0, T> (T > 0) where @ iz an open boundeéd region lying
in the space E™ of points (2, ..., &y). We write B = GX(0, T); I' being
the boundary of G we write ¢ = I'x (0, T>; B denotes the closure of
B,0 =I'x<0,T>.

Suppose that F (2, ..., Lyy Ty Y1y oeey Uny Gay <o) Gny P1ry -+ -3 Ponm) y Wit-
ten shortly as F(z,t,u, g;, Pa), satisfies the following condition: For
every system of numbers 7y (i,k=1,...,m), rg (,k=1,...,m)
such that the quadratic form

m
N o — 1) E: &

R

is non-negative for arbitrary &, ..., ém, the following inequality holds:
Fx,tyu, g, Fa) = F(@, 1, %, Qs 14x)-

Fle,t,u, g, py) is then called the elliptic function with regard to py..
A system of equations
Oug
ot

oy, 0,
U T . A
T By " O Oy,

:Fs(m,t,ul,' ) (s=1,2,...,n)
is called parabolic it every F, is elliptic.

* T want to express my thanks to J. Szarski for valuable remarks concerning
this paper.
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2. The following definition is introduced: a system of functions
Hy(2r, .y 2y t) (8 =1,...,7)1) satisfies the condition (W) with regard
t0 21, ..., 2 if for every s (s =1,...,r) and for @; <%;, ¢ # 3, @ =T,
we have the inequality

Ho(lyy ooy ey 7) < Hg(ligy ooy Uy T)

Suppose now that F,(x, 1, 1, g;, ¢x) are defined for xe@, 0 <t < T,
and arbitrary w, ..., %, ¢i, Px. We formulate the generalization of the
‘Westphal-Prodi theorem.

THEOREM 1. Suppose that the functions Fy (0,1, %; ¢y Pu) (8 ==1,...,7)
are elliptic with regard to py, and satisfy the condition (W) with regard io
Upy ooy Uy, Lol uy(,1), oo, 8y (@, 1) and v (@, 1), ..., Ou(®, 1) be continuous
in B and satisfy the inequalities

(%) w,(z,t) <v,@,t) for (z,8)eG+C (v =1,2,...,n).
We assume that for (z,0)eB,u, and v, possess continuous derivatives

o, &,
Oy 0ty |

Hwi0mk '

Suppose that for every P = (x,t)eB and every s (1 <s <
the condition u,(z,t) = v,(x, 1) holds, the derivatives

(6%) (81},')
atlp’ \ét]p

exist and the following inequalities are satisfied:

g ou iy
(o) (6t )Pg.F,, (w,i,ul(w,t) s U (2, 1), (07:) (-{W—arh) )r

o, dv, oo
— Folm,t I P I
(8) ( pr )P> s (w, 01 (@, 8)y o,y On (e, t)"(()iT’i)P (ﬁpﬂ)-’"k)l’)
Under our assumptions the inequalities u,(z, 1) < v,(@, 1) (v = 1,...,n)
hold for (z,t)eB.

Proof. We prove our theorem by reductio ad ahsurdum. Suppose
that the set

n) for which

v,(x, t) < ¥,

E =) B|@,1)eB,v, 0, (2, 1))
=1

[E2)

is non-empty. Denote by E, the projection of E on the t-axiy and put
¢§=infE,. We have £> 0 and for 0 <t < &

(1) u, (2, 1) <v,(®,t), xe@, »v=1,2,...,n

') v denotes here a sequence of variables different from B0 2,
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Therefore
(2) (2, £) <, §),

At least one of the functions z,(2) = v,(», &) —u,(z, &) has in ¢ a mi-
nimum equal to zero. If it were not so, then according to (*) we should
have z,(z) > 0 for xe@,» =1,...,n, and this contradicts the definition
of & Hence there exists s (1 < s < n) and a point P = (%, &) such that
TeG and

(3) U (T, &) = 7’a(§) &)

and in z the function z,(x) has a minimum. By (2) we have
(4) ui(@, £) <vi(3, 8 (i # ).
According to our assumptions, the derivatives

(01@,) ((’)vx)
e ¥ —
exist and o /e o e
du o = = = o
o | ‘)ﬁsﬁs(x,s,mP),...,un(P), (5?) (690.6@,) )

at

o, = 0, %,
) ) > F|®, &, 0 (P), ...,y e .
o (G et (3, ()

ze@, v=1,2,...,n

K]

ot /P

Sinee zg(x) has o minimum in %, the quadratie form

mn

a (Ius_"s)
2 [ 0402, ]13 filk

i F=1
is non-negative for arbitrary &, ..., &,. But F, is elliptic — therefore,
in view of
(01',) _ ((’)u,)
)7 \owy /B’
we have

~ - = = [0v, %0,
(7) Fa(‘”: 577’1(P)7-~-7'D11(P):(H)F,(m)ﬁ)

= = [0u )
> F, (m £, 0(P), ..., (P, (W)F ( " a},c)i)'

According to (3) and (4) we get, because of the condition (W),

3 B AR
(8) Fn(m,&', 2 (P)y .oy n(P), (04’.) (051;10{1,5) )

> F(cf & u(P), ..., ﬂﬂ(P),("“") ( &ra ) )

Bzrt 60?4 a’fk
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By (5), (6), (7) and (8) we have

0 (0173) N (()'us)
) at i5~ \ o1 |5

On the other hand, by (1) and (3) we have

(‘()@s) /(c)u,)
at s \at s

We obtain a contradiction of (9), hence F is empty.

3. We can now formulate the second theorem concerning strong
differential inequalities. We introduce the following assumption (A):
for every el and every » (1 < » < n) there exists a straight line I, such
tHat an open segment (Z,%,) of I, lies in @ and the derivatives of the form

du, —Tim u, (%, tz—u,(m, t)’ dv, —lim 0, (Z,1)—0,(, 1)
dl, a3 & —x| al, |Z—a|

zel gl

2eQ ze G

exist.

THEOREM 2. Suppose that the funciions Fy(w,t,u, ¢, pa) (s =1,...,n)
are elliptic and satisfy the condition (W) with respect 10 iy, ..., U,. We assume
that the functions @g(x,t,21,...,2,) (§ =1,...,n) satisfy the condition
(W) with regard to 2, ..., 2,.

Thfz )jmcm'ons Uy 1),y ooy U (2, 1) 01(,8), ..., Uu(2,t) are conti-
nuous in B; for (x,t)eB they posses comtinuous derivatives 8%, [dz;0m;,,
v, 0.

Let

(10) u, (2, 0) < 0,(2,0), xe@, »=1,2,..., 50
We assume that the assumption (A) is satisfied. For every (z,t)eC,
v=1,...,n, let

du,
an 'Efgq'v("r!Lawl(myt):-wa"n("rvt))a
12 dv,
(12) 7ﬁ;> T-'(w’tsvl (m,t),...,wn(x,t)) %).

%) Observe that the direction 7, is for both derivatives du,/dl,, dv,/dl, the
It depends on the point (x,?) and won ». ol ol 2l e
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We assume that for every P = (x, t)eB and every s 1<s<<n) for
which ug(x, 1) = v,(x, 1), the derivatives

(8'113) ( 13 1*3)
at e’ gt ip

exist and the inequalities («) and (B) hold.

Under our assumptions the inequalities w,(x,t) < v,(z,1) (v =1, ..., n)
hold for (x,t)eB.

Proof. We prove the theorem by reductio ad absurdum. Applying
the same arguments and using the same notation as in the proof of the-
orem 1 we find that at least one of the functions

z,(®) = v,(z, &) —u,(z, &)

has in @ a minimum equal to zero. These minima are not reached in wel
Indeed if it were so, then there would exist Tel' and s(1 < s < n) such
that 2,(z) has a minimum in Z We have wu;(%, §) < v:(%, §), 1 # s,
UG (T, E) = V(E, £). Therefore )

7’3(3—”" £ ug (&, §),--., un(®, f)} <¢s(5, &, 0i(Z, 8),..0, (T, E))

By the boundary inequalities (11), (12) we obtain

Ry
dl, | @.8 dl | @9

But 2z,(#) has a minimum in %, hence

((Zr,) - (d'u,s)
Al )@e  \dlg/Ee

Thus we conclude that the function 2z,(z) has a minimum equal to zero
in G. Now, applying the same arguments as in the proof of theorem 1,
by (), (8) we come to a contradietion of the definition of & This comple-
tes the proof.

Remark 1. It may easily be shown that our theorems remain true
for infinite hypercylinders of the form Gx(0, oo).

Remark 2. In both theorems we do not assume that the inequa-
lities («), (8) hold for every (x,%)eB and s =1,..., 1. If they were sa-
tisfied everywhere in B, for every s =1,...,%, then the assumptions
of theorem 1 would be satisfied. Therefore, in this case theorem 1 and
theorem 2 remain true. The situation is analogous to the situation en-
countered in the theory of ordinary or partial differential inequalities
of the first order (see e.g. [3]).
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Remarque concernant le travail de W. Pogorzelski:
»Sur le systeme d’équations intégrales a une infinité de
fonctions inconnues”

(Vol. I1, 1, 1955, pages 106-117)

Les lignes 13, 14, 15, 16, 17 & la page 107 doivent étre rempla-
cées par la phrase suivante:

,On peut faire correspondre &4 tout nombre positif ¢ un nombre
positif 7(e) et un nombre naturel N (s) tels que

[Fnl?o; 70, '“ga ng, =Py, Uy, Uy, L) < 8
si
W—u] <y (»=1,2,3,..., N)

|mozl <my  |Yoyl <,

Cette définifion de la continuité est équivalente & la définition de la con-
tinnité au sens de la métrique (6)”.
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