W. Mlak

# icm<sup>©</sup>

#### References

- [1] R. Bellman, On the existence and boundedness of solutions of non-linear partial differential equations of parabolic type, Transactions of the American Mathematical Society 64 (1948), p. 21-44.
- [2] W. Mlak, Differential inequalities of parabolic type, Annales Polonici Mathematici, that volume, p. 349-354.
- [3] R. Narasimhan, On the asymptotic stability of solutions of parabolic differential equations, Journal of Rational Mechanics and Analysis 3.3 (1954), p. 303-313.
- [4] G. Prodi, Questioni di stabilita per equazioni non lineari alle derivate parziali di tipo parabolico, Academia Nazionale dei Lincei, Rendiconti classe di scienze fisiche, matematiche e naturali 8.10 (1951), p. 365-370.
- [5] J. Szarski, Sur la limitation et l'unicité des solutions d'un système non-linéaire d'équations paraboliques aux dérivées partielles du second ordre, Annales Polonici Mathematici 2.2 (1955), p. 237-249.

### Differential inequalities of parabolic type

by W. Mlak (Kraków)\*

In connection with the stability problem of solutions of parabolic equations some theorems concerning certain differential inequalities have been discussed (see [1] and [2]).

In this paper we discuss some generalizations of the theorems about differential inequalities of the form

$$\frac{\partial z_s}{\partial t} < F_s \left( x, t, z_1, \dots, z_n, \frac{\partial z_s}{\partial x_i}, \frac{\partial^2 z_s}{\partial x_i \partial x_k} \right) \quad (s = 1, 2, \dots, n).$$

**1. Notation and definitions.** We investigate a hypercylinder of the form  $G \times (0, T)$  (T > 0) where G is an open bounded region lying in the space  $E^m$  of points  $(x_1, \ldots, x_m)$ . We write  $B = G \times (0, T)$ ;  $\Gamma$  being the boundary of G we write  $C = \Gamma \times (0, T)$ ;  $\overline{B}$  denotes the closure of  $B, \overline{C} = \Gamma \times (0, T)$ .

Suppose that  $F(x_1, \ldots, x_m, t, u_1, \ldots, u_n, q_1, \ldots, q_m, p_{11}, \ldots, p_{mm})$ , written shortly as  $F(x, t, u, q_i, p_{ik})$ , satisfies the following condition: For every system of numbers  $\bar{r}_{ik}$   $(i, k = 1, \ldots, m)$ ,  $r_{ik}$   $(i, k = 1, \ldots, m)$  such that the quadratic form

$$\sum_{i,k=1}^{m} \left( \bar{r}_{ik} - r_{ik} \right) \xi_i \, \xi_k$$

is non-negative for arbitrary  $\xi_1, \ldots, \xi_m$ , the following inequality holds:

$$F(x, t, u, q_i, \bar{r}_{ik}) \geqslant F(x, t, u, q_i, r_{ik}).$$

 $F(x,t,u,q_i,p_{ik})$  is then called the elliptic function with regard to  $p_{ik}$ . A system of equations

$$\frac{\partial u_s}{\partial t} = F_s \left( x, t, u_1, \dots, u_n, \frac{\partial u_s}{\partial x_i}, \frac{\partial^2 u_s}{\partial x_i \partial x_k} \right) \quad (s = 1, 2, \dots, n)$$

is called parabolic if every  $F_s$  is elliptic.

<sup>\*</sup> I want to express my thanks to J. Szarski for valuable remarks concerning this paper.

**2.** The following definition is introduced: a system of functions  $H_s(z_1,\ldots,z_r,\tau)$   $(s=1,\ldots,r)^1)$  satisfies the condition (W) with regard to  $z_1,\ldots,z_r$  if for every s  $(s=1,\ldots,r)$  and for  $\overline{u}_i\leqslant\overline{u}_i,\ i\neq s,\ \overline{u}_s=\overline{u}_s$  we have the inequality

$$H_{\mathfrak{o}}(\overline{\overline{u}}_1,\ldots,\overline{\overline{u}}_{\mathfrak{o}},\tau) \leqslant H_{\mathfrak{o}}(\overline{\overline{u}}_1,\ldots,\overline{\overline{u}}_{\mathfrak{o}},\tau).$$

Suppose now that  $F_s(x,t,u,q_i,q_{ik})$  are defined for  $x \in G$ ,  $0 < t \leq T$ , and arbitrary  $u_1,\ldots,u_n,q_i,p_{ik}$ . We formulate the generalization of the Westphal-Prodi theorem.

THEOREM 1. Suppose that the functions  $F_s(x,t,u,q_i,p_{tk})$  ( $s=1,\ldots,n$ ) are elliptic with regard to  $p_{tk}$  and satisfy the condition (W) with regard to  $u_1,\ldots,u_n$ . Let  $u_1(x,t),\ldots,u_n$  (x,t) and  $v_1(x,t),\ldots,v_n(x,t)$  be continuous in  $\overline{B}$  and satisfy the inequalities

(\*) 
$$u_{\bullet}(x,t) < v_{\bullet}(x,t)$$
 for  $(x,t) \in \overline{G} + C$   $(v=1,2,\ldots,n)$ .

We assume that for  $(x, t) \in B$ ,  $u_*$  and  $v_*$  possess continuous derivatives

$$\frac{\partial^2 u_{\bullet}}{\partial x_i \partial x_k} , \quad \frac{\partial^2 v_{\bullet}}{\partial x_i \partial x_k} .$$

Suppose that for every  $P=(x,t)\,\epsilon B$  and every s  $(1\leqslant s\leqslant n)$  for which the condition  $u_s(x,t)=v_s(x,t)$  holds, the derivatives

$$\left( \frac{\partial u_s}{\partial t} \right)_{P}, \quad \left( \frac{\partial v_s}{\partial t} \right)_{P}$$

exist and the following inequalities are satisfied:

$$(\mathbf{a}) \qquad \left(\frac{\partial u_s}{\partial t}\right)_P \leqslant F_s\left(x,t,u_1(x,t),\ldots,u_n(x,t),\left(\frac{\partial u_s}{\partial x_i}\right)^P,\left(\frac{\partial^2 u_s}{\partial x_i\partial x_k}\right)_P\right),$$

$$(\beta) \qquad \left(\frac{\partial v_s}{\partial t}\right)_P > F_s\left(x, t, v_1\left(x, t\right), \ldots, v_n\left(x, t\right), \left(\frac{\partial v_s}{\partial x_i}\right)_P, \left(\frac{\partial^2 v_s}{\partial v_i \partial v_k}\right)_P\right).$$

Under our assumptions the inequalities  $u_{\bf r}(x,t) < v_{\bf r}(x,t)$  ( $v=1,\ldots,n$ ) hold for  $(x,t)\,\epsilon B$ .

Proof. We prove our theorem by reductio ad absurdum. Suppose that the set

$$E = \sum_{\nu=1}^{n} E\{(x,t) \in \overline{B}, v_{\nu}(x,t) \leqslant u_{\nu}(x,t)\}$$

is non-empty. Denote by  $E_t$  the projection of E on the t-axis and put  $\xi=\inf E_t$ . We have  $\xi>0$  and for  $0\leqslant t<\xi$ 

(1) 
$$u_{\nu}(x,t) < v_{\nu}(x,t), \quad x \in \overline{G}, \quad \nu = 1,2,\ldots,n.$$

Therefore

(2) 
$$u_{\bullet}(x,\xi) \leqslant v_{\bullet}(x,\xi), \quad x \in \overline{G}, \quad \nu = 1,2,\ldots,n.$$

At least one of the functions  $z_{r}(x) = v_{r}(x, \xi) - u_{r}(x, \xi)$  has in G a minimum equal to zero. If it were not so, then according to (\*) we should have  $z_{r}(x) > 0$  for  $x \in \overline{G}$ , v = 1, ..., n, and this contradicts the definition of  $\xi$ . Hence there exists s  $(1 \leq s \leq n)$  and a point  $\overline{P} = (\overline{x}, \xi)$  such that  $\overline{x} \in G$  and

$$u_{\mathbf{s}}(\bar{x},\,\xi) = v_{\mathbf{s}}(\bar{x},\,\xi)$$

and in  $\bar{x}$  the function  $z_s(x)$  has a minimum. By (2) we have

$$(4) u_i(\overline{x}, \xi) \leqslant v_i(\overline{x}, \xi) (i \neq s).$$

According to our assumptions, the derivatives

$$\left(\frac{\partial u_s}{\partial t}\right)_{\overline{P}}, \quad \left(\frac{\partial v_s}{\partial t}\right)_{\overline{P}}$$

exist and

(5) 
$$\left(\frac{\partial u_s}{\partial t}\right)_{\overline{P}} \leqslant F_s \left(\overline{x}, \, \xi, \, u_1(\overline{P}), \, \dots, \, u_n(\overline{P}), \, \left(\frac{\partial u_s}{\partial x_t}\right)_{\overline{P}}, \, \left(\frac{\partial^2 u_s}{\partial x_t \partial x_t}\right)_{\overline{P}}\right),$$

(6) 
$$\left(\frac{\partial v_s}{\partial t}\right)_{\overline{P}} > F_s \left(\overline{x}, \, \xi, \, v_1(\overline{P}), \, \dots, \, v_n(\overline{P}), \, \left(\frac{\partial v_s}{\partial x_i}\right)_{\overline{P}}, \, \left(\frac{\partial^2 v_s}{\partial x_i \partial x_k}\right)_{\overline{P}}\right).$$

Since  $z_s(x)$  has a minimum in  $\bar{x}$ , the quadratic form

$$\sum_{i,k=1}^{m} \left[ \frac{\partial^{2}(v_{s}-u_{s})}{\partial x_{i}\partial x_{k}} \right]_{\overline{P}} \xi_{i} \, \xi_{k}$$

is non-negative for arbitrary  $\xi_1, \ldots, \xi_m$ . But  $F_s$  is elliptic — therefore, in view of

$$\left(\frac{\partial v_s}{\partial x_i}\right)_{\overline{P}} = \left(\frac{\partial u_s}{\partial x_i}\right)_{\overline{P}},$$

we have

(7) 
$$F_{s}\left(\overline{x}, \, \xi, \, v_{1}(\overline{P}), \, \dots, \, v_{n}(\overline{P}), \, \left(\frac{\partial v_{s}}{\partial x_{i}}\right)_{\overline{P}}, \left(\frac{\partial^{2} v_{s}}{\partial x_{i} \partial x_{k}}\right)_{\overline{P}}\right)$$

$$\geqslant F_{s}\left(x, \, \xi, \, v_{1}(\overline{P}), \dots, \, v_{n}(\overline{P}), \left(\frac{\partial u_{s}}{\partial x_{i}}\right)_{\overline{P}}, \left(\frac{\partial^{2} v_{s}}{\partial x_{i} \partial x_{k}}\right)_{\overline{P}}\right).$$

According to (3) and (4) we get, because of the condition (W),

(8) 
$$F_{s}\left(\overline{x}, \, \xi, \, v_{1}(\overline{P}), \dots, v_{n}(\overline{P}), \left(\frac{\partial u_{s}}{\partial x_{i}}\right)_{\overline{P}}, \left(\frac{\partial^{2} u_{s}}{\partial x_{i} \partial x_{k}}\right)_{\overline{P}}\right)$$

$$\geqslant F_{s}\left(\overline{x}, \, \xi, \, u_{1}(\overline{P}), \dots, \, u_{n}(\overline{P}), \left(\frac{\partial u_{s}}{\partial x_{i}}\right)_{\overline{P}}, \left(\frac{\partial^{2} u_{s}}{\partial x_{i} \partial x_{k}}\right)_{\overline{P}}\right).$$

<sup>1)</sup>  $\tau$  denotes here a sequence of variables different from  $z_1, \ldots, z_r$ 

By (5), (6), (7) and (8) we have

(9) 
$$\left(\frac{\partial v_s}{\partial t}\right)_{\overline{P}} > \left(\frac{\partial u_s}{\partial t}\right)_{\overline{P}}.$$

On the other hand, by (1) and (3) we have

$$\left(\frac{\partial v_s}{\partial t}\right)_{\overline{P}} \leqslant \left(\frac{\partial u_s}{\partial t}\right)_{\overline{P}}.$$

We obtain a contradiction of (9), hence E is empty.

3. We can now formulate the second theorem concerning strong differential inequalities. We introduce the following assumption (A): for every  $\bar{x} \in \Gamma$  and every  $\nu$   $(1 \leq \nu \leq n)$  there exists a straight line  $l_{\nu}$  such that an open segment  $(\bar{x}, \bar{\bar{x}})$  of  $l_{\nu}$  lies in G and the derivatives of the form

$$\frac{d u_{\mathbf{v}}}{d l_{\mathbf{v}}} = \lim_{\substack{x \to \overline{x} \\ x \in I \\ x \in G}} \frac{u_{\mathbf{v}}(\overline{x}, t) - u_{\mathbf{v}}(x, t)}{|\overline{x} - x|}, \qquad \frac{d v_{\mathbf{v}}}{d l_{\mathbf{v}}} = \lim_{\substack{x \to \overline{x} \\ x \in I \\ x \in G}} \frac{v_{\mathbf{v}}\left(\overline{x}, t\right) - v_{\mathbf{v}}(x, t)}{|\overline{x} - x|}$$

exist.

THEOREM 2. Suppose that the functions  $F_s(x,t,u,q_i,p_{ik})$   $(s=1,\ldots,n)$  are elliptic and satisfy the condition (W) with respect to  $u_1,\ldots,u_n$ . We assume that the functions  $\varphi_s(x,t,z_1,\ldots,z_n)$   $(s=1,\ldots,n)$  satisfy the condition (W) with regard to  $z_1,\ldots,z_n$ .

The functions  $u_1(x,t), \ldots, u_n(x,t); v_1(x,t), \ldots, v_n(x,t)$  are continuous in  $\overline{B}$ ; for  $(x,t) \in B$  they posses continuous derivatives  $\partial^2 u_* / \partial x_i \partial x_k$ ,  $\partial^2 v_* / \partial x_i \partial x_k$ .

Let

(10) 
$$u_{\nu}(x,0) < v_{\nu}(x,0), \quad x \in \overline{G}, \quad \nu = 1, 2, ..., n.$$

We assume that the assumption (A) is satisfied. For every  $(x, t) \in C$ , v = 1, ..., n, let

(11) 
$$\frac{du_{\nu}}{dl_{\nu}} \leqslant \varphi_{\nu}(x, l, u_{1}(x, t), \dots, u_{n}(x, t)),$$

(12) 
$$\frac{dv_{r}}{dl_{r}} > \varphi_{r}(x, t, v_{1}(x, t), \dots, v_{n}(x, t))^{2}).$$

We assume that for every  $P=(x,t)\,\epsilon B$  and every s  $(1\leqslant s\leqslant n)$  for which  $u_s(x,t)=v_s(x,t),$  the derivatives

$$\left(\frac{\partial u_s}{\partial t}\right)_P$$
,  $\left(\frac{\partial v_s}{\partial t}\right)_P$ 

exist and the inequalities (a) and (b) hold.

Under our assumptions the inequalities  $u_{\bullet}(x,t) < v_{\bullet}(x,t) \, (\nu=1\,,\ldots,\,n)$  hold for  $(x,t) \in \overline{B}$ .

Proof. We prove the theorem by reductio ad absurdum. Applying the same arguments and using the same notation as in the proof of theorem 1 we find that at least one of the functions

$$z_{\mathbf{v}}(x) = v_{\mathbf{v}}(x, \xi) - u_{\mathbf{v}}(x, \xi)$$

has in  $\overline{G}$  a minimum equal to zero. These minima are not reached in  $x \in \Gamma$ . Indeed if it were so, then there would exist  $\overline{x} \in \Gamma$  and  $s(1 \le s \le n)$  such that  $z_s(x)$  has a minimum in  $\overline{x}$ . We have  $u_i(\overline{x}, \xi) \le v_i(\overline{x}, \xi)$ ,  $i \ne s$ ,  $u_s(\overline{x}, \xi) = v_s(\overline{x}, \xi)$ . Therefore

$$q_s(\overline{x}, \xi, u_1(\overline{x}, \xi), \dots, u_n(\overline{x}, \xi)) \leqslant q_s(\overline{x}, \xi, v_1(\overline{x}, \xi), \dots, v_n(\overline{x}, \xi)).$$

By the boundary inequalities (11), (12) we obtain

$$\left(\frac{du_s}{dl_s}\right)_{(\overline{x},\xi)} < \left(\frac{dv_s}{dl_s}\right)_{(\overline{x},\xi)}.$$

But  $z_s(x)$  has a minimum in  $\overline{x}$ , hence

$$\left(\frac{dv_s}{dl_s}\right)_{(\bar{x},\xi)} \leqslant \left(\frac{du_s}{dl_s}\right)_{(\bar{x},\xi)}.$$

Thus we conclude that the function  $z_{\bullet}(x)$  has a minimum equal to zero in G. Now, applying the same arguments as in the proof of theorem 1, by  $(\alpha)$ ,  $(\beta)$  we come to a contradiction of the definition of  $\xi$ . This completes the proof.

Remark 1. It may easily be shown that our theorems remain true for infinite hypercylinders of the form  $G \times (0, \infty)$ .

Remark 2. In both theorems we do not assume that the inequalities  $(\alpha)$ ,  $(\beta)$  hold for every  $(x,t) \in B$  and  $s=1,\ldots,n$ . If they were satisfied everywhere in B, for every  $s=1,\ldots,n$ , then the assumptions of theorem 1 would be satisfied. Therefore, in this case theorem 1 and theorem 2 remain true. The situation is analogous to the situation encountered in the theory of ordinary or partial differential inequalities of the first order (see e.g. [3]).

<sup>&</sup>lt;sup>2</sup>) Observe that the direction  $l_{\nu}$  is for both derivatives  $du_{\nu}/dl_{\nu}$ ,  $dv_{\nu}/dl_{\nu}$  the same. It depends on the point (x, t) and on  $\nu$ .

W. Mlak

#### 354



#### References

- [1] G. Prodi, Questioni di stabilita per equazioni non lineari alle derivate parziali di tipo parabolico, Academia dei Lincei, Rendiconti classe di scienze fisiche, matematiche e naturali 8, 10 (1951), p. 365-370.
- [2] R. Narasimhan, On the asymptotic stability of solutions of parabolic differential equations, Journal of Rational Mechanics and Analysis 3.3 (1954), p. 303-313.
- [3] J. Szarski, Systèmes d'inégalités différentielles aux dérivées partielles du premier ordre, et leurs applications, Annales Polonici Mathematici 1.1 (1954), p. 149-165.

## Remarque concernant le travail de W. Pogorzelski: "Sur le système d'équations intégrales à une infinité de fonctions inconnues"

(Vol. II, I, 1955, pages 106-117)

Les lignes 13, 14, 15, 16, 17 à la page 107 doivent être remplacées par la phrase suivante:

"On peut faire correspondre à tout nombre positif  $\varepsilon$  un nombre positif  $\eta(\varepsilon)$  et un nombre naturel  $N(\varepsilon)$  tels que

$$|F_n(x_0, v_0, u_1^0, u_2^0, \ldots) - F_n(x, y, u_1, u_2, \ldots)| < \varepsilon$$

si

$$|x_0x| < \eta$$
,  $|y_0y| < \eta$ ,  $|u_r^0 - u_r| < \eta$   $(r = 1, 2, 3, ..., N)$ .

Cette définition de la continuité est équivalente à la définition de la continuité au sens de la métrique (6)".