

COROLLAIRE I. Si une fonction f(z) de la famille C s'annule pour une suite de points a_1, a_2, \ldots telle que

$$\sum_{j=1}^{\infty} \left\{ 1 - |a_j| \right\}^2 = +\infty$$

elle est identiquement nulle.

COROLLAIRE II. Si une suite de fonctions pour lesquelles on a l'inégalité (10) converge en une infinité de points ayant au moins un point limite intérieur au cercle unité, la suite converge presque uniformément dans l'intérieur de ce cercle.

Propriétés des points extrémaux des ensembles plans et leur application à la représentation conforme

par F. Leja (Kraków)

1. Introduction. Soit E un ensemble fermé et borné de points du plan, D un domaine quelconque contenant E, p(z) une fonction holomorphe dans D ne s'annulant pas dans ce domaine 1) et f(z) une fonction réelle, définie et continue dans E.

Désignons par $\omega(z, \zeta)$ l'expression

$$\omega(z, \zeta) = \frac{|z-\zeta|}{|p(z)p(\zeta)| \exp[f(z)+f(\zeta)]},$$

par $\zeta^{(n)}$ un système de n+1 points différents quelconques $\zeta_0, \zeta_1, \ldots, \zeta_n$ de E, par $V(\zeta^{(n)}, \omega)$ et $A_I(\zeta^{(n)}, \omega)$ les produits

$$V(\zeta^{(n)},\omega) = \prod_{0 \le j \le k \le n} \omega(\zeta_j,\zeta_k),$$

(2)
$$\Delta_{\mathbf{f}}(\zeta^{(n)}, \omega) = \prod_{\substack{k=0\\k\neq j}} \omega(\zeta_{\mathbf{f}}, \zeta_{\mathbf{k}}), \quad j = 0, 1, \dots, n$$

et soit $V_n(E, \omega)$ la borne supérieure de $V(\zeta^{(n)}, \omega)$, lorsque les points du système $\zeta^{(n)}$ varient arbitrairement dans E. D'autre part, soit

(3)
$$x^{(n)} = \left\{ x_0^{(n)}, x_1^{(n)}, \dots, x_n^{(n)} \right\}$$

un système de points de E pour lequel

(4)
$$V(x^{(n)}, \omega) = V_n(E, \omega) = \sup_{\zeta^{(n)} \in E} V(\zeta^{(n)}, \omega).$$

Les indices inférieurs des points $x_j^{(n)}$ peuvent toujours être choisis de manière qu'on ait

(5)
$$\Delta_{\mathbf{0}}(x^{(n)}, \omega) \leqslant \Delta_{\mathbf{1}}(x^{(n)}, \omega) \leqslant \ldots \leqslant \Delta_{\mathbf{n}}(x^{(n)}, \omega).$$

Les points du sytème (3) remplissant les conditions (4) et (5) sont dits points extrémaux de rang n de E par rapport à la fonction $\omega(z,\zeta)$, dite fonction génératrice ou distance généralisée des points z et ζ .

¹⁾ La fonction p(z) peut être multiforme lorsque D est multiplement connexe, mais nous supposerons que son module |p(z)| est uniforme.

Le produit $V(x^{(n)}, \omega)$ a n(n+1)/2 facteurs. On sait [3] que la moyenne géométrique

$$[V(x^{(n)}, \omega)]^{2/n(n+1)}, \quad n = 1, 2, ...$$

converge vers une limite non négative

(6)
$$\lim_{n \to \infty} [V(x^{(n)}, \omega)]^{2/n(n+1)} = v(E, \omega)$$

dite écart de l'ensemble E par rapport à la fonction $\omega(z,\zeta)$. Pareillement la moyenne $\Delta_0(x^{(n)},\omega)^{1/n}$, $n=1,2,\ldots$ converge vers la même limite²)

$$\lim_{n\to\infty} \sqrt[n]{A_0(x^{(n)},\,\omega)} = v(E,\,\omega).$$

Dans le cas où $\omega(z,\zeta)$ se réduit à la distance $|z-\zeta|$, c'est-à-dire lorsque $p(z)\equiv 1$ et $f(z)\equiv 0$, l'écart $v(E,|z-\zeta|)$ est appelé aussi diamètre transfini ou capacité de l'ensemble E. Nous supposerons dans la suite que $v(E,|z-\zeta|)>0$.

Désignons par $L^{(i)}(z, \zeta^{(n)}), j = 0, 1, ..., n$, les polynômes de Lagrange

$$L^{(j)}(z,\zeta^{(n)})=\prod_{\stackrel{k=0}{\substack{k=0\\k\neq j}}}^n(z-\zeta_k)/(\zeta_j-\zeta_k)$$

liés au système $\zeta^{(n)}$, par $\Phi^{(j)}(z,\zeta^{(n)})$, $j=0,1,\ldots,n$, les fonctions

(7)
$$\Phi^{(j)}(z, \zeta^{(n)}) = L^{(j)}(z, \zeta^{(n)})[p(\zeta_j)/p(z)]^n \exp[nj(\zeta_j)], \quad j = 0, 1, ..., n,$$
 et par

$$(8) \qquad \Phi_n(z,E,\omega) = \inf_{\zeta^{(n)} \in E} \{ \max_{(j)} |\Phi^{(j)}(z,\zeta^{(n)})| \}, \quad n = 1,2,\dots$$

la borne inférieure du plus grand des modules $|\Phi^{(i)}(z,\zeta^{(n)})|$, $j=0,1,\ldots,n$, lorsque, $z \in D$ et n étant fixes, le système $\zeta^{(n)}$ varie arbitrairement dans E. D'autre part, formons les fonctions

(9)
$$\Phi^{(j)}(z, x^{(n)}), \quad j = 0, 1, ..., n,$$

correspondant au système extrémal (3) et désignons par E^* l'ensemble des points d'accumulation de la suite triangulaire

$$x_0^{(1)}, x_1^{(1)}, \\ x_0^{(2)}, x_1^{(2)}, x_2^{(2)}, \\ x_0^{(3)}, x_1^{(3)}, x_2^{(3)}, x_3^{(3)}$$

Il est clair que l'ensemble E^* est fermé et contenu dans E et que parmi les fonctions (9) la condition (5) fait distinguer $\Phi^{(0)}(z, x^{(n)})$,

Nous aurons à nous appuyer sur les résultats suivants (cf. [1] et [4]):

Si $v(E,|z-\zeta|)>0$, la suite $\{\sqrt[n]{\phi_n(z,E,\omega)}\}$ converge en tout point du domaine D

(10)
$$\lim_{n\to\infty} \sqrt[n]{\Phi_n(z,E,\omega)} = \Phi(z,E,\omega), \quad z \in D.$$

Pareillement la suite $\{ \sqrt[n]{|D^0(z, w^{(n)})|} \}$ converge dans D en dehors de l'ensemble E^* vers la même limite

(11)
$$\lim_{n\to\infty} \sqrt[n]{|\overline{\Phi^{(0)}(z,x^{(n)})}|} = \Phi(z,E,\omega), \quad z \in D - E^*,$$

la convergence (11) étant uniforme dans le voisinage de tout point $z \in D - E^*$.

La limite $\Phi(z,E,\omega)$ sera dite fonction extrémale du domaine D_{\bullet}^{T} par rapport à la fonction génératrice $\omega(z,\zeta)$. Le but de ce travail est d'examiner certaines propriétés de l'écart $v(E,\omega)$, de l'ensemble E^{T} et de la fonction extrémale $\Phi(z,E,\omega)$ et d'appliquer cette étude au problème de la représentation conforme des domaines plans.

Remarque. Soient m et M les bornes inférieure et supérieure de f(z) et l et L celles de |p(z)| lorsque z varie dans E. Alors l>0 et

$$rac{|z-\zeta|}{L^2e^{2M}}\leqslant \omega(z,\,\zeta)\leqslant rac{|z-\zeta|}{l^2\,e^{2m}},$$

ce qui entraîne l'inégalité

$$rac{v(E,|z-\zeta|)}{L^2e^{2M}}\leqslant v(E,\,\omega)\leqslant rac{v(E,|z-\zeta|)}{l^2e^{2m}}$$
 .

Par suite l'écart $v(E, \omega)$ est positif, quels que soient p(z) et f(z), lorsque $v(E, |z-\zeta|)$ est positif.

Remarquons encore que si $p(z)\equiv 1$ et $f(z)\equiv \lambda$, où λ est une constante réelle quelconque, alors

$$v(E, \omega) = v(E, |z-\zeta|)/e^{2\lambda}$$

2. Quelques propriétés de l'écart et de la fonction extrémale. L'écart $v(E, \omega)$ dépend des fonctions p(z) et f(z) et sera désigné aussi par v(E, p, f). Lorsque E varie en restant fermé et borné et les fonctions p et f restent fixes, il résulte immédiatement de (4) et (6) que

$$v(E', p, f) \leqslant v(E, p, f)$$
 si $E' \subset E$.

Faisons maintenant varier f sans changer E et p. Je dis que:

^{*)} La démonstration de ce fait dans le cas général (où la fonction ω est quelconque) n'est pas publiée, mais on sait que $\lim_{n\to\infty} \sqrt[n]{A_0(x^{(n)},\,\omega)} = v(E,\,\omega)$.

Propriétés des points extrémaux des ensembles plans

323

I. La fonctionnelle v(E, p, f) varie continuement avec f; elle décroît (au sens large) lorsque f croît 3).

F. Leja

Démonstration. Il s'agit prouver qu'à chaque $\varepsilon > 0$ correspond un nombre $\delta > 0$ tel que, si deux fonctions f(z) et $\overline{f}(z)$ satisfont dans Eà l'inégalité $|\bar{t}-t| < \delta$, on ait

$$|v(E, p, \bar{f}) - v(E, p, f)| < \varepsilon.$$

Soient $x^{(n)} = \{x_0, x_1, \ldots, x_n\}$ et $\overline{x}^{(n)} = \{\overline{x}_0, \overline{x}_1, \ldots, \overline{x}_n\}$ deux systèmes de points extrémaux de rang n de E respectivement par rapport à $\omega(z,\zeta)$ et $\bar{\omega}(z,\zeta)$, où

$$\bar{\omega}(z,\zeta) = \frac{|z-\zeta|}{|p(z)p(\zeta)| \exp\left[\bar{f}(z) + \bar{f}(\zeta)\right]}.$$

Posons

322

$$\Delta f = \sum_{k=0}^{n} \left[\overline{f}(x_k) - f(x_k) \right].$$

Si $|\bar{f}(z)-f(z)|<\delta$ dans E où $\delta>0$ est quelconque, on a $|\Delta f|\leqslant (n+1)\,\delta$. Mais, d'après (4), on a

$$V(\overline{x}^{(n)}, \bar{\omega}) \geqslant V(x^{(n)}, \bar{\omega}) = V(x^{(n)}, \omega) e^{-n\Delta t}$$

donc l'inégalité $|\bar{f}(z)-f(z)| < \delta$ entraîne la suivante

$$V(\bar{x}^{(n)}, \bar{\omega}) > V(x^{(n)}, \omega) e^{-n(n+1)\delta}$$

d'où l'on déduit: $v(E,p,\bar{f})>v(E,p,f)e^{-2\delta}$. Pareillement, si $|\bar{f}-f|<\delta$ sur E on a $v(E,p,f)>v(E,p,\bar{f})e^{-2\delta}$ et par suite les quantités v==v(E, p, f) et $\bar{v}=v(E, p, \bar{f})$ satisfort aux inégalités

$$v(e^{-2\delta}-1) < \overline{v}-v < v(e^{2\delta}-1),$$

d'où l'on conclut que l'inégalité (12) est satisfaite lorsque $|\vec{t}-f|<\delta$ et δ est suffisamment petit.

Pour terminer la démonstration considérons l'indentité

$$V(\zeta^{(n)}, \bar{\omega}) = V(\zeta^{(n)}, \omega) e^{-n\Delta t}, \quad \text{où} \quad \Delta f = \sum_{k=0}^{n} [\bar{f}(\zeta_k) - f(\zeta_k)].$$

Si $\bar{f} \geqslant f$ en tout point de E, on a $\Delta f \geqslant 0$ et par suite $V(\zeta^{(n)}, \omega) \leqslant V(\zeta^{(n)}, \omega)$, ce qui entraîne l'inégalité $v(E, \bar{\omega}) \leq v(E, \omega)$.

La fonction extrémale $\Phi(z, E, \omega)$ sera aussi désignée par $\Phi(z, E, p, f)$. Elle jouit des propriétés suivantes:

(13)
$$\Phi(z, E', p, f) \geqslant \Phi(z, E, p, f) \quad \text{si} \quad E' \subset E^4,$$

(14)
$$\Phi(z, E, p, f) \leqslant e^{f(z)}$$
 pour $z \in E$,

(15)
$$\Phi(z, E, p, f) \geqslant le^{m}/|p(z)| \quad \text{pour} \quad z \in D,$$

où l'on a posé $l=\min_{z\in E}|p\left(z\right)|,\ m=\min_{z\in E}f\left(z\right).$

En effet, l'inégalité (13) résulte immédiatement de (8) et (10). Pour prouver (14) remplaçons dans le système extrémal (3) le point $x_i^{(n)}$ par un point quelconque $z \in E$ et désignons le système obtenu par $\bar{x}^{(n)}$. D'après (4) on a

$$V(\bar{x}^{(n)}, \omega) \leqslant V(x^{(n)}, \omega)$$

et cette inégalité entraîne immédiatement la suivante

$$|\Phi^{(j)}(z, x^{(n)})| \leqslant e^{nf(z)}, \quad j = 0, 1, \dots, n,$$

et comme, d'après (8).

$$arPhi_n(z,E,\omega) \leqslant \sum_{j=0}^n |arPhi^{(j)}(z,x^{(n)})|$$

on voit que $\Phi_n(z, E, \omega) \leq (n+1)e^{nj(z)}, z \in E$, ce qui entraîne l'inégalité (14). Soit $\xi^{(n)} = \{\xi_0, \xi_1, \dots, \xi_n\}$ un système de points de E pour lequel $\Phi_n(z, E, \omega) = \max_{(t)} |\Phi^{(t)}(z, \xi^{(n)})|$. Il résulte de la formule (7) que

$$\max_{(j)} |\varPhi^{(j)}(z, \xi^{(n)})| \geqslant \left(\max_{(j)} |L^{(j)}(z, \xi^{(n)})|\right) \frac{\left(le^m\right)^n}{|p(z)|^n}$$

et comme $\sum_{n=0}^{\infty} L^{(l)}(z, \xi^{(n)}) = 1$ on a, quel que soit z,

$$\max_{(t)} |L^{(j)}(z, \xi^{(n)})| \geqslant 1/(n+1)$$

et par suite

$$\sqrt[n]{arPhi_{n}(z,E,\,\omega)}\geqslantrac{1}{\sqrt[n]{n+1}}\cdotrac{le^{m}}{|p\left(z
ight)|}$$

ce qui entraîne l'inégalité (15).

Soit z_0 un point de l'ensemble E. Nous dirons que E jouit en z_0 de la propriété W, si à chaque $\varepsilon > 0$ correspond un nombre $\delta > 0$ tel que, pour toute suite de polynômes $\{P_n(z)\}$ de degré $\leq n$, uniformément bornés dans E,

$$\overline{\lim}_{n\to\infty} \sqrt[n]{|P_n(z)|} < 1+\varepsilon$$

³⁾ C'est-à-dire lorsque f(z) ne diminue en aucun point de E

⁴⁾ On suppose que E' est fermé, comme E, et que le diamètre transfini v(E', $|z-\zeta|$) est positif, ce qui assure l'existence de la fonction extrémale $\Phi(z, E', \omega)$.

324

dans le voisinage $|z-z_0|<\delta$. On sait que E jouit de la propriété W en tout point d'un continu quelconque $C\subset E$ et n'en jouit pas en des points isolés de celui-ci.

D'après (15) la fonction $\Phi(z,E,p,f)$ est positive en tout point du domaine D et, les fonctions $\Phi^{(0)}(z,x^{(n)})$, $n=1,2,\ldots$ étant analytiques dans D et la convergence (11) étant uniforme, il résulte de (11) que la fonction $\log \Phi(z,E,p,f)$ est harmonique dans $D-E^*$. Sur E^* elle jouit des propriétés suivantes:

II. La fonction $\Phi(z, E, p, f)$ reste bornée dans le voisinage de tout point $z_0 \in E^*$, admet en z_0 la valeur

$$\Phi(z_0, E, p, f) = e^{f(z_0)}$$

et, si l'ensemble E jouit en z_0 de la propriété $W, \ \Phi(z,E,p,f)$ reste continue en ce point.

La démonstration de ce théorème est analogue à celle du théorème IV que j'ai donnée dans mon travail [4].

Désignons par $D_{\infty}(E)$ le plus grand domaine non borné contenu dans l'ensemble complémentaire de E et supposons que les fonctions p(z) et f(z) soient constantes $p(z) \equiv 1$, $f(z) \equiv 0$. Alors le domaine D est le plan entier, la fonction $\log \Phi(z, E, 1, 0)$ est harmonique partout en dehors de E^* et s'annule sur E^* . Comme

$$\varPhi^{(0)}(z, x^{(n)}) = \prod_{k=1}^{n} \frac{z - x_{k}^{(n)}}{x_{0}^{(n)} - x_{k}^{(n)}}$$

la différence $\log \Phi(z,E,1,0) - \log |z|$ tend d'après (11) vers une limite finie lorsque $|z| \to \infty$. D'autre part, on déduit du principe de maximum que les points extrémaux sont situés sur la frontière F du domaine $D_{\infty}(E)$ et que E^* couvre F tout entier 5). Par conséquent [2] $\log \Phi(z,E,1,0)$ est la fonction de Green du domaine $D_{\infty}(E)$ de pôle à l'infini. En dehors de ce domaine la fonction $\log \Phi(z,E,1,0)$ est identiquement nulle.

3. Fonctions analytiques liées à la fonction extrémale $\Phi(z,E,\omega)$. Soit Π le plan entier. La différence $\Pi-E^*$ est une somme de domaines disjoints dont un et un seul est non borné. Désignons ce dernier domaine par $D_{\infty}=D_{\infty}(E^*)$ et les autres (s'ils existent) par D_1,D_2,\ldots ; on aura

$$\Pi - E^* = D_{\infty} + D_1 + D_2 + \dots$$

Pareillement la différence $D-E^*$ est une somme de domaines dont un et un seul est contenu dans chaque D_k . Désignons le domaine partiel de $D-E^*$ contenu dans D_k par A_k ; on aura

$$(16) D - E^* = \Delta_{\infty} + \Delta_1 + \Delta_2 + \dots$$

Choisissons dans chaque domaine Δ_k un point fixe quelconque a_k et désignons par $\varphi_n(z,\Delta_k),\ k=\infty,1,2,\ldots,$ la fonction analytique définie dans Δ_k par la formule

(17)
$$q_n(z, \Delta_k) = e^{i\Theta_n} \sqrt[n]{\Phi^{(0)}(z, x^{(n)})}, \quad n = 1, 2, \dots$$

où la branche du radical et le nombre réel Θ_n sont choisis de manière que la valeur de $\varphi_n(z, \Delta_k)$ au point $z = \alpha_k$ soit positive $\varphi_n(\alpha_k, \Delta_k) > 0$.

Il résulte de (11) que la suite (17) converge au point $z=a_k$ et que la suite des modules $|\varphi_n(z, \Delta_k)|$ converge dans le domaine Δ_k vers $\Phi(z, E, \omega)$, d'où l'on conclut que:

III. La suite (17), où $k=\infty,1,2,\ldots$ est fixé, converge dans le domaine Δ_k vers une fonction

$$\lim_{n\to\infty} \varphi_n(z, \Delta_k) = \varphi(z, \Delta_k)$$

analytique dans Δ_k de module

$$|\varphi(z, \Delta_k)| = \Phi(z, E, \omega), \quad z \in \Delta_k,$$

la convergence étant uniforme dans le voisinage de tout point $z \in \Delta_k$.

La fonction $\varphi(z, \Delta_t)$ sera aussi désignée, plus précisément, par

$$\varphi(z, \Delta_k, p, f), \quad k = \infty, 1, 2, \dots$$

Il est clair que cette fonction peut être uniforme ou multiforme dans le domaine Δ_k , mais son module est toujours uniforme.

La frontière de l'ensemble ouvert (16) est la somme de la frontière F_1 de l'ensemble fermé E^* et de la frontière F_2 du domaine D. L'allure des fonctions $\varphi(z, \Delta_k), k = \infty, 1, 2, \ldots$ dans le voisinage de F_1 est caractérisée par le théorème II et, dans le voisinage de F_2 , par le suivant:

IV. Le produit $\varphi(z, A_k)p(z)$, où $k=\infty,1,2,\ldots$, est prolongeable analytiquement au domaine D_k et reste borné dans D_k si $k\neq\infty$, tandis que le produit $\varphi(z, A_\infty)p(z)$ prolongé à D_∞ n'est pas borné dans le voisinage du seul point $z=\infty$ et admet dans ce voisinage un développement de la torme

(18)
$$\varphi(z, \Delta_{\infty}) p(z) = \gamma_{-1} z + \gamma_0 + \gamma_1 z^{-1} + \gamma_2 z^{-2} + \dots,$$

où le coefficient γ_{-1} est différent de zéro.

Démonstration. Pour simplifier l'écriture désignons le système extrémal (3) $x^{(n)} = \{x_0, x_1, ..., x_n\}$ et posons

(19)
$$w(x^{(n)}) = |(x_0 - x_1)(x_0 - x_2)...(x_0 - x_n)|^{1/n}|p(x_0)e^{f(x_0)}|^{-1}.$$

⁵) Si un point z_0 de F n'appartenait pas à E^* , la fonction $\log \Phi(z, E, 1, 0)$ serait harmonique en z_0 et y atteindrait son minimum 0 — ce qui est impossible.

D'après la formule (7) on a

(20)
$$\Phi^{(0)}(x^{(n)}, \omega) = \left(\prod_{k=1}^{n} \frac{z - x_k}{x_0 - x_k} \right) \left[\frac{p(x_0) e^{f(x_0)}}{p(z)} \right]^n,$$

donc, d'après (17),

(21)
$$\varphi_n(z, \Delta_k) p(z) = \frac{e^{i\theta}}{w(w^{(n)})} \sqrt[n]{(z-x_1)(z-x_2)\dots(z-x_n)}, \quad n = 1, 2, \dots$$

où Θ_n' est un nombre réel convenablement choisi et $k=\infty,1,2,\ldots$ Les membres gauches des identités (21) convergent dans le domaine Δ_k vers $\varphi(z,\Delta_k)$ p(z) et les membres droits sont uniformément bornés dans chaque domaine borné, car les termes de la suite $\{w(x^{(n)})\}$ sont plus grands qu'un nombre positif⁶). Il s'ensuit que la fonction $\varphi(z,\Delta_k)p(z)$ se prolonge analytiquement au domaine $D_k \supset \Delta_k$ car, quel que soit n, le membre droit de (21) est une fonction analytique dans D_k . La fonction prolongée $\varphi(z,\Delta_k)p(z)$ reste bornée dans D_k si $k=1,2,\ldots$, car les domaines D_1,D_2,\ldots sont bornés.

Soit R un nombre positif assez grand pour que le cercle $|z|\leqslant R$ contienne l'ensemble E. Dans le domaine \varDelta_∞ on a identiquement

(22)
$$\frac{\varphi_{n}(z, \Delta_{\infty}) p(z)}{z} = \frac{e^{i\theta'_{n}}}{w(w^{(n)})} \sqrt[n]{\left(1 - \frac{x_{1}}{z}\right) \left(1 - \frac{x_{2}}{z}\right) \dots \left(1 - \frac{x_{n}}{z}\right)},$$

$$n = 1, 2, \dots$$

Le second membre de cette identité est analytique et uniformément borné dans le domaine D_{∞} et, comme il converge dans $A_{\infty} \subset D_{\infty}$, la convergence a lieu dans le domaine D_{∞} , ce qui prouve que la fonction $\varphi(z,A_{\infty})p(z)$ se prolonge au domaine D_{∞} . D'autre part, quel que soit n, le second membre de (22) est développable dans le domaine |z| > R en une série de la forme

$$\gamma_{-1}^{(n)} + \frac{\gamma_0^{(n)}}{z} + \frac{\gamma_1^{(n)}}{z^2} + \dots, \quad \text{ où } \quad |\gamma_{-1}^{(n)}| = \frac{1}{w(w^{(n)})},$$

et comme la suite de ces séries converge uniformément dans le domaine |z|>R vers $\varphi(z,\, \varDelta_{\infty})\,p(z)/z$, les suites des coefficients $\{\gamma_k^{(n)}\}$ convergent vers des limites déterminées

$$\lim_{n\to\infty}\gamma_k^{(n)}=\gamma_k, \quad k=-1,0,1,\ldots$$

et la fonction prolongée $\varphi(z, \Delta_{\infty}) p(z)$ se développe en la série (18), où

(23)
$$|\gamma_{-1}| = \lim_{n \to \infty} [1/w(x^{(n)})].$$

Le coefficient γ_{-1} est différent de zéro, car, d'après (2) et (19), on a

(24)
$$w(x^{(n)}) = \sqrt[n]{A_0(x^{(n)}, \omega)} \left(\prod_{k=1}^n |p(x_k)| e^{f(x_k)} \right)^{1/n}$$

et par suite

$$le^{m} \sqrt[n]{\Delta_0(x^{(n)}, \omega)} \leqslant w(x^{(n)}) \leqslant Le^{M} \sqrt[n]{\Delta_0(x^{(n)}, \omega)}$$

où l et L sont les bornes inférieure et supérieure de |p(z)|, et m et M celles de f(z) dans l'ensemble E.

Remarque 1. La fonction $\Phi(z,E,w)$ a été définie par la formule (10) dans le domaine d'existence D de la fonction p(z). Convenons de désigner par le symbole

$$(25) \qquad |\Phi(z, E, \omega) p(z)|$$

la fonction définie en dehors de D par la formule

$$| arPhi(z,E,\omega) \, p(z) | = | arphi(z,arDelta_k) \, p(z) | \quad ext{si} \quad z \, \epsilon \, D_k, \quad k = \infty, 1, 2, \ldots$$

Grâce à cette convention la fonction (25) est définie dans le plan entier et il suit de ce qui précède que son logarithme est une fonction harmonique en dehors de E^* , admettant à l'infini un pôle simple, car

(26)
$$\lim_{z \to \infty} \frac{|\varPhi(z, E, \omega) p(z)|}{|z|} = |\gamma_{-1}|.$$

Remarque 2. Si $p(z) \equiv 1$ les domaines Δ_{∞} et D_{∞} sont identiques. Si, de plus, $f(z) \equiv 0$ et le domaine D_{∞} est simplement connexe, la fonction $w = \varphi(z, \Delta_{\infty})$ effectue la représentation conforme de D_{∞} sur le cercle |w| > 1 de manière que les points $z = \infty$ et $w = \infty$ se correspondent, car $\varphi(z, \Delta_{\infty})$ est uniforme dans D_{∞} , admet à l'infini un pôle simple et son module tend vers 1 lorsque z tend vers la frontière de D_{∞} .

4. Nouvelles limites liées aux points extrémaux. Soit $x^{(n)} = \{x_0, x_1, ..., x_n\}$ un système de points extrémaux de rang n de E. Désignons par $V(x^{(n)})$ le produit

(27)
$$V(x^{(n)}) = \prod_{0 \le j < k \le n} |x_j - x_k|,$$

par $v(x^{(n)})$ et $u(x^{(n)})$ les moyennes

$$v(x^{(n)}) = [V(x^{(n)})]^{2/n(n+1)}, \quad n = 1, 2, \dots,$$

$$u(x^{(n)}) = \left(\prod_{k=1}^{n} |p(x_k)e^{f(x_k)}|\right)^{1/n}, \quad n = 1, 2, \dots$$

 $[\]begin{array}{l} ^{\rm e}) \ {\rm Car} \ w \left(x^{(n)} \right) = \sqrt[n]{\varDelta_0 \left(x^{(n)}, \ \omega \right)} [\prod_{k=1}^n |p \left(x_k \right) e^{f(x_k)}|]^{1/n} \\ \geqslant l e^m \ \sqrt[n]{\varDelta_0 \left(x^{(n)}, \ \omega \right)} \ {\rm et} \ \sqrt[n]{\varDelta_0 \left(x^{(n)}, \omega \right)} \\ \rightarrow v \left(E, \ \omega \right) > 0 \, . \end{array}$

et par $P(z, x^{(n)})$ le polynôme

(28)
$$P(z, x^{(n)}) = (z - x_1)(z - x_2) \dots (z - x_n).$$

Je dis que:

V. Les moyennes $u(x^{(n)})$ et $v(x^{(n)})$ convergent vers des limites déterminées

(29)
$$\lim_{n\to\infty} u(x^{(n)}) = u(E,\omega), \quad \lim_{n\to\infty} v(x^{(n)}) = v_0(E,\omega).$$

Pareillement la suite $[\sqrt[n]{|P(z,x^{(n)})|}]$ converge en tout point du plan n'appartenant pas à l'ensemble E^*

(30)
$$\lim_{n\to\infty} \sqrt[n]{|P(z,x^{(n)})|} = P(z,E,\omega),$$

la convergence étant uniforme dans le voisinage de tout point n'appartenant pas à E^{\bullet} .

Démonstration. D'après (23) la limite

$$\lim_{n\to\infty} w(x^{(n)}) = w(E, \omega) = 1/|\gamma_{-1}|$$

existe et il suit de (24) que $u(x^{(n)}) = w(x^{(n)})$: $\sqrt[n]{A_0(x^{(n)}, \omega)}$, donc la première des limites (29) existe et on a

$$w(E, \omega) = v(E, \omega)u(E, \omega).$$

Remarquons maintenant que, d'après (1) et (27),

(31)
$$V(x^{(n)}, \omega) = V(x^{(n)}) \left(\prod_{k=1}^{n} |p(x_k)|^{f(x_k)} | \right)^{-n},$$

d'où l'on déduit la relation

$$v(x^{(n)}) = [V(x^{(n)}, \omega)]^{2/n(n+1)} [u(x^{(n)})]^{2n^2/n(n+1)} |p(x_0)|^{e^{f(x_0)}}|^{2/(n+1)}$$

dont le second membre converge vers $v(E, \omega)[u(E, \omega)]^2$; donc la seconde des limites (29) existe et on a

$$v_0(E, \omega) = v(E, \omega) [u(E, \omega)]^2$$
.

D'autre part, les formules (17) et (21) donnent

$$\sqrt[n]{|P(z, x^{(n)})|} = \sqrt[n]{|oldsymbol{\Phi^{(0)}}(z, x^{(n)})|} |p(z)| w(x^{(n)})$$

d'où l'on déduit l'existence de la limite (30) et la relation

$$P(z, E, \omega) = |\Phi(z, E, \omega) p(z)| w(E, \omega).$$

Supposons maintenant que E soit la somme de deux ensembles disjoints fermés E_1 et E_2

$$E=E_1+E_2$$

et que parmi les points extrémaux (26) $\mu = \mu(n)$ points $x_1, x_2, \ldots, x_{\mu}$ soient situés sur E_1 et les points $x_{\mu+1}, x_{\mu+2}, \ldots, x_n$ sur E_2 . Posons $n-\mu = v = v(n)$ et désignons par E_i^* la partie de E^* située dans E_i , i = 1, 2. Nous allons démontrer le théorème:

VI. Les suites $\{\mu(n)/n\}$ et $\{\nu(n)/n\}$ convergent vers des limites déterminées

(32)
$$\lim_{n\to\infty} [\mu(n)/n] = a_1(E,\omega) = a_1, \quad \lim_{n\to\infty} [\nu(n)/n] = a_2(E,\omega) = a_2$$

où
$$a_1 \geqslant 0$$
, $a_2 \geqslant 0$ et $a_1 + a_2 = 1$.

Démonstration. Le cas où $\mu(n)=0$ ou $\nu(n)=0$ pour tout n suffisamment grand n'exige pas de démonstration. Posons dans le cas général

(33)
$$\varphi_n(z) = \sqrt[\mu]{|(z-x_1)\dots(z-x_\mu)|}, \qquad n=1,2,\dots$$

(34)
$$\psi_n(z) = \sqrt[r]{|(z - x_{n+1}) \dots (z - x_n)|}, \quad n = 1, 2, \dots$$

et soit $\varphi_n(z)=1$ si $\mu=0$ et $\psi_n(z)=1$ si $\nu=0$. D'après (28) on a indentiquement en dehors de E

$$[\varphi_n(z)]^{\mu/n} [\psi_n(z)]^{*/n} = \sqrt[n]{|P(z, x^{(n)})|}, \quad n = 1, 2, \dots$$

Si la suite $\mu_n = \mu(n)/n$, $n=1,2,\ldots$ n'était pas convergente, elle contiendrait deux suites partielles $\{\mu_{m_k}\}$ et $\{\mu_{n_k}\}$ tendant vers deux limites différentes $\mu_{m_k} \to a$ et $\mu_{n_k} \to a \to a$. La suite $\{\varphi_n(z)\}$ est uniformément bornée dans tout domaine borné et, comme chaque $q_n(z)$ est le module d'une fonction analytique en dehors des points du système $x^{(n)}$ situés dans E_1 , chacune des suites $\{\varphi_{m_k}(z)\}$ et $\{\varphi_{n_k}(z)\}$ contient une suite partielle uniformément convergente?) en dehors de E_1^* . Pareillement chacune des suites $\{\psi_{m_k}(z)\}$ et $\{\psi_{n_k}(z)\}$ contient une suite partielle uniformément convergente en dehors de E_2^* . En changeant convenablement les suites $\{m_k\}$ et $\{n_k\}$ on peut supposer l'existence en dehors de E_1^* , des limites

$$\lim_{k \to \infty} \varphi_{m_k}(z) = \varphi(z), \quad \lim_{k \to \infty} \varphi_{n_k}(z) = \bar{\varphi}(z)$$

et, en dehors de E₂*, des limites

$$\lim_{k\to\infty}\psi_{m_k}(z)\,=\,\psi\left(z\right),\quad \lim_{k\to\infty}\psi_{n_k}(z)\,=\,\bar{\psi}\left(z\right)$$

^{?)} La convergence est uniforme dans le voisinage de tout point non situé dans E_1^* .

et, comme le second membre de (35) converge en de
hors de \boldsymbol{E}^{\bullet} , on a identiquement

$$\varphi(z)^{\alpha}\psi(z)^{1-\alpha} = \bar{\varphi}(z) \ \bar{\psi}(z)^{1-\bar{\alpha}}$$

et par suite

330

$$\bar{a} \log \bar{\varphi}(z) - a \log \varphi(z) = (1-a) \log \psi(z) - (1-\bar{a}) \log \bar{\psi}(z).$$

Les fonctions $\log \varphi(z)$ et $\log \varphi(z)$ sont harmoniques en dehors de E_1^* et admettent des pôles d'ordre 1 à l'infini, donc le premier membre de (36) est une fonction harmonique en dehors de E_1^* admettant à l'infini un pôle d'ordre a-a. D'autre part, le second membre de (36) est harmonique en dehors de E_2^* et par suite il est harmonique sur E_1^* . On en conclut que le premier membre de (36) est harmonique dans le plan ouvert tout entier et tend vers ∞ si a>a ou vers $-\infty$ si a<a. Mais cette conclusion reste en contradiction avec le principe d'extremum. Par suite, on doit avoir a=a, ce qui prouve que les limites (32) existent et $a_1+a_2=1$.

Remarquons que si $a = \bar{a}$ l'égalité (36) prend la forme

$$a [\log \bar{\varphi}(z) - \log \varphi(z)] = (1 - a) [\log \psi(z) - \log \bar{\psi}(z)]$$

d'où l'on conclut, par un raisonnement analogue au précédent, que les fonctions $\varphi(z)$ et $\bar{\varphi}(z)$ sont identiques. Pareillement les fonctions $\psi(z)$ èst $\bar{\varphi}(z)$ doivent être identiques et par suite:

VII. Les suites (33) et (34) sont convergentes la première en dehors de E_1^* et la seconde en dehors de E_2^* et si l'on pose

$$\lim_{n\to\infty} \varphi_n(z) = \varphi(z), \quad \lim_{n\to\infty} \psi_n(z) = \psi(z)$$

on a, en dehors de E*, la relation

$$\varphi(z)^{\alpha}\psi(z)^{1-\alpha}=P(z,E,\omega).$$

Les théorèmes VI et VII peuvent être généralisés au cas où E est la somme de $p\geqslant 2$ ensembles fermés disjoints

$$E = E_1 + E_2 + \ldots + E_p$$

et $v(E_k,|z-\zeta|)>0$ pour $k=1,2,\ldots,p$. Désignons par $\mu_k=\mu_k(n),$ $k=1,2,\ldots,p$, le nombre des points extrémaux du système $x^{(n)}$ qui sont situés sur E_k et soient

$$x_{n_{k-1}+1}, x_{n_{k-1}+2}, \ldots, x_{n_k}, k = 1, 2, \ldots, p,$$

où $n_0=-1,\; n_k=\mu_1+\mu_2+\ldots+\mu_k$ pour $k=1,\,2,\ldots,\,p\,,$ les points situés sur $E_k.$ Posons

$$\begin{split} & \quad q_{n,k}(z) = \sqrt[\mu_k]{|(z - x_{n_{k-1}+1})(z - x_{n_{k-1}+2}) \dots (z - n_k)|} \,, \qquad k = 1 \,, \, 2 \,, \, \dots, \, p \,, \\ & \text{si } \mu_k > 0 \text{ et } \varphi_{n,k}(z) = 1 \text{ si } \mu_k = 0 \,. \end{split}$$

Alors, comme dans le cas p=2, les limites

$$\lim_{n \to \infty} [\mu_k(n)/n] = a_k, \quad k = 1, 2, ..., p,$$

existent et on a $a_1+a_2+\ldots+a_p=1$. Pareillement en dehors de l'ensemble $E_k^*=E_kE^*$ la limite

$$\lim_{n\to\infty}\varphi_{n,k}(z)=\varphi_k(z), \quad k=1,2,\ldots,p$$

existe et on a identiquement en dehors de E*

$$q_1(z)^{a_1}q_2(z)^{a_2}\dots q_n(z)^{a_p} = P(z, E, \omega).$$

Les nombres a_k et les fonctions $q_k(z)$ dépendent manifestement de l'ensemble E et de la fonction génératrice ω .

Faisons varier la fonction f(z) sans faire varier l'ensemble E et la fonction p(z). La position des points extrémaux (26) dans E dépend évidemment de n et de f(z). Pour indiquer cette dépendance nous désignerons le système $x^{(n)}$ plus exactement par

$$x^{(n,f)} = \{x_0^{(n,f)}, x_1^{(n,f)}, \dots, x_n^{(n,f)}\}$$

Je dis que:

VIII. Lorsqu'on ajoute à f(z) une constante quelconque c chaque système extremal $x^{(n,f)}$ reste un système extrémal $x^{(n,f+c)}$.

En effet, désignons le produit $V(\zeta^{(n)}, \omega)$ par $V(\zeta^{(n)}, p, f)$. D'après la formule (31) on a identiquement

$$V(\zeta^{(n)}, p, f+c) = e^{-n(n+1)c} V(\zeta^{(n)}, p, f)$$

et si
$$\max_{\zeta^{(n)} \in E} V(\zeta^{(n)}, p, f) = V(x^{(n)}, p, f)$$
 on a
$$\max_{\zeta^{(n)} \in E} V(\zeta^{(n)}, p, f+c) = e^{-n(n+1)c} V(x^{(n)}, p, f) = V(x^{(n)}, p, f+c)$$

ce qui prouve notre thèse.

5. Distribution des points extrémaux dans quelques cas particuliers. Supposons que $p(z) \equiv 1$, que E soit la somme d'un nombre fini p continus disjoints F_1, F_2, \ldots, F_p (fig. 1)

$$(37) E = F_1 + F_2 + \ldots + F_n$$

et que f(z) se réduise sur chaque F_k à une constante λ_k ,

$$f(z) = \lambda_k$$
 si $z \in F_k$, $k = 1, 2, ..., p$.

Une telle fonction sera dite fonction en escalier. Supposons encore que chaque F_k se réduise à la frontière du domaine $D_\infty(F_k)$.

Fig. 1

Alors le domaine D est le plan entier, la fonction

(38)
$$\log \Phi(z, E, 1, f)$$

est harmonique partout en dehors de E^* et du point $z=\infty$, reste continue dans E^* et admet la valeur λ_k aux points de l'ensemble

$$F_k^* = E^* F_k, \quad k = 1, 2, ..., p.$$

À l'infini $\log \Phi(z,E,1,f)$ a un pôle d'ordre 1. D'après (19) et (20)

(39)
$$w(x^{(n)}) = \sqrt[n]{A_0(x^{(n)}, \omega)}e^{h_n}$$
 où $h_n = \frac{f(x_1) + f(x_2) + \ldots + f(x_n)}{n}$

et on a vu que les limites

(40)
$$\lim_{n\to\infty} h_n = h, \quad \lim_{h\to\infty} w(x^{(n)}) = v(E, 1, f)e^h$$

existent et que

$$\lim_{z\to\infty}\frac{\Phi(z,E,1,f)}{|z|}=\frac{1}{v(E,1,f)e^{\hbar}}.$$

Nous allons examiner la répartition de l'ensemble E^* sur les continus F_1, F_2, \ldots, F_p . Pour cela désignons par $G(z, F_k)$ la fonction de Green du domaine $D_{\infty}(F_k)$ de pôle à l'infini. On a vu dans le numére 2 que $G(z, F_k) = \log \Phi(z, F_k, 1, 0)$ d'où il suit que

$$\log \Phi(z, F_k, 1, f) = G(z, F_k) + \lambda_k$$

IX. Si $\lambda_1 < \min(\lambda_2, \lambda_3, \dots, \lambda_p)$ la partie F_1 de E est entièrement couverte par E^* , c'est-à-dire $F_1^* = F_1$. Pareillement $F_1^* = F_1$ si $\lambda_1 \leqslant \min(\lambda_2, \lambda_3, \dots, \lambda_p)$ et F_1 est situé sur la frontière du domaine $D_{\infty}(E)^{8}$).

Démonstration. D'après (14) la fonction (38) satisfait sur F_1 à l'inégalité $\log \Phi(z,E,1,f) \leqslant \lambda_1$ et d'après (15) elle satisfait partout à la suivante: $\log \Phi(z,E,1,f) \geqslant \lambda_1$. Si un point z_0 de F_1 n'appartenait pas à F_1^* la fonction (38) serait harmonique en ce point et y atteindrait son minimum $= \lambda_1$ sans être constante dans le voisinage de z_0 , ce qui reste en contradiction avec le principe du minimum.

Pour prouver que la fonction (38) n'est pas constante dans le voisinage de z_0 désignons par Δ le domaine partiel de $H-E^*$ contenant z_0 . Si Δ est borné la frontière de Δ contient des points appartenant à l'ensemble $F_2^*+F_3^*+\ldots+F_p^*$ et en ces points $\log \Phi(z,E,1,f)>\lambda_1$ car alors $\lambda_1<\min(\lambda_2,\lambda_3,\ldots,\lambda_p)$. D'autre part, si Δ n'est pas borné la fonction (38) n'est pas constante dans Δ , car elle tend vers l'infini avec z.

X. Si pour toutes les valeurs de k > 1

(41)
$$\lambda_k > \lambda_1 + \max_{z_k F_k} G(z, F_1), \quad k = 2, 3, ..., p,$$

l'ensemble E^* se réduit à F_1 et par suite l'ensemble $\sum_{k=2}^p F_k^*$ est vide; si pour au moins une valeur de k

$$\lambda_k < \lambda_1 + \max_{z \in F_k} G(z, F_1)$$

Vensemble $\sum_{k=2}^{p} F_k^*$ n'est pas vide.

Démonstration. 1º Supposons que les inégalités (41) soient satisfaites. Alors $E^*\supset F_1$ d'après le théorème IX. Posons $\sum\limits_{k=2}^p F_k^* = A+B$ où A est la partie de $\sum\limits_{k=2}^p F_k^*$ située dans le domaine $D_\infty(F_1)$ et $B=\sum\limits_{k=2}^p F_k^*-A$. La différence

(43)
$$r(z) = \log \Phi(z, E, 1, f) - G(z, F_1)$$

est harmonique dans le domaine $D_{\infty}(F_1)-A$, le point à l'infini y compris, et continue sur la frontière F_1+A de ce domaine. Comme $F_1^*=F^*$ on a $r(z)=\lambda_1$ sur F_1 . D'après (39) et (40) $h_n\geqslant \lambda_1$ car $\lambda_k\geqslant \lambda_1$ et par suite $h\geqslant \lambda_1$. D'autre part

$$v(E, 1, f) \geqslant v(F_1, 1, f) = v(F_1, |z - \zeta|) e^{-2\lambda_1}$$

done

$$1/[v(E, 1, f)e^h] \leq e^{\lambda_1}/v(F_1, |z-\zeta|)$$

et comme la valeur de r(z) à l'infini

$$r(\infty) = \log \frac{1}{v(E, 1, f)e^{h}} - \log \frac{1}{v(F_1, |z - \zeta|)}$$

on a $r(\infty) \leq \lambda_1$.

Il s'ensuit que l'ensemble A doit être vide, car dans le cas contraire on aurait sur la partie F_k^* de A

$$r(z) = \lambda_k - G(z, F_1) \geqslant \lambda_k - \max_{z \in F_k} G(z, F_1) > \lambda_1$$

ce qui est impossible d'après le principe du minimum, vu l'inégalité $r(\infty) \leq \lambda_1$. D'autre part, l'ensemble B est aussi vide car, d'après le principe du maximum, tous les points extrémaux sont situés sur F_1 . Par suite E^* se réduit à F_1 .

^{°)} Si le continu F_1 ne se réduit pas à la frontière du domaine $D_{\infty}(F_1)$, par exemple s'il possède des points intérieurs, le théorème reste vrai lorsqu'on remplace, dans son énoncé, F_1 par la frontière de $D_{\infty}(F_1)$.

2º Supposons maintenant que l'inégalité (42) soit satisfaite pour k=a et soit z_0 un point de F_a en lequel $G(z_0,F_1)=\max_{z_0F_a}G(z,F_1)$. Si

l'ensemble $\sum_{k=0}^{p} F_{k}^{*}$ était vide on aurait identiquement

$$\Phi(z, E, 1, f) = \Phi(z, F_1, 1, f)$$

et comme $\log \Phi(z, F_1, 1, 0) = G(z, F_1)$ et $f(z) = \lambda_1$ sur F_1 on aurait $\log \Phi(z, E, 1, f) = G(z, F_1) + \lambda_1$ et la différence (43) se réduirait à la constante λ_1 , ce qui est impossible car

$$r(z_0) \leqslant \lambda_{\alpha} - G(z_0, F_1) = \lambda_{\alpha} - \max_{z \in F_{\alpha}} G(z, F_1) < \lambda_1.$$

Le théorème est donc démontré.

Supposons maintenant que l'ensemble (37) se réduise à la frontière du domaine $D_{\infty}(E)$ et désignons par G(z,E) la fonction de Green de ce domaine de pôle à l'infini. On sait que l'équation $G(z,E)=\mu$ où μ est un nombre positif quelconque, définit une courbe F_{μ} composée d'un seul ou de plusieurs contours C_1,C_2,\ldots,C_q où $1\leqslant q\leqslant p$ tels que chaque continu F_k est situé dans l'intérieur de l'un des contours C_1,C_2,\ldots,C_q et que chaque C_k contient dans son intérieur au moins un des continus F_1,F_2,\ldots,F_p . Les intérieurs de C_i et C_k , où $i\neq k$, sont toujours disjoints. Si la constante μ est suffisamment grande le nombre q est égal à 1 et si μ est suffisamment petite on a q=p, et alors chaque F_k est entouré par un et un seul des contours C_1,C_2,\ldots,C_p . Ceci posé nous allons démontrer le théorème;

XI. Si l'ensemble $E=F_1+F_2+\ldots+F_p$ se réduit à la frontière du domaine $D_{\infty}(E)$ et $\lambda_1=\min(\lambda_1,\lambda_2,\ldots,\lambda_p)$ alors à chaque $k=2,3,\ldots,p$ correspond un nombre $\mu_k>0$ tel que si

$$\lambda_k < \mu_k + \lambda_1$$

le continu Fk est entièrement couvert par Fk et par suite

(44)
$$\log \Phi(z, E, 1, f) = \lambda_k \quad pour \quad z \in F_k.$$

Démonstration. On a vu que $F_1^{\bullet} = F_1$. Soit μ_k un nombre positif tel que la courbe $G(z, E) = \mu_k$ contienne un contour C_k entourant le continu F_k et n'entourant aucun des continus $F_1, F_2, \ldots, F_{k-1}, F_{k+1}, \ldots, F_p$. La différence

$$R(z) = \log \Phi(z, E, 1, f) - G(z, E)$$

est harmonique dans le domaine $D_{\infty}(E)$, le point $z=\infty$ y compris, et satisfait sur la frontière E de ce domaine à l'inégalité $R(z)\geqslant \lambda_1$ car d'après (15) $\log \Phi(z,E,1,f)\geqslant \lambda_1$ sur E. Par suite $R(z)\geqslant \lambda_1$ dans $D_{\infty}(E)$ et

$$\log \Phi(z, E, 1, f) \geqslant \mu_k + \lambda_1 \quad \text{sur} \quad C_k.$$

Soit G_k le domaine limité par C_k et F_k^* . Le $\log \Phi(z, E, 1, f)$ est harmonique dans G_k , continu sur la fermeture de ce domaine et admet sur F_k^* la valeur λ_k et sur C_k des valeurs $\geq \mu_k + \lambda_1 > \lambda_k$ donc

$$\log \Phi(z, E, 1, f) > \lambda_k \quad \text{dans} \quad G_k$$
.

Si un point z_0 de F_k n'appartenait pas à F_k^* il appartiendrait à G_k , ce qui est impossible d'après le principe du minimum, car sur F_k on a $\log \Phi(z, E, 1, f) \leq \lambda_k$. Par suite chaque point de F_k est couvert par F_k^* et l'égalité (44) est démontrée.

COROLLAIRE. Si l'ensemble $E=F_1+F_2+\ldots+F_p$ se réduit à la frontière du domaine $D_{\infty}(E)$, $f(z)=\lambda_k$ sur F_k pour $k=1,\,2,\,\ldots,\,p$ et la différence

$$\max(\lambda_1, \lambda_2, ..., \lambda_p) - \min(\lambda_1, \lambda_2, ..., \lambda_p)$$

est suffisamment petite, l'ensemble E est entièrement couvert par E^{\bullet} et $\log \Phi(z, E, 1, t)$ est égal à f(z) en tout point de E.

Soit F_0 la frontière commune d'un domaine borné simplement connexe G et du domaine non borné $D_{\infty}(F_0)$, F_1 un ensemble fermé contenu dans G (fig. 2) et f(z) la fonction égale à λ_0 sur F_0 et à λ_1 sur F_1 , où λ_0 et λ_1 sont des constantes réelles quelconques. Il est clair que l'écart v(E,1,f), où $E=F_0+F_1$ n'est pas plus petit que les écarts $v(F_0,1,f)$ et $v(F_1,1,f)$. Je dis que:

Fig. 2

XII. Si
$$\lambda_0 > \lambda_1$$
 on a $v(E, 1, f) > v(F_0, 1, f)$ et si

$$\lambda_0 < \lambda_1 + \log(v_0/v_1),$$

où
$$v_i = v(F_i, |z-\zeta|), i = 0, 1, \text{ on a aussi } v(E, 1, f) > v(F_1, 1, f).$$

Démonstration. Soit $x^{(n)} = \{x_0, x_1, \dots, x_n\}$ un système de points extrémaux de rang n de E par rapport à $\omega = |z - \zeta| \exp[-f(z) - f(\zeta)]$ et $\eta^{(n)} = \{\eta_0, \eta_1, \dots, \eta_n\}$ un système de $n = \mu + \nu$ points de E dont les points $\eta^{(\mu)} = \{\eta_0, \eta_1, \dots, \eta_\mu\}$ sont situés sur F_0 et les points $\eta^{(\nu-1)} = \{\eta_{\mu+1}, \dots, \eta_n\}$ sur F_1 . Il est clair que $V(x^{(n)}, \omega) \geqslant V(\eta^{(n)}, \omega)$. En désignant par $V(\eta^{(n)})$ le produit

$$V(\eta^{(n)}) = \prod_{0 \leqslant i < k \leqslant n} |\eta_i - \eta_k|$$

on a l'inégalité

(46)
$$V(x^{(n)}, \omega) \geqslant \frac{V(\eta^{(n)})}{\exp\left\{n\left[(\mu+1)\lambda_0 + \nu\lambda_1\right]\right\}}.$$

Supposons que les systèmes $\eta^{(\mu)}$ et $\eta^{(r-1)}$ soient extrémaux respectivement sur F_0 et F_1 par rapport à la distance $|z-\zeta|$ et que les nombres μ et ν croissent avec n de manière que lorsque $n \to \infty$

$$\mu/n \to 1-\alpha$$
, $\nu/n \to \alpha$,

où a est un nombre de l'intervalle 0 < a < 1. Alors les moyennes

$$v_n^{(0)} = [V(\eta^{\mu})]^{2/\mu(\mu+1)}, \quad v_n^{(1)} = [V(\eta^{r-1})]^{2/\nu(\nu-1)}, \quad \mu = 1, 2, \dots$$

convergent respectivement vers $v_0=v(F_0,|z-\zeta|)$ et $v_1=v(F_1,|z-\zeta|)$ et la suite

$$I_{\mu}(z) = |(z-\eta_0)(z-\eta_1)\dots(z-\eta_{\mu})|^{1/(\mu+1)}$$

converge dans le domaine G vers la constante v_0 , la convergence étant uniforme dans le voisinage de tout point de G (cf. [2]). Mais on a identiquement

$$V(\eta^{(n)}) = V(\eta^{(\mu)}) V(\eta^{(\nu-1)}) \cdot I_n^{(\mu+1)\nu}$$

où
$$I_n = \left[\prod_{k=\mu+1}^n I_\mu(\eta_k)\right]^{1/r} \to r_0$$
 lorsque $n \to \infty$ et, d'après (46)

$$[V(x^{(n)}, \omega)]^{2/n(n+1)} \geqslant v_n^{(0) \, \mu(\mu+1)/n(n+1)} \, v_n^{(1) \, \nu(\nu-1)/n(n+1)} \, J_n^{2(\mu+1)\nu/n(n+1)} \, e^{-l_n}$$
 où

$$l_n = 2 \left[\frac{\mu + 1}{n + 1} \lambda_0 + \frac{\nu}{n + 1} \lambda_1 \right].$$

En faisant tendre n vers l'infini on en déduit l'inégalité

(47)
$$v(E, \omega) \geqslant v_0^{(1-\alpha)^2} v_1^{\alpha^2} v_0^{2\alpha(1-\alpha)} \exp\left\{-2\left[(1-\alpha)\lambda_0 + \alpha\lambda_1\right]\right\}$$

dont le second membre est égal à

$$(v_0/e^{2\lambda_0})\lceil (v_1/v_0)^a e^{2\lambda_0}/e^{2\lambda_1}\rceil^a$$

et comme $v(F_0,1,f)=v_0,e^{-2\lambda_0}$ et l'expression entre parenthèses [] surpasse 1 si $\lambda_0>\lambda_1$ et α est suffisamment petit on voit que $v(E,1,f)>>v(F_0,1,f)$ si $\lambda_0>\lambda_1$. Le second membre de (47), où l'on a remplacé $1-\alpha$ par β , prend la forme

$$(v_1/e^{2\lambda_1})[(v_0/v_1)^{2-\beta}e^{2\lambda_1}/e^{2\lambda_0}]^{\beta},$$

où l'expression entre parenthèses [] surpasse 1 pour $\beta=0$ si λ_0 satisfait à l'inégalité (45). Comme $v(F_1,1,f)=v_1e^{2\lambda_1}$ on a $v(E,1,f)>v(F_1,1,f)$, si la condition (45) est remplie et par suite la thèse est démontrée.

Supposons maintenant que E soit la somme de p+1 continus disjoints $E=F_0+F_1+\ldots+F_p$, constituant la frontière d'un domaine borné D(E) dont la frontière extérieure est F_0 et la frontière intérieure

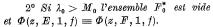
est $F=F_1+F_2+\ldots+F_p$ (fig. 3). Supposons encore que F_0 soit en même temps la frontière du domaine $D_{\infty}(E)$ et que

$$f(z) = \lambda_k$$
 pour $z \in F_k$, $k = 0, 1, ..., p$.

Formons la fonction de Green $G(z,F_0)$ du domaine $D_\infty(E)$ de pôle à l'infini, la fonction $\varPhi(z,F,1,f),$ et posons

$$M_0 = \max_{z \in F_0} \log \Phi(z, F, 1, f)$$

XIII. 1° Si $\lambda_0 \leqslant \min(\lambda_1, \lambda_2, \dots, \lambda_p)$ l'ensemble E* se réduit à F_0 et la fonction $\log \Phi(z, E, 1, f)$ est égale à $G(z, F_0) + \lambda_0$ dans le domaine $D_\infty(E)$ et à λ_0 en dehors de ce domaine.



3° Si $\lambda_0 < M_0$, l'ensemble F_0^* n'est pas vide.

4° Si $\lambda_0 > \min(\lambda_1, \lambda_2, \dots, \lambda_p)$, l'ensemble $\sum_{k=1}^p F_k^*$ n'est pas vide.

Démonstration. 1° Soit $\lambda_0 \leq \min(\lambda_1, \lambda_2, ..., \lambda_p)$. Alors

$$V(\zeta^{(n)}, \omega) = \frac{V(\zeta^{(n)})}{\exp\{n[f(\zeta_0) + \dots + f(\zeta_n)]\}} \le \frac{V(\zeta^{(n)})}{\exp[n(n+1)\lambda_0]}$$

et par suite

$$\max_{r^{(n)} \in E} V(\zeta^{(n)}, \omega) \leqslant \max_{\zeta^{(n)} \in E} V(\zeta^{(n)}) \exp[-n(n+1)\lambda_0].$$

Mais, comme d'après le principe du maximum, $\max_{\zeta^{(n)} \in E} V(\zeta^{(n)}) = \max_{\zeta^{(n)} \in F_0} V(\zeta^{(n)}),$ on a

$$\max_{\zeta^{(n)} \in E} V\left(\zeta^{(n)}, \, \omega\right) \leqslant \max_{\zeta^{(n)} \in F_0} V\left(\zeta^{(n)}\right) e^{-n(n+1)\lambda_0} = \max_{\zeta^{(n)} \in F_0} V\left(\zeta^{(n)}, \omega\right)$$

et il est clair que

$$\max_{\zeta^{(n)} \in E} V(\zeta^{(n)}, \omega) \geqslant \max_{\zeta^{(n)} \in F_0} V(\zeta^{(n)}, \omega)$$

donc les points extrémaux sour situés sur F_0 et par suite $E^* \subset F_0$.

D'autre part, la fonction $e^{-\sigma h(z)}$, E, 1, f) est harmonique en dehors de E^* et satisfait partout à 1. — ité $\log \Phi(z, E, 1, f) \geqslant \lambda_0$ et sur F_0 à la suivante $\log \Phi(z, E, 1, f) \leqslant \lambda_0$. In un point z_0 de F_0 n'appartenait pas à E^* la fonction serait harmonique en z_0 et y atteindrait son minimum sans être constante dans le voisinage de z_0 , ce qui est impossible, donc $E^* \supset F_0$ et par suite $E^* = F_0$.

338

Il en résulte que $\log \Phi(z,E,1,f)=\lambda_0$ sur F_0 et en dehors du domaine $D_\infty(E)$. La différence $\log \Phi(z,E,1,f)-\lambda_0$ est égale à $G(z,F_0)$ dans $D_\infty(F_0)$, car elle s'annule sur la frontière de ce domaine et admet un pôle à l'infini.

2º Soit $\lambda_0 > M_0.$ Si l'ensemble $F_0^{\, \bullet}$ n'était pas vide on aurait aux points de $F_0^{\, \bullet}$

$$\Phi(z, E, 1, f) = e^{\lambda_0} > e^{M_0} \geqslant \Phi(z, F, 1, f),$$

ce qui est impossible, car d'après (13) on a partout

$$\Phi(z, E, 1, f) \leq \Phi(z, E, 1, f).$$

3° Si $\lambda_0 < M_0$ l'ensemble F_0^{\bullet} ne peut être vide, car dans le cas contraire on aurait partout $\Phi(z,E,1,f)=\Phi(z,F,1,f)$ et, si z_0 est un point de F_0 où $\log \Phi(z_0,F,1,f)=M_0$, on a

$$\log \Phi(z_0, E, 1, f) \leqslant \lambda_0 < M_0 = \log \Phi(z_0, F, 1, f)$$

et les fonctions $\Phi(z, E, 1, f)$ et $\Phi(z, F, 1, f)$ ne sont pas identiques.

4º Si $\lambda_0 > \min(\lambda_1, \lambda_2, ..., \lambda_p)$, l'ensemble $\sum_{k=1}^p F_k^{\bullet}$ n'est pas vide, car d'après le théorème IX l'ensemble F_a^{\star} est identique à F_a , si $\lambda_a = \min(\lambda_0, \lambda_1, ..., \lambda_p)$.

6. Quelques applications. A. Soit E la somme de p continus disjoints $E = F_1 + F_2 + \ldots + F_p$ constituant la frontière du domaine $D_{\infty}(E)$. On sait que $\log \Phi(z,E,1,0)$ est la fonction de Green du domaine $D_{\infty}(E)$ de pôle à l'infini. Désignons par $\varphi_k(z)$ la fonction égale à 1 sur F_k et à zéro sur $E - F_k$. La différence

$$\log \Phi(z, E, 1, \lambda \varphi_k) - \log \Phi(z, E, 1, 0)$$

cù λ est un paramètre réel $\neq 0$, est harmonique dans $D_{\infty}(E)$ le point $z=\infty$ y compris, s'annule sur $E-F_k$ et, si λ est suffisamment petit, elle est égale à λ sur F_k . Par suite, lorsque λ est suffisamment petit, l'expression

$$\frac{1}{\lambda}\log\frac{\varPhi(z,E,1,\lambda\varphi_k)}{\varPhi(z,E,1,0)}$$

est la mesure harmonique du continu F_k par rapport au domaine $D_\infty(E)$. Plus généralement, soit f(z) une fonction réelle continue quelconque définie sur E. Formons l'expression

(48)
$$\frac{1}{\lambda} \log \frac{\Phi(z, E, 1, \lambda f)}{\Phi(z, E, 1, 0)}$$

où λ est un paramètre réel $\neq 0$. Si, pour une valeur suffisamment petite de λ , $\log \Phi(z, E, 1, \lambda f) = \lambda f$ sur E (ce qui a toujours lieu lorsque f(z)

est une fonction en escalier), alors l'expression (48) est la solution du problème de Dirichlet pour le domaine $D_{\infty}(E)$ et les données frontières f(z).

B. Considérons le cas particulier p=2, $E=F_1+F_2$ et désignons par $\varphi(z,D_\infty,1,\lambda\varphi_1)$ la fonction holomorphe dans le domaine $D_\infty(E)$ de module $\Phi(z,E,1,\lambda\varphi_1)$. Par définition, $\varphi_1(z)=1$ sur F_1 et $\varphi_1(z)=0$ sur F_2 . L'expression

$$\psi(z) = \left[\frac{\varphi(z, D_{\infty}, 1, \lambda \varphi_{1})}{\varphi(z, D_{\infty}, 1, 0)}\right]^{1/\lambda}$$

est une fonction holomorphe (en général multiforme) dans le domaine doublement connexe $D_{\infty}(E)$ contenant le point $z=\infty$. Le module de $\psi(z)$ est continu dans $D_{\infty}(E)+E$ et il est égal à 1 sur F_2 . Si $\lambda>0$ est suffisamment petit, on a $|\psi(z)|=e$ sur F_1 .

Lorsque z parcourt un contour C_1 entourant F_1 et n'entourant pas F_2 , $\psi(z)$ se multiplie par un facteur $e^{2\pi i a}$, où 0 < a < 1, et par suite $\psi(z)^{1/a}$ se multiplie par $e^{2\pi i}$. Il en résulte que, lorsque z parcourt un contour C_2 entourant F_2 , $\psi(z)^{1/a}$ se multiplie par $e^{-2\pi i}$, d'où l'on conclut que la fonction $w = \psi(z)^{1/a}$ effectue la représentation conforme du domaine $D_{\infty}(E)$ sur une couronne circulaire.

C. Considérons le cas général où $E=F_1+F_2+\ldots+F_p$. Soit $x^{(n,f)}=\{x_0^{(n,f)},x_1^{(n,f)},\ldots,x_n^{(n,f)}\}$ un système des points extrémaux du rang n de E par rapport à la fonction $\omega=|z-\zeta|\exp[-f(z)-f(\zeta)]$ et $\mu_k^{(n,f)}$ le nombre des points du système $x^{(n,f)}$ qui sont situés sur F_k , $k=1,2,\ldots,p$. On sait que la limite

$$\lim_{\substack{n\to\infty\\n\to\infty}}\frac{\mu_k^{(n,f)}}{n}=a_k(f), \quad k=1,2,\ldots,p,$$

existe et que les fonctionnelles $a_k(f)$ satisfont aux relations

$$0 \leqslant \alpha_k(f) \leqslant 1, \quad \sum_{1}^{p} \alpha_k(f) = 1.$$

D'autre part, il s'ensuit du théorème VIII que, si c est une constante, on a $a_k(f+c)=a_k(f),\ k=1,2,\ldots,p$.

Supposons que f(z) soit une fonction en escalier. Nous écrirons

$$f=(\lambda_1,\,\lambda_2,\,\ldots,\,\lambda_p),$$

si $f(z)=\lambda_k$ sur F_k , $k=1,2,\ldots,p$. Les fonctionnelles $\alpha_k(f)$ sont alors des fonctions de p variables $\lambda_1,\lambda_2,\ldots,\lambda_p$ définies pour toutes les valeurs réelles de ces variables. Désignons, comme plus haut, par $G(z,F_k)$ la fonction égale dans le domaine $D_\infty(F_k)$ à la fonction de Green de ce domaine de pôle à l'infini et égale à zéro en dehors de $D_\infty(F_k)$.

XIV. Les fonctions $a_k(f)$, k = 1, 2, ..., p, jouissent des propriétés suivantes:

1º Si, k étant fixe quelconque,

$$\lambda_k \leqslant \lambda_j - \max_{z \in F_j} G(z, F_k) \quad \text{ pour tout } \quad j \neq k \,, \quad \text{ on } \quad a \quad a_k(f) = 1 \,,$$

$$\lambda_k > \lambda_j + \max_{z \in F_k} G(z, F_j)$$
 pour un $j \neq k$, on $a = a_k(f) = 0$.

2º Quelles que soient $f=(\lambda_1,\,\lambda_2,\,\ldots,\,\lambda_p)$ et $f'=(\lambda_1',\,\lambda_2',\,\ldots,\,\lambda_p')$ on a l'inégalité

(50)
$$\sum_{k=1}^{p} (\lambda_k' - \lambda_k) [c_k(f') - a_k(f)] \leqslant 0.$$

Démonstration. 1º Si $\lambda_k \leqslant \lambda_j - \max_{F_j} G(z, F_k)$ pour tout $j \neq k$, il résulte du théorème X que $E^* = E_k$ et par suite $a_k(f) = 1$. Supposons qu'on ait

$$\lambda_k > \lambda_a + \max_{F_k} G(z, F_a),$$

où $a \neq k$ est fixe. Si l'ensemble F_k^{\bullet} n'était pas vide, on aurait en tout point $z_0 \in F_k^{\bullet}$

$$\lambda_{k} = \log \Phi(z_0, E, 1, f) \leqslant \mathring{\log} \Phi(z_0, F_a, 1, f),$$

car on a, quel que soit z, $\Phi(z,E,1,f)\leqslant \Phi(z,F_a,1,f)$ et, comme $\log \Phi(z,F_a\,1,f)=\lambda_a+G(z,F_a)$, on aurait

$$\lambda_k \leqslant \lambda_a + G(z_0, F_a) \leqslant \lambda_a + \max_{F_k} G(z, F_a),$$

ce qui reste en contradiction avec l'hypothèse. Par suite l'ensemble F_k^{\bullet} est vide et $a_k(t) = 0$.

2º Soient $x^{(n,f)}$ et $x^{(n,f')}$ deux systèmes de points extrémaux de E correspondant respectivement à $\omega = |z-\zeta| \exp[-f(z)-f(\zeta)]$ et $\omega' = |z-\zeta| \exp[-f'(z)-f'(\zeta)]$. Alors

$$\begin{split} V(x^{(n,f)},\omega) &= V(x^{(n,f)}) \exp[-n\sum \lambda_k \mu_k(n,f)] \\ &\geqslant V(x^{(n,f')}) \exp[-n\sum \lambda_k \mu_k(n,f')], \\ V(x^{(n,f')},\omega') &= V(x^{(n,f')}) \exp[-n\sum \lambda_k' \mu_k(n,f')] \\ &\geqslant V(x^{(n,f)}) \exp[-n\sum \lambda_k' \mu_k(n,f)] \end{split}$$

où la somme \sum est étendue aux valeurs $1,2,\ldots,p$ de k. Puisque

$$[V(x^{(n,f)},\,\omega)]^{2/n(n+1)} \rightarrow v(E,\,\omega)\,, \qquad [V(x^{(n,f)})]^{2/n(n+1)} \rightarrow v_0(E,\,\omega)$$

$$\begin{split} v(E,\,\omega) &= v_0(E,\,\omega) \exp\bigl[-2\textstyle\sum \lambda_k \,a_k(f)\bigr] \geqslant v_0(E,\,\omega') \,\exp\bigl[-2\textstyle\sum \lambda_k \,a_k(f')\bigr], \\ v(E,\,\omega') &= v_0(E,\,\omega') \,\exp\bigl[-2\textstyle\sum \lambda_k' \,a_k(f')\bigr] \geqslant v_0(E,\,\omega) \,\exp\bigl[-2\textstyle\sum \lambda_k' \,a_k(f)\bigr] \end{split}$$

d'où l'on déduit les relations

(51)
$$\sum_{k=1}^{p} \lambda_k a_k(f) = \frac{1}{2} \log \frac{v_0(E, \omega)}{v(E, \omega)},$$

(52)
$$\sum_{k=1}^{p} (\lambda'_k - \lambda_k) a_k(f') \leqslant \frac{1}{2} \log \frac{v(E, \omega)}{v(E, \omega')} \leqslant \sum_{k=1}^{p} (\lambda'_k - \lambda_k) a_k(f),$$

dont la dernière entraîne (50).

Remarque. Dans le cas p=2 on a $E=F_1+F_2$, $a_1(f)=1-a_2(f)$ et l'inégalité (50) se réduit, dans l'hypothèse $\lambda_1=\lambda_1'$ à la suivante

$$(\lambda_2'-\lambda_2)[a_2(f')-a_2(f)] \leqslant 0.$$

Il s'ensuit que lorsque $f=(\lambda_1,\,\lambda_2)$ croît sur F_2 sans varier sur F_1 , la fonctionnelle $\alpha_2(f)$ décroît (au sens large) et on a

$$a_2(f) = 1$$
 si $\lambda_2 < \lambda_1 - \max_{F_1} G(z, F_2),$
 $a_2(f) = 0$ si $\lambda_2 > \lambda_1 + \max_{F_1} G(z, F_1).$

De (51) on tire

$$(\lambda_2 - \lambda_1) a_2(f) = -\lambda_1 + \frac{1}{2} \log \frac{v_0(E, 1, f)}{v(E, 1, f)}$$

et on a vu que la fonctionnele $v(E,1,f)=v(E,\omega)$ est continue par rapport à f, donc, si $v_0(E,1,f)=v_0(E,\omega)$ l'est aussi, la fonctionnelle $\alpha_2(f)$ varie continuement avec f.

Retournons au cas général où $E = F_1 + F_2 + \ldots + F_p$. On a vu qu'à toute fonction $f = (\lambda_1, \lambda_2, \ldots, \lambda_p)$ correspond un système de p fonctionnelles $a_1(f), a_2(f), \ldots, a_p(f)$ remplissant les conditions (49). Supposons que, inversement, à tout système de p nombres a_1, a_2, \ldots, a_p remplissant les conditions (49), corresponde une fonction $f = (\lambda_1, \lambda_2, \ldots, \lambda_p)$ telle que $a_k = a_k(f), k = 1, 2, \ldots, p^9$.

Considérons le système $a_1(0), a_2(0), \ldots, a_p(0)$ et remarquons que, si $\lambda > 0$ est suffisamment petit, le système

$$a_1(0) + \lambda, \ a_2(0) - \lambda, \ a_3(0), \ \dots, \ a_p(0)$$

remplit les conditions (49). Soit $g=(l_1,\,l_2,\,\ldots,\,l_p)$ une fonction en escalier, définie sur E de manière que

$$a_1(g) = a_1(0) + \lambda, \quad a_2(g) = a_2(0) - \lambda, \quad a_k(g) = a_k(0), \quad k = 3, 4, \dots, p.$$

Formons la fonction

$$F(z) = \left[arphi(z,D_{\infty},1,g) / arphi(z,D_{\infty},1,0)
ight]^{1/\lambda} \quad ext{ où } \quad D_{\infty} = D_{\infty}(E).$$

⁹⁾ L'existence d'une telle fonction f sera examinée dans un autre travail.

342

Elle est holomorphe dans le domaine D_{∞} , le point $z = \infty$ y compris, continue dans $D_{\infty} + E$ et son module sur le continu F_k est égal à $e^{i_k/\lambda}$, car

$$|\varphi(z, D_{\infty}, 1, g)| = e^{l_k}, \quad |\varphi(z, D_{\infty}, 1, 0)| = 1 \quad \text{si} \quad z \in F_k.$$

D'après ce qui précède, lorsque z parcourt une fois un contour $G_k \subset D_\infty$ entourant le continu F_k et n'entourant aucun des continus F_i , $i \neq k$, l'argument de $\varphi(z, D_\infty, 1, g)$ croit de $2\pi a_k(g)$ et celui de $\varphi(z, D_\infty, 1, g)$ augmente de $2\pi a_k(0)$. Par suite, lorsque z parcout G_k , l'argument de F(z)

- 1º augmente de 2π si k=1,
- 2° diminue de 2π si k=2,
- 3° ne change pas si $k=3,4,\ldots,p$.

Il s'ensuit que la fonction w=F(z) est uniforme et univalente dans le domaine $D_{\infty}(E)$ et représente ce domaine sur une couronne circulaire r<|w|< R pourvue de p-2 coupures situées sur des circonférences concentriques (une telle couronne est dite domaine canonique de Koebe).

Travaux cités

- [1] J. Górski, Sur certaines fonctions harmoniques jouissant des propriétés extrémales, Ann. Soc. Pol. Math. 23 (1950), p. 259-271.
- [2] F. Leja, Sur les suites de polynômes, les ensembles fermés et la fonction de Green, Ann. Soc. Pol. Math. 12 (1933), p. 57-71.
- [3] Une généralisation de l'écart et du diamètre transfini d'un ensemble, Ann. Soc. Pol. Math. 22 (1949), p. 35-42.
- [4] Sur une famille de fonctions analytiques extrémales, Ann. Soc. Pol. Math. 25 (1952), p. 1-16.

INSTYTUT MATEMATYCZNY POLSKIEJ AKADEMII NAUK INSTITUT MATHEMATIQUE DE L'ACADÉMIE POLONAISE DES SCIENCES

Remarks on the stability problem for parabolic equations

by W. Mlak (Kraków)*

The problem of the stability of solutions of parabolic equations has been investigated by Bellman [1], Prodi [4] and Narasimhan [3].

In the first part of this paper our considerations are based on the generalized Westphal-Prodi theorem given in [2]. In the second part we discuss the stability problem for systems of purely non-linear equations of parabolic type. We apply a theorem concerning the evaluation of solutions of parabolic equations given by J. Szarski in [5].

Part I. 1. Suppose G is an open and bounded region lying in the space E^m of points (x_1, \ldots, x_m) . Denote by B the Cartesian product of G and the interval $(0, \infty)$, $B = G \times (0, \infty)$. We denote the boundary of G by Γ . \overline{B} denotes the closure of B.

Suppose the sequence of functions $u_1(x, t), ..., u_n(x, t)$ is a solution of the parabolic system¹)

(1)
$$\frac{\partial z_s}{\partial t} = F_s\left(x, t, z_1, \dots, z_n, \frac{\partial z_s}{\partial x_s}, \frac{\partial^2 z_s}{\partial x_s \partial x_k}\right) \quad (s = 1, 2, \dots, n).$$

We say that $u=(u_1,\ldots,u_n)$ is a stable solution of (1) if for every $\varepsilon>0$ there exists such $\delta>0$ that for every solution $v=(v_1,\ldots,v_n)$ of (1) such that $u_i(x,t)=v_i(x,t)$ for $(x,t)\epsilon\Gamma\times\langle 0,\infty\rangle$ $(i=1,\ldots,n)$ and $|u_i(x,0)-v_i(x,0)|<\delta$ $(i=1,\ldots,n)$ we have the inequalities $|u_i(x,t)-v_i(x,t)|<\varepsilon$, $(x,t)\epsilon B$ $(i=1,\ldots,n)$.

Now we investigate systems of the form

(2)
$$\frac{\partial z_s}{\partial t} = L_s[z_s] + f_s(x, t, z_1, \dots, z_n) \quad (s = 1, 2, \dots, n),$$

where L_s is the elliptic differential operator of the form

$$L_s[v] = \sum_{i,k=1}^m a_{ik}^s(x) \, rac{\partial^2 v}{\partial x_i \, \partial x_k} \, ,$$

^{*} I wish to express here my thanks to J. Szarski for reading the manuscript of this paper and for his valuable remarks.

¹⁾ On the definition of the parabolic system see [2] and [5]. Our systems are normal parabolic systems.