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(B7)  —mu(s) + [ singg,rs, plo)do -
I

4 a(s) [logrg' (o) do + b(s)Lj CO8 @, oy 1 (0)do = F(8)
L

bien étudide, admet la solution wnique p pour toute la fonction f(s) véri-
fiant la condition A’Holder, ce qui a lieu si ’équation homogéne correspon-
dante n’a que la solution nulle et si I'index de I’équation (67) est égal & zéro.
Sous cette hypothése, les considérations qui suivront seront analogues
aux précédentes et on concluera l'existence de la solution du probléme,
(55), si la valeur absolue du paramétre 1 est suffisamment petite.
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The problem of non-local existence for solutions of a linear
partial differential equation of the first order

by A. PLis (Krakéw) *

E. Kamke has shown that the partial differential equation
(1) 0z/0x + Q (x,y)0=z/0y = O

Wi’ui’gF a coefficient @ (z,y) of class C'1) in a certain (open) region D admits
in every closed and bounded subset of D a solution of class €%, possessing
a pogitive derivative with respect to y2). The problem of non-loecal exi-
stence of non-trivial®) solutions of class " has been solved in the negative
by T. Wazewski, who furnishes an example of a differential equation
of form (1) such that each of its solutions of class €' in the whole region
D is a constant function*). In this example the region D, constituting
the domain of the function @(z,y), is simply connected, and Q(z,y) is
of high regularity in D.

In this paper we shall consider the problem of non-local existence
of non-trivial solutions of equation (1), having a total differential (in the
sense of-Stolz) in region D. For the open simply connected region D we
shall prove the existence of a solution having a total differential at every
point of D and such that its derivative with respect to y is positive nearly
everywhere in the set D (§ 1. Theorem 1). Consequently, such a solution

* The author thanks Professor T. Wazewski for his suggestions during the pre-
paration of this paper.

1) A function continuous together with its derivatives of the first order is ter-
med a function of class (.

%) An analogous theorem is also known for the equation

k2
dz)dx + Z Q8 Yy Ygs e y,) 02/0y, = 0
i=1
with o larger number of independent variables. The proof (in the case of two variab-
les) is to be found in [1].
3) By a non-trivial solution of the equation (1) we mean a solution which is
not identically equal to a constant.
4) See [6]. An example of such an equatlion defined over the whole plane is to
be found in [5].
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will be inereasing with respect to y in every subset of I, normal with ves-
pect to the g-axis. By introducing small changes into the construction
of the solution one may prove the existence of a solution satisfying the
agsertion of theorem 1 and such that its derivatives are bounded in every
compact subset of region D.

Under the weaker assumption that D is a finitely connected set we
shall prove the existence of a solution #(#,y) which has a total differen-
tial and which is not a constant in any open subset of D (§ 2 Theorem 2).
The components of the set #(@,y)=#(w,,y,) are in this case integrals
of the ordinary differential equation

(2) 0y 0w = Q(w,Y).

The function #(z,y) may, therefore, be used to find the integraly of (2).
Moreover, we shall give an example of an ordinary differential equation
of form (2) with the right side @ (z,y)=Q" (z,¥) of clags ¢ in a region. D,
admitting an integral of ramification (see definition 4, § 3) dense every-
where in D (the set of components of the cemplement of D is in, this example
of the power of the continuum). Consequently, each function 2(x,y)
continuous in region D and constant along the integrals of (2) (and thus
constant on an arbitrary integral of ramification; see § 3) and, in parti-
cular, an arbitrary function z(z,y) satisfying (1) (with Q(=,9)=0"(x,y))
and having a total differential at each point of D, is identically equal
to a constant in the set D.

An analogous example of & system of two ordinary differential equa-
tions may be defined even in the whole space By, 4. e. in a simply con-
nectied set [4]. The right sides of this system, @ (2,%:,%,), Qs (@,91,Y2)
may even be of class 0% in the entire F;.
each golution of the equation

02[0 +- Q1 (%, y1,42) 02/0y, + @y (2,91, 92) 028y, =0,

having a total differential at each point in #, is identically equal to
& eongtant in ;. This example, when compared with theorem 1, shows
that the properties of non-local solutions of the partial differential equa-
tion

)
Just, as in the above example,

k
0z/0m —i—;@i(m,y,,yz yee s Y) 020y =0

are different for k=1 and different for k2.

§ 1. THEOREM 1. If the function Q(x,y) s of class O" in the simply
conmected open region D, there exists a solution of equation (1) having a to-
tal differential in this region and such that Jdts derivative with respect to y
8 positive nearly everywhere in the set D.
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Before constructing such a solution, let us introduce the following
definition:

Definition 1. By the emission zone of the set Z with respect to the
ordinary differential equation R we denote a set of points lying on the
integrals of R which have at least one point in common with Z.

Now let us consider an arbitrary segment T contained in the region
D, and parallel to the y-axis, and its emission zone § with respect to
equation (2). Each integral of (2), contained in S, intersects 7' exactly
at one point. Hence, we may define in § a constant function along the
integrals by defining it arbitrarily on T. Since the function, constant
along the integrals of (2) and having a total differential in a certain
open set, is the solution of equation (1), the determining of the solution
of (1) in the interior of the set § is not difficult. We shall construct the
decomposition of the region D into the above kind of disjoint emission
zones of segments T;. For this purpose let us prove the following lemma.

LEMMA 1. For the simply connected region D and equation (2), de-
fined in it, with the right side of class (" there ewists a sequence of segments
To(n=0,1,2,...)belonging to D, Ty (=2, , by <y <g0), Tn(w:'mm?/"' [hmgn)) %)
(n=1,2,83,...) such that

10 D=§S,, where 8,, denotes the emission zone of segment T, with
respect to eq;at%on (2);

20 the sets 8, are disjoint;

3% to the point (@,,h,) (n=1,2,3,...) corresponds a point (m; ,v,)
belonging to Ty %) (i, <<n) such that if the integrals y,(x) (m=1,2,...)
do not meet segment T, i.6. (Bp)Yum (@))€ T, and if, moreover im y,, (,) =hy,

m~»o0
ihen, for sufficiently large m, y, (@) are defined for w=m;, and limy,, (4;)="1,.
m—»o0

(The geometrical significance of this assumption is illustrated in
Fig. 1. It will be further clarified in the proof.)

The proof of lemma 1. Let T be a segment (not reduced to a point),
parallel fo the y-axis, and contained in region D. We shall prove that the
emission zone 8 of T with respect to equation (2) has the following pro-
perty:

Property W. A set Z has the property W if the following impli-
cation takes place. If (#°,y*)eZ-D, there existe a positive number r

) yelh,,g,) means that in the case of k,<g, we have h<y<g,, and in the
case of h,>g we have g, <y<Ch,.

%) 4 denotes the closure of the set A.

Annales Polonici Mathematioi IT 18
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such that either the segment w=x",y" <y<y"'+r or the segment w=az",
y*—r<y<y® is contained in Z. ~

For the proof let us consider an arbitrary point (#”,4") of the set §-D.
Let K be a segment not reduce to a point, belonging to D, aod
parallel to the y-axis with cen-
tre at (x”,y" ). It is easily seen
that on this segment there is
a point (#”,y%) of the set &,
differing from (#,y%)7). Let us
_! agsume that y*<y~, because
in the case of y® >y~ the proof
is analogous. To prove pro-
perty W, it suffices to show
that the points (4™ ,y) belong
to § for y*<y<y”. For indi-
rect proof let us assume that
the point (z”,9) ¥* <g<y” does
not belong to §. In this ca-
se the whole integral passing
through this point does mnot belong to 8. On account of the
simple connectivity of D and of the assertion that the integral
reaches with its ends to the boundary?®), this integral divides region D
into two parts. The set S, being connected, is entirely contained in the
part to which the point (v,y*) belongs, and therefore the point (#”,y")
does not belong to S. Thus, it has been proved that S has the pro-
perty W.

Now let us consider then open subset @ of D, composed of integrals °)
(of equation (2)) and having the property W. Let the segment T
(w=a,y€e[h,g)) be contiguous to the set G (4. e. let it belong to the
difference D—@, and let the point (a,h) belong to G). We assert that
the set G+8, where S is the emission zone of the segment 7, iy an open
get. Let us assume in addition that A<g. (In the case of h>g the argu-
mentation is analogous). On account of the property W and. the inclu-
sion 7c D—@, there exists an r* such that the segment-p=a, h—r*<y<h
belongs to the set @, and thus, denoting by 8~ the emission zone of the

?) In the case of (x”,y"”)e8, it follows from the theorem on the continuous de-
pendence of the integral on initial conditions, because a segmnent that is not refdueced
to a point is a set dense in itself.

%) A point in infinity is congidered as belonging to the frontier of an unbounded
region.

%) 4. e., if the point P belongs to @, the whole integral passing through P is con-
tained in G.
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segment w=a, h—r*<y<g, we obtain G+8=G+8". Moreover, §, being
the emission zone of an open segment, is an open set; therefore G-+8
is indeed an open set. G+8 has, besides, the property W since as follows
directly from the definition of W, the sum of a finite number of sets ha-
ving the property W has this property. The above a.rgumentatlon may
algo be apphed to G¢+8 and the contiguous segment T* to obtain an open
set G-+8--8" having the property W. Proceeding in this way we obtain,
& sequence of open sets, having the property W. If, moreover, the set
@ is connected, then all the sets obtained are con_neeted. These remarks
will now be utilized in the construction of the sequence 7T, appearing
in the formulation of lemma 1.

Let (a;,b1), (a5,0,),... be a sequence of points of the region D, eve-
rywhere — dense in this region (e. g. the sequence of points with ratio-
nal coordinates of the set D) and T (x=m,,h,<y<g,) a segment contained
together with its end-points in D. Let (a;,b;) be the first point of the
sequence (a,,b,) that does not belong to S, but can be connected with
8,1°) by a segment!) parallel to the y-axis and contained in D. Let us
denote by T, (z&:ow;L yYE€ [hl,b;,)) & segment having no points in common
with 8, and such that (az,%)e .S, The segments 7y,T},..., T, being ana-
logously defined (Fig. 1), let us consider the first point of the sequence

(@ bn) nOt belonging to the set Sy+8;4...+8, and connectible with
the set 8,+8;1+...+8; by a segment parallel to the y-axis and contai-
ned in D. Let this point be (@ ,bw). BY T (8=0w ¥ ¢ [hyp1,bm)) we
denote the segment belonging to D, having no poits in common with the
set Sy+8;+...+8; and such that (@ shrgr) €Sy +814+... + 8. It is
possible because, as follows from the preceeding remarks, the set
So+8;+...+8; is open.

It may easily be seen that property 2° of this lemma is fulfilled.
Relation 3° of this lemma follows, as can easily be shown, from the pro-
perty W of the sets 8;. For the indirect proof of relation 1° let us assume

that the set D, = 5‘ 8, is a proper part of the region D. Hence there exists

m=1

a boundary point Pg(w,,y,) of the set D,, belonging to the region D.
Let P’ be a point of D, so close to P, that the integral passing through
P’ ig defined in the neighbourhood #, and can be connected with P, by
a segment parallel to the y-axis and contained in D. In view of the
definition of the set D,, there exists an N such that P'eSy. In view of

10) The emission zone 8y of the segment T parallel to the y-axis and not contai-
ning the end-points is an open set.

11) 4. ¢. there exists a segment 7 such that (am,bsm)et,7eD and the sum of sets
7 and Sg is a connected set.

18*
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the simple connectivity of D and the theorem of the integral reaching
the boundary with its ends, the integral passing through P, divides the
region D into two open parts. That part to which P’ belongs we de-
note by D;, the other by D,. The set D, has no points in common with
the integral passing through P, (otherwise, since D, is composed of
emisgion zones, the point P, would belong to the open set D;), and,
since it is a connected set, it belongs entirely to the set D;. Let (a,,b,)
be a point of the sequence (a,,b,) lying in D, 8o close to P, as to be
connectible with the integral passing through P’ by a segment contai-
ned in the region D and parallel to the y-axis. Then, as is seen from
the definition of the sequence S§,; (@,~,b, ) belongs to the set

8o+ S48+ oo 8y s

and thus also to the set Dy, which is at variance with D, being contai-
ned in D, because (a,,b, ) belongs to D, and the product D,-D, is an
empty set. Thus the proof of lemma 1 has been completed.

Using the decomposition of the region D into the sets 8;, we shall
give in lemma 2 the definition of a continuous function in D with a de-

rivatives with respect to y, positive and continuous in the set G= fl (84),
where I(8;) denotes the interior of S;. =

‘ LEMA 2. For the simply connected vegion D and equation (2), de-
fined in it, with the right side of class O there ewists a function 2(x,y)
and an open set @, @CD, such that '

I) the set D—@ is composed of a countable number of integrals,
II) the function z(®,y) is of class C* in the set G,
OI) the derivative 0z(w,y)[0y is positive in @,
IV) the function z(x,y) is continuous in D,

V) the function 2(x,y) is constant along the imeg')'als of equation (2).

The proof. of lemm-a. 2. Let fy(y),/1(¥),/2(%),... be a sequence of
bounded functions having continuous and positive derivatives, for
—oo<Ly<+oo and satisfying the conditions:

(©) Tnlba)=1;,(v)

We define the function-z(z,y) in the set D assuming that z(@,y) =f;(¥)
for (a'o,y)eTi and that 2(w,y) constant along the integrals of equation (2).
In view of property 2° of lemma 1 this definition is correct and in view
of property 1° it is valid for the whole region D. The function z(z,y)
thus defined is expressed in every set § by the formula: z(2,y) =fi{g (20 ,g,/))

for »n=1,2,3,...
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where g(&;x,y) denotes the coordinate y for #=¢ of the integral of (2)
pagsing through the point (#,y). The function g(x;;%,9) is of class
0! in the set §; and has in this set a positive derivative with respect to
y ([2], p. 185). Therefcre, #(z,y) is also of class 0" in (the interior of) 8;
and has in it a positive derivative with respect to y. Assuming that
G=8,+I(8,)+I(8;)+..., we obtain properties II), III), property V)
following directly from the definition, and IV) from the condition (C)
and property 3° of lemma 1. Property I) results from the set D—@ being
composed of integrals passing through the points {(mn,h,,) (n=1,3,...)
The proof of lemma 2 is thus completed.

Remark. We shall match with the function z(#,y) a suitable func-
tion I(£) in such a manner that the compound function 2*(z,y)=1(z(%,¥))
will have a total differential at each point of the region D. The function
2" (@,y)=1Ue(w,y)) will satisty the assertion of theorem 1. Such a fune-
tion I(#) will be given in lemma 3.

Lmva 3. For every positive function g(s) weakly increasing'?) for
positive s belonging to a sufficiently small right-hand neighbourhood of zero,
and for an arbitrary sequence of real numbers ty,t,4s,..., there exists a se-
quence of positive numbres ;<1 and a function 1(t) differentiable at each
point of the imterval (—oo,+o0), and such that its derivative is positive
oulside at most the set of measure zero's), for which the following relations
hold:

(3) PR —tE)<g(t—tl) for O<f—t(<on. -

Without limiting the generality of this lemma, we may, as is easily
seen, additionally assume that the function g(t) is continuous in the in-
terval [0,1], g(f)<<1 and that

(4) g(0)=0,

because the relation (3) are inequalities of local character and with the
function g(t) we may match a function k(f) so that in the right-hand
neighbourhood of zero h(f)<g(t), and k(0)=0, with &(?) strongly increa-
ging and continuous. Also without ]jmitjng}’genera]ity, we may assume
in the proof that the numbers 4, are distinct. Let us observe that in order
that the function %(f) be the derivative of the desired function it suffices
that it have the following properties:

(6))] k(t)>0 nearly everywhere,

18) 4, 6. g{s;)==g(s,) for s>=s,.

13) The function constructed will be of class C* except the closure of the set
of numbers {,.
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(6) k(¢) wupper semi-continuous at the interval (—oo,+-o0),

(7) hng[ftk(s)ds(t—t*)““1]>k(t*) for every t",

[
(8) there exists a sequence of positive numbers ¢; such that
(p=1,2,3,...)1)
Indeed, let us suppose that %(¢) has the properties (5), (6), (7), (8).
1

b)<g(li—tpl) for [B—1p|<ep

We shall prove that for the function I(t)=[k(s)ds the identity V' (t)=/k(t) *
0

holds and that thiy function satisfies the assertion of lemma 2.

At firgt we shall show that the derivative of the function () exists
for every value of ¢ and is equal to % (). For this purpose let us put arbi-
trarily t=1". It follows from relation (6) that

* k(s)ds
—— J()—1(") — 4 "
- =i <k(t -
1t t—1t tj? p—tt @
whereas relation (7) denotes that
ft
M k(s)ds
1) — (¢ :
tim %) f ) — lim & — =k("),
or t—1 prte T—1

hence indeed I'(t*)= k(i*). By (5) it follows that I'(f) is positive nearly
everywhere. On the bagis of (8) we obtain

(PO — L) = lt—t;] (D)< [~ bl g (lr— %))

where v lies between %, ¢;, 4. e. |[v—1;|< [t—¢;|; hence, on the basis of the
assumption that g(s) is increasing and since ¢;<1,

PE—=tE)<g(t—5)  for |t—4[{<e;.

The construction of the function k() having the properties (5)-(8), we
shall reduce to the conctruction of a sequence of functions I, (t), tending
to k(t), and of two sequences of positive numbers ¢;,d;. To obtain in
the limit the relation (5)-(8) we choose the function k,(¢) and the positive
numbers ¢;,d; such that for i=1,2,... the following properties hold:

(9) ki(8)>0  for ittty tety, ..., 54

1) Addit.iona.lly assuming (which also does not limit the generality of the lemma),
that the function g(s) is of class O* and g(0)=g’(0)=0, g’(8)>0 for 8>0, one might
replace the function g(s) in (8) by its derivative.
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(10) ki(t)=T;y(t) for [t—gl=1/2" (i>2),
(11) W<k, () for i>2,
(12) k;(t) uniformly continuous for —oo<i< oo,

13

'fkl(s)ds 1 .
(18) inf Y >EE)——, p=1,2,...,4 for arbitrary ¢°,

o<it—tri<d, T—1 P

(14) E@<g(i—t) for [i—4l<g
(14a) ki ()< 1.

It is easily seen that the function %(t)=lLim%;(t) satisfies relations
(5)-(8), namely relation (5) in consequence of (9), (10), relation (6) in
consequence of (11), (12) 15), relation (7) in consequence of (13), and
relation (8) in consequence of (14).

Before constructing the sequence of functions k;(¢), we shall prove
that for arbitrary positive numbers 8, ¢ and for an arbitrary real number
¢ there exist a funetion %(f) and a positive number # which have the follo-
wing properties:

(j=172;3:~--7¢)9

(15) h(t) 1is continuous for —oo<<i< o0,
(16) h(t)=1 for [t—gq|=4,
1n ht)=g(lt—gql) for [t—gl<r,
(18) R{t)>0 for t£q,

(19) the set of numbers s satisfying the relations

(Z) h(s)Zh(")—e  selt,t’],

where t,i* are arbitrary numbers (<" or t3>i") has a measure not
smaller than (1— &)|t—t|.

In the proof we assume that g=0. The general case is reducible to
this one by changing the variable t=¢ + ¢. For the proof let us denote
by a(t) the function

m—t) m®
and by g¢'(s) the function g*(s)=min(g(s),e) for 0<<s<L, ¢ (s)=e
for s>1.

1) On the basis of the theorem, on the decreasing sequence of continuous fune-
tions, see ¢. g. [3], p. 354, theorem 9.
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We shall show that the function h(t)=max(a(t),g"([t])) for ts£0,

h(O):l() has properties (15)-(19). In view of the definition of h(¢) and

equality (4), relation (17) follows from g¢*(s)=g(s) in a certain right-hand

neighbourhood of zero and from lima(f)=-—oco. (As number » we may
—0

take min (r,,r,), where 7; is the rading of the neighbourhood of zero
in which a(t) does not assume positive values, and #, is the radius of
the neighbourhood in which g*(s)=g(s).) Relation (18) follows from the
inequality ¢"(¢)> 0 for ¢>0, and relation (15) from (17) and from the
fact that the function a(?) is continuous for ¢£0. The validity of relation
(18) follows from the inequality

a(ty=1 for |i|=6 (because 1n-2-~~»

<o
+e<)'

In order to prove relation (19) let us observe that the function a(z) fulfils
functional equation

® (5 =et—

) a £+21 a(t)—e (for t5£0).

From (F)f from the evenness of the function a(t), and from the fact that
the function a(¢) increases for >0 follows the validity of the inequalities
6] a(s)=>a(t’)—e

for

& L] *
|8I>-2—_|:—;|t [y & 0.

We shall prove now that h(t) satisties the inequality

) h()=h(t')—e for arbitrary ¢, |s| > ——|¢"].
2-4¢

Therefore we shall distinguish two cases:
L R@E)=g"(1").

In this case h(t")— e=g"(|t*|)— s<0, since 7" (s)< ¢; therefore (N')
ig fulfilled in consequence of relation (18) (even for avery s).

I k()4 (")), then h(t')=a(t"),

and hence on the basis of (N) we have

a(Zh(t")—e  for s>—— [1*
= $= 5T [t°].
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Since h(s)>=a(s), we obtain the relation (N').
To obtain relation (19) from (N') we distinguish two cases:

* ¢ *
I ft—t |<(1~——2+5)]t I

In this case we have for se[f,t"] the inequality

* *
s — o<l —t |<(1—2—+—)x 1y
and thus |s|>[t"|—[s—t"|=["]e/(2+e), i.e. (Z) holds in view of (N')
over the whole interval [£,"].

* & 2 ~
=¥ >l = o = g
The set of points of the interval [¢,#"], for which the mequa.hty (Z) does

not hold, has, in view of (N ), & measure not larger than 28" /(24 ¢)-
Qince is this case |t—t*|>2[t"]/(2+¢) the measure of points of the inter-
val [t,t"] for which (Z) does not hold is not la.rger than s|t—i"|. In other
words, the set of numbers of the interval [t, "7 for which (Z) holds has
a measure not smaller than (1—e&)[t—t"]. The existence of the fuhetion
h(f) (and the positive number #) satisfying the relations (15)-(19) is thus
proved. The existence of the sequence %;(¢) and the sequences of
pogitive numbers ¢;,d; satisfying relations (9)-(14a) will be proved
by induction.

Let % (t) =1 for [t —4]>1, k(t)=g(t —t]) for [t —&| <1/2. Now,
in the interval #,—1<t<t;—1/2 and in the interval #-41/2<I<h+1
let %, (f) be a linear function.

Moreover, let us take ¢, =1/2; obviously relations (9)-(12) and relations
(14) and (14a) are thus fulfilled. Then we choose d; so that (13) is also
tulfilled. For this purpose it suffices to choose d; 8o that |%; (£)— % <12
for t,t* satisfying the inequality |¢— t*|<d,, which is possible because
of the uniform continuity of the function k().

Suppose now that we have defined the functions & (£), % (), .- s kn ()
and the positive NUMbEIS ¢;,05,.. 301,01, da,. .-,y in such a way that
relations (9)-(14a) are fulfilled. We have to define %, (t) and ¢, ,d, 50 that
(9)-{14a) should be fulfilled for i=n. This end let us introduce the follo-
wing notation:

1
+ ;]] ’

II.

[f Fna (8

1 .
min

20 g
(20) 0= 5%12, 1 [0<|t trl<dy ¢

§)ds[(t — ") — En_y(2")


GUEST


282 A. Plid

(21) o ="ty

By &, let us denote a positive number smaller than 1/2" chosen for
g 80 that

(22) Ik - (t) - kn—l(tn)l \<\€D for [t - tfn‘ < '30 .

(There exists such a number in view of the continuity of k,_,(¢).) Let
ko (t) be a function having properties (15)-(19) for 6=6,, e=&, (¢=g.
After these preparations we define (see Fig. 2)

(23) Iy () = min (K, (), ho (2)) -
y
s . y=hs(t)

t, Ls f, t
Tig. 2

For the function k, (1) relation (9) follows from the inductive asswmnptior
and relation (18), relation (10) from (16) and the validity of (14a) fo
i=n--1 in view of §<1/2", and relation (11) directly from the defini-
tion. Property (12) follows from the inductive assumption, the validity
of (10) for 7=n, and from (15). Relation (14a) is the result of the inductive
assumption and of (11). Putting ¢,=r, we obtain from (17) relation (14)
for j=mn, for the remaining j (14) is a consequence of the inductive assump-
tion and of (11).

Now we shall prove the validity of (13) for <=n and for
p=1,2,...,n—1 (the case p=n will be considered later). F'or this purpose
it suffices to show that the function f(t)=k, (t)—k,. (f) satigfies the ine-
quality

|1

@) Jfds)i—)

—f(t" )= —de, for every t,1*, okt

Indeed, let us assume that this inequality is valid. We shall prove the
validity of (13) for i=n, p=1,2,...,n—1. We have, namely,

icm

The problem of non-local ewistence 283

2
(t_fk,b(s)ds 1)

0<|zi-‘i-f<dp i k,(t7) + >
¢
[( ko (s)ds * 1) ( ff(s )]
=inf t—t‘ kﬂ_l(t )—{—5 + T___ f(t
t t
fk _1(s)ds

>int(F e B, () + ) it e — 1)
t—t P i1
>bey —4ey =2, > 0,

therefore inequality (13) will be proved for p=1,2,...
(24). Let us observe that by (23)

,m—1, if we prove

)= min(kn—l (t) ko (t)) — ks (2)

By (16) and (14a) we have

= min(0, hy (£) — kn_s (1))

(25) ft)=0 for [t—1t,]=4

Let us introduce the following notation:

f1(8) = min (0, hy (£) — k1 (),
Also for f,(t) in view of (16

(25a) fa (&) =F() — f(8).

), (14a) the following relation is valid

(26) ffy=0 for [t—1,/=46
From (28) and (26) it follows that
(26a) Ll =0 for [t—1t,)>0

Let us now estimate |f,(¢)| for [t—1,|<é

fa(®)] = min (0, Ty, (£) — Ky (£)) — min (0, Fip (¥) — En_1(,))|
< | (Ro(8) = Topy (8)) — (Po (8) — Fopy (B );—Ik_ — K ()5

therefore, in consequence of (22), we have in this case ]fz'(t)lgau, which
in view of (26a) gives the inequality |g,(f)|< s for every ¢; thus the ine-
quality

(ffz

ds) (t'—t —fz(t‘)> —2¢
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is fulfilled for every t,t*,t54t". For the proof of (24) it remains to show,
(since f(t)=F,(t)+f,(t) and the left side of (24) is a linear functional
with respect to f(t)) that

¢
(t__ffl(s)ds)/(t ‘—t*) —‘f1(t*) = —

In congequence of (25a), (18),
inequalities

@7 —1<A#) <0

(15), (14a) the function f, () satisfies the

for every ¢t.

The function #,(f) has property (19) (for s=¢g);
directly from (Z), the function j(¢)=he(t) —k,_.(f,) also has this property.
From the inequality §(s)>§(t*) —e, in view of the identity f,(f) =
= min(0, t)), follows the inequality fi(s)=/i(t*)—e Indeed, in the
cage of j(t*)—e>0 we have j(s)>0, hence fl( =0=f( t')>f,(t" —a,
whereas in the case of j(t')—s<0 we have j(t*)—e<<min(0,j(s))=f(s
and thus f, (t*)—e<f,(s). Therefore, the function f;(t) also has property
(19). Let us denote by B the set of points s belonging to the interval
[t,t"] in which the following inequality does not hold

f(s) =h(t")
and by |B| its meagure. In view of relation (19) we obtain the inequality

(28)

— &g,

1Bl < &lt —1].

As a result of relations (27), (28) we have the following inequalities:

[ his)ds

[t*]-B

= (It =" — [BD(A () — &)

= [t —1"|(f,(&") — &) + |Bl{sg — 1 (t"))
= [t — " |(f (")

Bffl(s)ds>—!B|>

"'"’0)1

— [t —1"] 5.

Hence

(ffl $)8) [0 ~1') = ") =( [ his
thus the relations (13) are indeed valid for t=mn, p=1,2,...,n—1. We
then choose d, so that (13) be fulfilled also for ¢==n, p=n. For this pur-
pose it suffices to chose d, so that |k, (t)—k, (") <1/2n for [i—t*|<d,,
which is possible because of the uniform continuity of k,(¢). The proof
of Lemma 3 is thus completed.

)ds) fft — ¢ — f1(2%)

= — 26;

therefore, as follows
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LeMMA 4. If the function 2(x,y) is continuous in the region D and
has o total differential outside the set in which it assumes a countable number
of values, then there ewists a function 1(t) everywhere differenitable with a po-
sitive derivative almost everywhere, and such that the composed function
&(m,9) =1z(x,y)) has o total differential at each point of ihe set D).

The proof of lemma 4. Let us denote by D (r) the set of points which

I) are contained in a closed sphere of radius 1/r and centre at the
point (0,0);

II) belong with their open neighbourhoods of radius r to the set
D. Evidently, the sets D(r) are compact and not empty for sufficiently
small 7. By d(r) let us denote the maximum number ¢ such that, if
(29) PeD(r), P7eD(r)
and the distance of the points P,P”,|P—P"| is not larger than &, then
|#(P)—2(P")|<#/2. The set D(r) being compact, the function d(r) is po-
sitive for positive r (and assumes finite values for sufficiently small »
provided 2z(P) is not identically equal to a constant). Moreover, d(r)
is (weakly) increasing. We may, therefore, apply lemma 2 to the
function g(s)==sd(s) and to the sequence of values f; assumed by the
function 2(P) at points at which it has no total differential. Let I(?)
be the function appearing in the assertion of Lemma 2. Hvidently,
the function 2°(z,y)=1(¢(x,y)) has a total differential at those points
of the region D at which z(2,y) also has it. Therefore let the point P,
be an arbitrary point of D at which 2(P) has no total differential. We
shall prove that 2 (Py)=0, 2, (Pp)=0 and that at peint P, the function
2 (P) has a total differential. For this purpose it sufficies of course to
consider the points P, for which

(30) ‘ #(P) —2(Py) #0.
For these points we shall prove the following inequality:

(31) {]z(P)—-z (Po)] )<1P P,| for sufficiently small [P— Pl
For indirect proof, let us assume that in every neighbourhood of P, there
exists a P~ fulfilling (30) and such that

(32)

[P"—P)| <d(r’), where 1~ =|[2(P")—2(Py)l,

10) Lemma 4 remains valil under a more general assumption that z(P) has a to-
tal differential outside the set in which it assumes values forming jointly a set eompo-
ged of a countable number of sets of Jordan’s measure zero.
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hence for sufficiently small |[P"—P,| the assumptions of implication (29)
(PoeD(r),P e D(r)) are satisfied, whence it follows that [2(P7)—(P)I<
<r" /2, which is at variance with relations (30), (32). We have

I#°(P) — 2 (Po) | = 1{=(P)) — Ya(Po))l < #Po))

for sufficiently small |P—P,| as a result of (3) and the equality g(s)=sd(s),
and hence, on the basis of (31) for sufficiently small |[P—Py| we have

{2(P) — 2(Po)| d(|o(P) —

|o"(P) — 2"(Po)| < |P — Pol [¢(P) — (P o)l
Sinee |¢(P)—#(P,)|~>0 when P->P,, the proof of the existence of a total
differential in the set D, and hence of lemma 4, has been completed.

The proof of theorem 1. We may apply lemma 4 to the function
z(x,y) of lemma 2, because this function is not differentiable at most in
the set D —@G composed of a countable number of integrals, 4. e., in a set
in which it assumes a countable number of values. The function z(z,y)
being constant along the integrals of (2), the function & (w,y) = l(z(w,y))
i also constant along the integrals of (2), and since it has a total differen-
tial, it is the golution of (1). To complete the proof it remains to show
that the set of points at which the derivative d2*(@,y)/dy is zero, has the
measure zero. For this purpoge it suffices to prove that for each point P
of the open set G there is a neighbourhood 2 of the point P such that the
set of points belonging to £ at which the derivative 8z*(»,y) /0y becomes
zero has the meagure zero, because as a result of property I) of lemma 2,
D—@ has the measure zero. Therefore let P be an arbitrary point of
Q. Let us denote by K a closed circle with the centre at point P, contai-
ned in G, and by Z a set of points of K, at which the derivative
2 (z,y)/0y is zero.

The transformation T w=x, v=2z(2,y) transforms K into the set
A of variables u,v, and Z into the set B (subset of the set A). The function

2(x,y) satisfies properties IT), ITI) of lemma 2, hence the inverse transfor-

mation 7! is of class €' in 4. This transformamon transforms the set
B into the set Z. The set B hag the field measure zero because it is
contained in the Cartesian product of the w-axis and the set of the li-
near meagure zero, of value v, for which the derivative I'(v) is zero, as
a result of property ITI) of lemma 2 and the equality 02"(w,y)/dy =
=1(2(w,y)) 02(2,y)/0y. The set Z has, therefore, a field measure zero
as an image of a set of field measure zero through the ‘transformation
T~ of class ('. Thus theorem 1 has been proved.

§2. THEOREM 2. If the function Q(z,y) is of class C* in a finitely-
connected open region D, then there exists a solution of equation (1) having
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a total differential in this region and identically equal to a constant in mo
open (non-empty) subset of the region D).

The proof of theorem 2. We shall reduce theorem 2 to theorem 1.
Let (" be an integral reaching with one end to a certain point of the
unbounded component of the supplement of DIB), and by the other
end at a certain point of bounded components. We shall prove that such
an integral exists, provided the supplement of the set D has a bounded
component. Indeed, let us denote by b the largest coordinate » of the
points belonging to the bounded components of the supplement of the
set D, and by T the segment of maximum lenght, belonging to the boun-
ded components of the supplement of D and lying on the straight line
x=b (this segment may be reduced to a point). Lebt K be an open rectan-
gle containing T and having no points in common with the unbounded
component of the set D. Let us denote by P; a point lying on the straight
line z=b above the segment 7 and belonging to the product DK, and
by P, an analogous point below 7. The integrals passing through these
points belong to DK for b—d<a<b-d, where d is a certain positive
number; hence the straight line x=>b-d intersects these integrals af
points belonging to the rectangle K. The segment of the straight line
between the above integrals belongs to the region D (because K contains
no points of the unbounded component of the supplement of D, and for
points of the bounded components of the supplement of D the inequality
x<<bh is valid). One of the integrals starting from this segment must reach
with its left end to a certain point of bo-
unded components, since otherwise all
these integrals would exists in the interval
[b—d,b+d], which contradicts the fact
that 7 does not belong to D. This integral
reaches with its right end to a point of the
unbounded component (since to the right of
r=Db there are no points of bounded com-
ponents); hence it is the desired integral C,.
The supplement of the set D;=D— C; has one
bounded component less than the supplement of D. An analogous argu-
mentation may be applied to the set D, (if its supplement has bounded

set I

Tig. 3

17) A. Bielecki has furnished an example of a double connected region and of
an equation defined in it for which the assertion of theorem 1 is mot fulfilled.

18) We say that the integral y=y (x) reaches the point P with its left end if
there exists on the integral a sequence of points (,,,y,) such that (w,,y,) tends to
the point P, and w,->a, where a is the left end-point of the interval in which the con-
gidered integral is defined. Analogously we define reaching a point by an integral
with its right end.
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components) and obtain the region D,=D;—0,, whose supplement hag
two bounded components less than that of D. Proceding in this way
we shall finally obtain the region D™ =D—(;—C,—...— C; (Fig. 3),
whoge supplement hag no bounded components, i.e¢ a simply connected
region, to which theorem 1 may be applied. Let us denote by u(z,y)
the bounded solution of equation (1), fulfilling the assertion of
theorem 1. (If the solution z(z,y) satisfies the assertion of theorem 1,
then the function w(x,y)=arec tg[z(x,y)] is a bounded solution of
equation (1) satisfying the assertion of theorem 1.) When tending
to integrals (;, the function has omne-gide limits (as a result of boun-
dedness and monotony '°)). Let us denote them by g,...,¢n (n=_2k).
The function w(u(w,y)), where w(u)=(u—gy)(s%—g)...(4—gy), tends
to zero when the point tends to the integrals ;. Defining it on these
integrals as equal to zero, we obtain a continuous function in D, having
a total differential except at most at those points where its value is zero.
One may, therefore, apply to it lemma 4 and obtain the desired solution
s(z,y). The function s(s,y) is not identically equal to a constant in any
open subset of its domain, because the continuous functions wu(z,y),
w(wu),l(w) have the above property. The proof of theorem 2 has been
completed. '

§ 3. Before furnishing an example, we introduce the following de-
finitions:

Definition 1. The points 4,B are called directly conjugate with
respect to the system of ordinary differential equations U if there exist se-
quences of points A4,,,B,,4,, tending to 4 and B,, to B, such that for
each index m the points 4, and B,, lie on the same integral of U.

Definition 2. The points A* and A™ are called conjugate with
respect to U if there exists a finite sequence of points A4,4,,...,4; such
that 4,=A%4,=A" and for the index ¢=1,2,...,k—1 the points
Ay, 4, are directly conjugate with respect to U.

Definition 3. We give the term an integral of ramification to the
" totality of points conjugate to a given one with respect to U 20),

’ The relation of conjugation is reflexive, transitive, and symmetrical.
Points lying on the same integral are conjugate, but not necessa-
rily vice versa, ¢. g. for the equation y'==0 considered on a plane with

19) This function tends to the same limit, when tending to an arbitrary point
of a given integral () through points below (above) the integral in view of the theorem
on the continuous dependence of an integral on initial conditions, and of the fact
that it is constant along the integrals.

29) The definition of the integral of ramification has been introduced by T. Wa-
sewski in connection with the first integrals of an ordinary differential equation.
The above definition concerns particularly one equation.

icm

The problem of mon-local existence 289

the origin of coordinates removed, the points (1,0), (—1,0) are conjugate
(directly) though they do not lie on the same integral. (They belong to
the same integral of ramification.)

The principal property of integrals of ramification is the following:
LEvery function continuous in the domain of the right-hand members
of the system U and constant along the integrals of the system U, is
constant along the integrals of ramification of the system U. To prove
this property it suffices to show that, in view of definitions 2 and 3, the
function f(x,y) constant along the integrals and continuous, assumes
the same values at the directly conjugated points 4 and B. To this end
let us observe that, in view of definition 1, the equality f(4,,)=7(Bn)
holds; therefore, in virtue of the continuity of f(x,y), we have f(4)=7(B).
From this property of integrals of ramification it follows also that if there

‘exigts an integral of ramification of a certain system of ordinary diffe-

renfial equations U, everywhere-dense in the domain of the right-hand
members of the system U, then each function continuous in this region
dnd constant along the integrals is in U identically equal to a constant.
It is known that to the functions which are constant along the integrals
of the system of ordinary differential equations

y;‘.:Qi(m,yla--'!yn) (t=1,2,...,n)
belong the solutions of the partial differential equation

n
02/6w+'Z:Q.;(w,y1,.. 1Yn) 8z[6yi= 0,
i=

having a total differential everywhere.
Exampre. We shall now construet a differential equation

(R) ' dy |0w=Q (z,y)

with the right side of class 0™21) in the open region D,having an integral
of ramification everywhere-dense in D.

Let {w;} be a sequence of rational numbers in the interval (0,1),
in which each rational number belonging to this interval appears exactly
once. It is easily seen that with each number w; we may associate an
interval T;= (a;,b;), contained in the interval [1/2,1], such that follo-
wing implcations are valid:

1) wy<< wji) < bi<< a;<< bj,

21) A funetion is said to be of class 0% if its derivatives of all orders are conti-
nuous. Through a proper approximation of the function @(z,y) by an analytical
function, analogous example with the function @ (z,y) analytical in D may be ob-
tained.

Annales Polonici Mathematici IT 19
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II) if for a chosen sequence wj, —>1, then a; —-1%2).

We shall construct the equation (R) in a certain subset D of the
square K (j#|<1,y<1) so that the following relation will be valid:

Qx,y)=Q(—x,—y) for

It suffices, therefore, to define the
set D and the function @(z,y) in
D for x>0.

Remark. The function @ (z,y)
will at first be constructed also at
some boundary points of the open
region D, in order that some auxi-
liary sets (whose interiors will
serve to construct the region D)
be closed.

By Z let us denote the set
composed of the rectangle —1/2<C
<w<1/2, y|<1 and of the seg-
ment y=1; 1/2<z<1l. We shall
define Q (x,y) at first in the set Z
putting

{@,y)eD.

Y=g (x) \m

Fig. 4

(33) Qw,y)=0

We shall extend the definition of the function Q(xz,y) to certain subsets
of the square K. This extension will be done in a countable number
of steps.

Step one. Let y=c,(z) be an integral of the equation (R) consi-
dered in Z, satisfying the initial condition ¢ (0)=w,**) (of course ¢, (w)="wy
and the function is defined for —1/2<z<1/2). Let us further elongate
the curve y=c, () on the remaining part of interval [—1/2,d,] (i. ¢. on
the interval [1/2,b,]) so that

1) the function ¢ (#) will be of class C* in the interval [ —1/2,b],

2) O0<e(w) for 1/2<w<ay,

8) e(@)=0 for a<a<h,

4) the part of the curve y==¢,(x), defined in determining the elonga-
tion (i. €. y=¢, () for 1/2<a<b,), will run in the set K—Z (i. e. that

for (x,y)eZ.

22) The sequence of segments T may be e.g. of the same kind as the segments
contiguons to Cantor’s set.

1) The term integral of the equation (R) considered in Z is given to the integral
contained in Z and reaching to the boundary of Z by its two “ends”.
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o (z)<<1l for 1/2<a<h ™).
y=a(x) by 07.

Now let us assume that Q(x,y)=de, (z)/dz on (7. In consequence
of such a definition the whole curve y=e¢; (%) defined in the interval
—1/2<e<h, is an integral. Let us denote by G, the set of points 1/2<2<b;,
6 (@)<y<1l and by H, the rectangle a;<a<b;, —1<y<0, and let us
agsume @ (z,y)=0 for (z,y)eH,.

We extend the function Q (z,y) from the set Z-+-C7 -+ H; to the set
@y, retaining class 0 °). We shall prove that for the equation (R), con-
sidered in the interior of the set Z,=%--G;--H,, the points (0,w,) and
((ay+b1)/2,0) are directly conjugated. For the proof let us consider the
sequence of integrals y=y(z;0,w,--1/n)*). Because of the regularity
of the function Q(z,y) in the set Z, and the theorem of continuous de-
pendence of the integral on initial conditions, the above sequence of in-
tegrals tends at m—>co to the integral y=og¢,(z)*"). The integrals y=
=y(2;0,w;+1/n) belong (starting from a certain n) to the interior
of Z, and are defined in the interval —1/2<®<b,;; and, since

Let us denote this part of the curve

y{(a+ )25 0,w,+1/n) >0,  .y(0,0,w,+1/n)>w, for n-xoo,
therefore the points (0;w,), ((@,+5:)/2,0) are indeed conjugated. The
first step is thus completed.

Remark. The curve y=c,(x) does not constitute one intergal in
the interior of Z;, because the points y=¢; (x),1/2<v<a; do not belong
to the interior of Z;. It will not constitute one integral also in the set
D, since the point (a;,0) will not belong to this set.

Let us assume that the function @ (z,y) has already been defined in
the set Z;. We shall construet the set Z,., and extend the definition of
@ (x,y) to this set.

M) F.g. we may assume that

fexp[(s—1/2)(s—al)]'1ds

e, (®)=w |1~ 1': for
[expls—1/2)(s—a)17"ds
1y

12<w<a,

and ¢, (z)=0 for a,<<w<b,.

#) Such an extension is possible on the basis of the theorem on extending the
function from a closed set with the retention of regularity, see [7].

20) y=y(x;u,v) denotes an integral passing through the point (u,v).

27) The integrals of this sequence exist starting from a certain n.
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Let y=c¢;,;(x) be an integral of the equation (R) in Z,, fulfilling
the initial condition: ¢jy,(0)=1wy ;. Let us elongate the curve y= Cry1 ()
(see Fig. 5) over the remaining part of the interval [—1/2,b;,,] so that

1') the function ¢, (%) will be of class 0%,

2) 0<epya (o) for a<ay,,

3) g (2)=0 for ap <oy,

4') the part of the curve y=c;, (), defined in the elongation, will
wn in the set K—Z7,%).

Y
! -1
- e ‘ ’ ’ 4 I s 4 4 ’
Y =60 AR
! A |
o N’ ° 7 6 + -+ 4 . |
P
o o o A ) |
Y=Cy(x o ono L
W 3(X) G, e s s, |
e e oN, s s s 4 s s |
a o o [ A Y '
I R
o o\o o
I t
o o\ o ’ s e s, |
o o L ¢ 4 4 ‘ 4 j
N L s s
W §=c5(x) e oo l P ) |
o 0 o Gy vy \
o o o . s |
N v e e [ |
° o l b
< s |
o o)
; — I )
7 a, b, a3 bye @ by 1 X
Fig. 5

Let us denote this part of the curve by Oy, +1- Let us define the func-
tion Q(x,y) along the cwrve Oy ; by the following formula: @Q(z,y)=
.=dck +1(2)/d. In consequence of this definition the whole curve Y =0pq ()
is an integral of the equation (R). By @~ let us denote the set of points

"1/2\<Jl"<bk+17 e (@)<y<l,

and by Gy, the following set Gy ;=@ — Z;. Let Hy,, be a rectangle
U SEKhyy 1, —1<y<0. Let us assume that Q(z,y)=0 for (x,y)eH,,,.
Let us extend the function Q(z,y) from the set Z,-- Cry1+Hy,y to the
set @, retaining class 0®. Analogously as at the first step, we may see,
that the point (0,wy,,;) and ((ak+1+bk 1) /2,0) are conjugated with respect
tc-) fR) congidered in the interior of the set Zosr=Zy~+ Gy +Hyyy
Similarly to the curve y=¢, (), also the curve Y=cx1(2) will not consti-
tute one integral in the region D, because the point (ay.,;,0) will not be-

) T}/le existence of a curve satisfying the above conditions (particularly also
property 4’)) follows from implication I) w<w; D, < b<a<h,.
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long to D. Applying mathematical induction, we have defined in this
way the function Q(z,y) in the set iZi, this function being of class €%
in the set _Zn‘I (Z;), where I(Z;) denoteis= 1the interior of the set Z;. Moreover,
we have Z;(lw,y):o in the set fﬂi. Let us agsume that @ (@,y)=0 also

q=1
at the remaining points of the rectangle H:1/2<w<1, —1<y<0. Thus
the points ((a;+ b;)/2,0) will be directly conjugated with the point (0,0)
with respect to the equation (R) defined in the open region D

oo o0
D=1 <Z¢)+H+_21‘I (Z)+H
= 1=

where H*,Z; denote sets symmetrical to the sets H,Z; with respect
to the origin of a system of coordinates. Indeed, the sequences of points
(@4 b)/2, —1/(n+1), (0,—1/(n+ 1)), lying on the same infegrals
—12<m<l, y=—1/(n+1), tend at n->oco to the points ((a;+ b;)/2,0),
(0,0); hence these points are conjugated. The points (0,w;) are conjugate
to the points ((a;+ b;)/2,0); therefore, in view of the above, they are
conjugate to the point (0,0). As a result of symmetry, also the points
(0,—w;) are conjugate to (0,0); hence the points belonging to the inte-
gral of ramification L passing through (0,0) are lying everywhere-densely
on the segment z=0, —1<y<1l. One may easily observe that through
this segment pass all integrals of the equation (R) (defined in D) not
lying on the z-axis and thus, in view of the theorem on the continuous
dependence of the integral on initial conditions, the integral of ramifi-
cation L is everywhere-dense in the region D.
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