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A connection between two certain methods of succes-
sive approximations in differential equations

by C. OrLECH (Krakéw)

1. The methods we are going to consider are that of Picard and the
following one.
Suppose we have a system of ordinary differential equations

1) x = P(t, o)

where & = (@, ..., @s) and F(t, ) = ‘(fl(t, @), ..., falt, ©)) is a continuous
vector-function.
Let x(t) be the solution of (2)

) ¥ =At)z
gatisfying the initial condition

(3) @(0) =¢ (e i8 a constant vector),

and lgt Tp(t) (m =1, 2,..) fulfill the conditions
(4) () = A@Q)2m(®) +F (t, tmos(t)) — A () Dma(t)

A(t), in (2) and (4), is a square matrix and it may be arbitrary.
The sequence
(8) @olt), #1(t), -

defined here is the sequence of successive approximations of the solution
of (1) and if it is uniformly convergent in <0, T) then, owing to (4), it
tends to the solution of (1) satisfying the initial condition (3).

Notice that if each element of A (f) is identically equal to zero, then
the method just defined becomes the well-known Picard method of suc-
cessive approximations. Thus the method given above may be considered
a8 a generalization or a modification of Picard’s method. We will use the
abbreviations M.P.M. (modified Picard’s method) if we speak about the
scheme defined above and P.M. (Picard’s method) if we have in mind
the classical method.
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The P.M. ig often practically useless because in many cases the first
approximations given by it are too far from the real solution and one
must do a lot of computations (however simple) to obtain a sufficiently
aceurate result. These troubles may be avoided, under favourable circum-
stances, by applying the M.P.M. provided that A(#) is suitably chosen.
Hence in some cases the results obtained by the M.P.M. are much better
than those given by the P.M.

The M.P.M. was considered, in much more general form, by T. Wa-
zewski [3]. Wazewski in his note has formulated a general condition guaran-
teeing the convergence of the M.P.M. 8. A. Schelkunoff [2] has discussed
the M.P.M. in the case when (1) is linear and he has pointed out that
this method is useful in some technical problems. Recently, M. Kwapisz
has obtained some results connected with the convergence of the M.P.M.
and with the estimate of the error (see [1]).

The author should like to give his thanks to Professor J. Lenkowski
who called his attention to the M.P.M.

2, THEOREM 1. Suppose (5) is defined by (2), (3) and (4), and suppose
the matriz U (t) is given by :
(6) U0)==1I, dU@)at=AQ@)UQ),

where I is the unit matriz.
Then the one-to-one mapping

(7) w= Uz, =t
carries (B) into the sequence z(t), (t), ..., where
(8) Tm(t) = U(t)2m(t) (m=0,1,2,..),

and 2n(t) is the sequence of successive approvimations given by the Picard’s
method for the system resulting from (1) by (7).

Proof. From (6) and (8) we get by derivation
9) Tmlt) = A (8) U (£)2m(t) + U (2) 2m(t)
By (9), (7) and (4) we have

(m=0,1,2,..). -

U(@)2m(t) + A1) U () 2m(t) = A(2) U(t)2m(t) +
+F(t, Ut)em—r(t) — A () U(t) 2malt).

Hence
(10) 2n(t) = U0 (B, U 2mslt)) — 4 (2) U(5)2mr(0))
and
(11) ) =c, zm0)=c¢ (m=1,2,..).
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Now let us put
(12) G(t,2) = UTW)(F (5, U()2)— A @) Ult)2).
Using this notation we get, owing to (10) and (11) that

Zm(t) = G{t, 2m_a(t)) ,

This together with (11) show that z,(f) is a sequence of successive approxi-
mations obtained by the P.M. for the equation

(18) 2= G(t,2).

It is easy to verify that system (13) results from (1) by (7). So we find
theorem 1 completely proved.

ml0)=c (m=1,2,..).

3. It follows from theorem 1 that the M.P.M. iz convergent for
system (1) provided that the P.M. is convergent for (13).

Schelkunoff, describing the M.P.M., said that in this method we
consider a solution of (1) as a solution of a perturbated linear system (2).
Owing to our result we may state that the M.P.M. can be considered as
the P.M. provided that in the space (#, #) we introduce a system of curvi-
linear coordinates based on n linearly independent solutions of (2).

4. The first term in (5) is defined as a solution of (2) with the initial
condition (3). However, as may be easily seen, theorem 1 remains valid
if @yft) is an arbitrary vector-funetion satisfying (3). Thus we can refor-
mulate theorem 1 in a more general way.

THREOREM 2. Suppose x(t) and y(t) satisfy the following condition

@'(t) = A@a@)+F(t, y () — Ay ()

and suppose the matriz U(t) is defined by (6).
Then the one-to-one mapping

(14)  #(0)=9y(0) and

s=U(t)z, t=t¢
carries any pair x(t), y (1) fulfilling (14) into the pair w(l), v(t), where
(15) #(t) = U@)u(t) and y()=T)o(),
satisfying the conditions
(16) uw(0) = 2(0) and W) =G, 0()),
where G(t,2) is defined by (12).

5. Now we are going to discuss the general case of the M.P.M. We
suppose in the following for the sake of simplicity that @ iz a real
variable, that is » = 1.
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Consider the sequence wm(t) of successive approximations defined as
follows: @4(t) is an arbitrary function, #m(f) (m =1, 2,...) is defined in-
ductively by
(17) Tlt) = H (t, 7m(t)y Bm—1r(2)}
where H (¢, x,y) is a suitably regular function and ¢ is constant.

Under suitable assumptions concerning function H(¢,®,y) the
sequence on(f) defined by (17) tends to the solution of

{18) @ = H(t, %, ).
The question arises: '
QUESTION 1. Does there exist a one-to-one mapping

#m(0) = 2o(0) = ¢

(19) o="T(,2), t=t
of the half-plane {> 0, —co< 2z < +oco onto itself and the equation
(20) 2 = h(t,?)

such that (20) results from (18) by (19), and that the sequence zm(t)
(m=0,1,2,..) determined by - '

(21) wm(t) = T'(t, 2m(t)) ,
where #,(t) is defined by (17), is a sequence of successive approximations
for (20) given by the P.M., for each congtant ¢ and each function @(¢)?
The above question is eguivalent to the following one.
QUESTION 2. Does there exist a one-to-one mapping (19) and the
function %(¢, 2) such that for any pair ®(f), y(f) satisfying
(22) (0)=y(0) and @(t) = H(t, @(t), y (1))
the functions #(¢) and v(¢) determined by
(23) oty =T(, () and y@) =T, o)
satisfy the conditions

(24) u(0) =v(0) and  %'() = h{t, v(t))?

6. In this section we give a result concerning questions 1 and 2.
First we prove two lemmas.

Leyvwa 1. Suppose h(t, 2) is continuous for 0 <t and —oo < 2 < 00,

Then to any numbers uy, v, and iy, > 0 there ewist two functions w(t)
and v(t) determined on {0, %,> such that

(25) w(lo) =y, V() =0, and w(0)=v(0)
and
(26) W) =h(t, (@) for 0Kt

icm
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Proof. Let M(c) = max |h(t,2)]. M(c) is evidently continuous for
[el<Clel

o<ty
—oco< ¢< +oo. Consider the one-parameter family of functions o.(t)

(—oo < ¢ < +o0) defined as follows
Ve(t) = ¢+ (vo—e)tfteP(c) for O LI P(e)y,
De(t) = v for Ple)ta,<it<ty,
where P(¢) =1/(M(e)+1) <1.
Put

o
I(0) = [ h{t, vlt)dt .

I(c) is continnous and we prove that it is bounded also. Indeed, if [¢| > ||
then |v,(t)] < |¢| and
POt to fo
)< [ [ple, vee)|a+ [ nit, 00)[dt < Pe)toM(0) + [ |, vo)las
(] P(e)o 0

to
<to+ [ |B(t, v0)|dt -
[}

If |e| < |oy| then [ve(t)| < |no] and I(e) is bounded by %2 (v,). Hence I(c)
is bounded for all ¢. Now consider the continuous function
J(e) =c+I(c)
Since I(¢) is bounded, im J(¢) = —oo and lim J(¢) = -+ oco. Therefore
C~+—00 c—->+00

the equation
@7 J(e) = u,

(—oo< e < +00).

has at least one solution. Let ¢, be a solution of (27). Put
£
o(l) =ve(t) and  w(t) = o+ [ B(t, vet)dt -
[

Tt is easy to verify that function «(f) and v () so defined satisfy (25) and (26).
Thus lemma 1 is proved.

Lemma 2. Let the function H(t,z,y) be continuous for t>0,
—co< @ < 400, —00 <Yy < +oo. Suppose there ewist functions T'(t,z) of
class C' and h(t, z) continuous for >0 and —oco<z< oo such that

o=T(tz2), t=t

is a one-to-one mapping of half-plane 1 >0, —co <2 < +o00 onto ifself
and that for arbitrary functions (), y(t) satisfying (22) the funmctions
u(t), v(t) obtained by (23) satisfy (24).
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Then T (i, 2) fulfills the following equation

(28) H(tg T(t,w), T, 'D)) = Tyft, w) -+ To(t, u) h(t, v)

for arbitrary w,v and t> 0.

Proof. Let u, v, and ¢, (f, > 0) be arbitrary constants. By Iemma 1
there exist functions (t), v(t) satisfying (24). Let us put

(29) w(t) =T, w() and @)= T v().
Then #(t), y(t) satisfy (22). Indeed, let a*() be a solution of
=Hft, 2%, y(t), a*0)=y(0).

Evidently «*(f) exists in some interval (0,%*). Let u*) be defined by

@¥(t) = T (t, w¥(t)) .

FPunctions o*(t), y(t) satisfy (22), therefore by the assumption concerning
T(t, 2) functions u*(t), () satisfy (24). Hence

w*(t) = h({l,v(t)) and w*0) = 2(0).

The last formulas and the definition of () and v () prove that u*(t) = u(t)
and, moreover, that u*(t) as well as #*(f) may be continued over the
interval <0, %,> and in consequence

z*(t) = x(1) .

Thus x(t), y(?) satisty (22).

Taking now the derivatives of two sides of the first equation of (29)
we have

(30) (8) = Tult, w(t)) + Taft, u(®)) ')
By (30), (22) and (24) we get

Hft, T(t, u(t)), T, v(t

W) = Tuft, w(t) + Taft, w(®) b, 0(t) for >0
and therefore
H(t’ T@, ), I, ‘i))) = Ty(t, w)+ To(t, w)h(t, v)
for t=1t,, w=wu,, V=1,

Bince 1,, %,, o are arbitrary constants, the last formula proves lemma 2
completely. *

Now we prove the following theorem.

icm
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THEOREM 3. Let the functions @(t, z) and v(t,y) be of class C* and
let for every ty> 0 p,(t, y) be not identically zero. Suppose there exist functions
T(t,2z) and h(t,2) of class C* and suppose

Tft,z) #0  for
Further suppose that the ome-to-one mapping

z=T(,z2),

t>0 and —oco<z< +o0.
t=1

carries the half-plane t > 0, —oco < 2 < +co onfo itself as well as any pair
of fumctions x(t), v (t) such that

#(0) = y(0)
into the pair u(t), v

and  @'(t) = plt, 2(3) +v{t, ¥ ()

(t) satisfying the conditions
u'(t) = h{t, v(1)) -

Then the function T(t,z) is linear with respect to z as well as @(t, z)
8 linear with respect to .

Proof. By the assumptions of theorem 3 and by lemma 2 we 1eaa‘n
that T'(¢, 2) fulfills the equation

%(0) =2(0) and

(31) plt, T, w)+vlt, T, v)) = Tdt, w)+Tolt, w)h(t, v)

for any %, v and ¢> 0.
Let us fix t = ¢,. Denote by

(32) 8(n) = p(to, Tk, v))
(33) A(u) = Tyty, u), —plts, T(f, %)) .

Using the above notations, (31) may be rewritten in the following form
(34) s(v) = A (u)r(v)+B(u) .

Because y,(ty, ¥) is not identically equal to zero, therefore s(») is not
constant. Hence the diagram of

7'('[7) = h(tor 'D) ’
B(u) = Ty(ty,

(35) s=8(v), r=rw, —oco<v< too

contains at least two different points. It follows from (34) that the diagram
of (35) lies on the straight line. But the set containing at least two different
points cannot lie simultaneously on two different straight lines, thus

A(w) =const and  B(u) = const .

This and (33) imply that T(t,2) as well as Ty, 2)—o(t, T (1, 2))
does not depend on 2. Hence:

(36) Tt 2) = at), Tdt,2)—p(t, T(t,2) =B,
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and in consequence
(37) T(t,2) = a(t)z+p(t).

By (37) and by the second condition of (36) we get that ¢(Z, ®) is linear
with respect to «. So theorem 3 is completely proved.

7. Remark 1. Notice that if H(t,®,y) = a(t)z+v(f, y), then the

funetion
i

T(t, z) = zexp (f a(t)dt)

0
_ ! ‘
fulfills (28) for any v, if we put h(t,z) = exp(—/ a,(t)dt)zp(t, zexp(fa(t)dt)}.
. 0 0

Hence it follows from theorem 3, if we restrict ourselves to the case when
H(t, @, y) = ¢(t, 2)+p(¢, y), where (t, y) depends essentially on y, that
the answer to question 2 is positive if and only if o(t, ) = a(t)x. Therefore
we may suspect that there does mot exist any theorem analogous to
theorem 2 concerning the general case of the M.P.M.

8. The example we are going to present in this section shows that

the case H(t, #,y) = a(t)z+p(t, y) is not the only one when the answer

tq question 2 is positive; in other words, we give a function H (t, @, )
different from that of the form a(t)@+p(t, y) for which equation (28)
admits a golution.
Suppose
H(t, w,y) = p(x)p(t, y)
where @(x) is continuous and positive for —co < @ < oo, and

+00 °
J dafp(2) = fdm/qo(w) = +oo.

y(t, y) is continuous for 120 and —co<y < oo,
Detine T'(z) as a solution of the equation

(@) =p(Tk), T(0)=0

and put
ht,2) =y(t, T(e) .

Then one can eagily verify that T'(z) and h(t, ) sabisfy the following

equation, the special case of (28),

o(TW)plt, T(v)) = T"(w)h(t, v) .

Therefore, the sequence of successive approximations @m(t) obtained by
the M.P.M. for the differential equation

o' = p(a)yp(t, x)

icm
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such that
T(f) = 9’(“"10“))‘:”@’ mm-—l(t)) ’
Ly(t)—arbitrary function, may be carried by the one-fo-one mapping

o= T(2),

2m(0) = x,(0) (m=0,1,...)

t=1

into the sequence of successive approximations given by the P.M. for
the equation
2 = h(t,2) = pft, T(2)) .

Some of these results have been presented in a talk given by the
author at the Polish Mathematical Society, Krakéw Branch, on January 20,
1959.

The author wishes to thank Professor T. Wazewski for his interesting
discussion and for many valuable suggestions.
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