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On some linear functional equations. II
by J. KoRDYLEWSKEI and M. KuczmA (Krakéw)

Equation of the second order

In the present paper we shall discuss the linear functional equation
of the second order:

] p[P(@)]+ A (v)olf (@)1 + B(z)p(a) = F(z),

where g (x) is the required funetion and f(z), F (=), 4 (), B(x) are given
functions. We shall denote by f¥(«) the k-th iteration of the function fl@),
i.e. we put

fo (a’) =&,
) = 5@, @) = M),

Bquation (1) with constant coefficients 4 and B has been treated by
us previously [2]. It has turned out that it conld be easily reduced to
a system of equations of the first order. We shall prove that it is also
possible in the case of equation (1) with variable coefficients A (z), B ().

Let A(w) be a solution of the functional equation

k=0,1,2, ..

(@) A (@)]A(%) + A (@) A(@) +B(x) =0
and let us put
3) ulw) £ — A (@)—ALf ()] -

We shall prove the following

LemmA 1. Equation (1) is equivalent to the system of equations of
the first order with the unknown functions ¢(x), p(s):

(4) plf@)]—A(@)p(@) =v(@), y[f@)]—pu@)p@) =T(s).

Proof. Supposing that functions ¢(x) and y(x) satisfy system (4),
inserting v(«) from the first of the equations (4) to the second and making
uge of (2) and (8) we get the conclusion that the function ¢(«) satisfies
equation (1). Similarly, if a function ¢(x) satisfies equation (1), then
putting

v (@) £ ¢[f (@)]— A(@)p(x)
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we can easily verify that the two functions p(z), ¥(x) satisfy system (4),
which was to be proved.

In the sequel we shall consider equation (1) under the supposition
that the function f(w) is continuous and strictly increasing in an interval
{a, b>, where a and b are two consecutive roots of the equation

(5) RIOEER

The above lemma enables us to replace the investigation of equation (1)
by the investigation of equations of the first order of the form

(6) plf(@)]—Al@)p (@) = G(a) .

Levma IT. Let f(®) be o real-valued function of the real variable ,
continuous and strictly increasing in an interval (a,b), where a and b
are two consecutive roots of equation (5) and let f(x) > x in (a, b). Let further
A(w) and G(z) be complen-valued functions of the real variable @, continuous
in the interval (@, b), A(%) 5~ 0 in (a, b). Then equation (6) possesses infinitely
many (complex) solutions that dre contimuwous in the open interval (a,b).
If, imoreover, the functions A(x) and G(x) are continuous in the interval
(a,b) (<a, b)), then:

(®) In the case |A(b)|>1 (|A(a)] < 1) equation (6) possesses ewactly
one solution that is continuous in the interval (a, b (<a,Dd)).

(B) In the case |A(b)| <1 (|A(a)]> 1) every solution of equation (6)
that is continuous in thé interval (a,b), is also continuous in the interval
(@, 8> (Ko, 0)). (1)

Proof. The existence of an infinite number of solutions of equa-
tion (6) that are continuous in the interval (a, b) has been proved by us
in [2]. Similarly, the point (B) of the second part of the lemma has been
proved by us in [2]. Thus it remains only to prove the point («) of the
second. part of the lemma.

In [2] we have proved that in the case [A(b)] > 1 (|A{a)] < 1) equa-
tion (6) possesses at most one solution which is continuous in the interval
(a, b> (<a,b)). Using repeatedly the formula

_olf(=)]—G(2)
() = e @
Tesp.

p(@) = Alf@)]plf (@)]+ G[f_l(w)]

(*) Every solution of equation (8) defined in the interval (a, ) may be uniquely
extended onto the interval (a, b). The exact meaning of the assertion (8) is: If a solution
is continuous in (a, b), then the extended solution is continuous in (a,d> {and similarly
for the interval <a, b)). :
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(both can be easily derived from the relation (6)) we obtain that this
unique solution, provided it exists, must have the form

(7 pla)=— > Gr@1
= [1arf(@)]
__G@_ _e[f@ @) B
A@) ~ 2@ A0 @)~ Z@)AF @F@]
or

(8) (@) =@ )]+ 2 @ (@) H Al (@)
i=1

= @[ 7(@)14 Gl @Al T @)]+ GU @A (@) AL (@)] + ..

respectively. We sghall prove that if |A(b)| > 1 then funetion (7) is defined
and continuous in the interval (a, b) and satisfies equation (6). Similarly
one can prove that if |1(a)| < 1 then function (8) is defined and continnous
in the interval <{a,bd) and satisfies equation (6).

So let be |A(b)|> 1. In [3] it has been proved that the sequences
{¥«)} and {f %)} are for every ¢ (a,b) monotonic and

lim ffz) =b, limf*az)=a.
k—o0 k—>o00
Oonsequently for an arbitrary number &> 0 we can find an index K

such that for k> K and @ e {ats,bd, |A[fi(#)]] > M > 1. Moreover
|G{x)] < ¥ and |A(z)| >L> 0 in <a+e¢, b). Thus the series

K o
\1 N N
v—%‘ E: +r=;—;l LKM’_K

is a numerical majorant of series (7). Consequently the latter uniformly
converges in. {a+¢, b) for every &> 0. Function (7) is then continuous
in (a, by and, as one can easily verify, satisties equation (6). This completes
the proof.

Let dy, dg and ¢, ¢; be roots of the equation

(9 #+A(b)yd+B(b) =0,
and
(10) ¢+ A(a)e+B(a) =0

regpectively. We shall prove the following

THEOREM. Let us assume that the function f(x) fulfills the hypotheses
of lemma II and let A(z), B(z) and F(x) be complex-valued functions of
the real variable m, continuous in the interval {a,b), B(x) # 0 in {a, b>.
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Under these hypotheses:

1. Bguation (1) possesses infinitely many (comples) solutions that are
continuous in the open imterval (a, b).

I1. Let us suppose moreover that |dy| = |dy|. Then

19 If |y > 1 and |dy)> 1, then equation (1) possesses ewactly one
solution that is continuous im the interval (a, b).

2° If |dy| <1 and |dy| < 1, then every solution of equation (1) that és
continuous in the interval (a,b) is also continuous in the interval (a,b).

3° If |dy| < 1 and |dy| > 1, then equation (1) possesses infinitely many
solutions that are continuous in the imterval (a, b>.

III. Now let us suppose that || # |e,}. Then

1° If le| <1 and |6y| <1, then equation (1) possesses exactly one
solution that is comtinuous in the interval {a,b).

2° If |ey| > 1 and |6 > 1, then every solution of equation (1) that
is continuous in the interval (a, b) is also continuous in the interval {a,D).

8° If |o] > 1 and |¢;| < 1, then equation (1) possesses infinitely many
solutions that are continuwous in the interval {a,Db).

Proof. I. It has been proved in [4] that under the hypotheses of
the present theorem equation (2) has a solution that is continuous in the
interval (a, b) and fulfills the conditions
(11) M) # 0,

Moy # —~Af 7 @)]  for zela,d).

Consequently, on account of lemma I, equation (1) is equivalent to the
system of equations (4), where the functions A(#) and x(x) are continuous
and different from zero in (a, b), and the first part of the theorem follows
from lemma IIT.

II. When |d;] 5 |da|, equation (2) possesses a solution that is con-
tinuous in the interval (@, b) and fulfills conditions (11) (ef. [4]). Con-
sequently equation (1) is equivalent to the system of equations (4), where
the functions A(w) and u(«) are continuous and different from zero in
(@, b>. Putting @ = b in equation (2) we obtain that A(b) is a root of equa-~
tion (9), say A(b) = d,, and hence by (3) u(b) = d,. Thus assertions 1°, 2°, 3°
follow from lemma II.

III. The proof is quite analogical to the proof of part IL.

Remark I. If the functions 4 (#), B(x) and F(w) are real-valued,
then under the hypotheses of the above theorem equation (1) possesses
infinitely many real solutions that are continuous in the interval (a, b).
This follows from a general theorem on the existence of an infinite number
of (real) solutions continuous in the interval (a, b) for the equation

F(=, 9(2), p[f(@)], p[@)], ..., o[["(@)]) = 0.
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This theorem is to be found in [1]. Similarly, assertions II, 1°, 2° and IIT,
19, 2° will remain valid if the word “solution” is replaced by ‘‘real solution”.
(For II, 2° and IIT, 2° it is quite evident, for II, 1° and III, 1°it follows
from the fact that if a complex-valued function ¢ () satisfies equation (1),
then the real-valued function Regp(x) also satisfies equation (1)). But it
remains an open problem, whether also assertions II, 3° and III, 3° remain
valid for real solutions.

Remark II. It is not quite sure whether the hypothesis |dy| # [dy]
(resp. |6;] = |¢,|) is essential. Although in [4] it has been shown by example
that it |d,| = |d,|, then equation (2) may happen to have no solution
which would be continuous in the interval (e, b>. Namely if we put

(12) A(z) =0
and
(13) B() = — efta@

where o(2) is a suitably chosen real continuous function with the property
a(b) =0 and B is an arbitrary real number, then equation (2) has no
golution which would be eontinuous in (a, b>. Thus the hypothesis

(14) [da] # ||

is esgential for the method of proof of our theorem. Nevertheless this example
does not prove the necessity of assumption (14) for the validity of the
theorem. In fact, if we write g()-L7%(#) in equation (1) with the func-
tions A (z) and B(x) defined by (12) and (13), then it becomes an edua~
tion of the first order and the number of its continuous solutions depends
only on the sign of . Thus in this case assertion IT of our theorem is true,
although assumption (14) is not fulfilled. The gquestion arises whether
this hypothesis can be generally omitted. We are not able to answer
this question.
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