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POLONICI MATHEMATICI
XI (1961)

On the functional equation ¢*(z)= g(x)

by M. Kuczma (Krakéw)

Introduction. In the present paper I give the comstruction of
the general continuous solution of the funectional equation

(1) p™{(@) = g(@)

under the assumption that the given function g(#) is monotonic. o™(x)
denotes here the n-th iterate of the function ¢(2):

@) ==,
P (a) = ple@)], @F M) =g e Ma@)], k=0,1,2,..

TIn paper [6] I have proved that in order to find the general solution,
or the gemeral continuous solution of the equation

o™(x) = glo™@)]

it; is enough to know the general solution or the general continuous golution,
respectively, of equation (1). The general solution of equation (1) has
been given by S. Lojasiewicz [7] (see also [31). The question arises, how
to find the gemeral continuous solution of equation (1). In the present
paper I give a partial solution of this problem (the solution under the
assumption that the function g(w) is monotonie). o

In the particular case, when g(z) = » the general continuous solution
of equation (1) is well known (see e.g. [2], [8]). For odd » the unique con-
tinuous solution of the equation

&) oa) =@

is the function g(x) = =, for even n the unique continuous solutions of
equation (2) are the continuous golutions of the equation

o) =2

{so called involutory functions [1]). Thus in the sequel we shall assume
that g(«)s£&@. The results are contained in three theorems, corresponding
to the three possible cases A, B, O, of the monotonity of the functions
p(x) and g(z) (see the following section).
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Preliminaries. We begin with some definitions.

DerFINITION I. We shall say that a function ¢(x) satisfies equa-
tion (1) in a set ¥ if for each » ¢ B the function g(2) and the iterate pn(x)
are defined and both these functions are equal.

Tt follows from the above definition that if a function p(w) satisfies
equation (1) in ¥, then
(8) p(B)CE.

Similarly, if equation (1) has a solution in B, then
(4) g(E)YCE.

In the sequel we shall agsume that the set B is an interval. This
interval may be open, closed, or one-gide closed; one or both of itg ends
may be infinite.

‘We shall admit also functions assuming infinite values. As the func-
tion g(s) is monotonic in ¥, it can be continued onto the closure & of the
interval E. Thus in the sequel we ghall assume that the function g(w)
is defined, continuous and strictly increasing in a closed interval Z and
that it fulfills condition (4).

In our further considerations the following sets will play an important
part:

I={muzek, gx) =a},
L={nwoech, gz)=u},

IP={moek, glv)=u},
It={m weh, g%x) =a}.

From the monotonity of the funection g(x) it results immediately
LevMA I. Bvery continuous function p(z), satisfying equation (1) in H,
is strictly monotonic.

Since all iterates of an increasing function are increasing functions
and iterates of a decreasing function are increasing or decreasing, ac-
cording to the iterative exponent being even or odd, there are three cases
possible: )

A. ¢(x) increasing, g(x) increasing, n arbitrary.

B. @(x) decreasing, g(#) decreasing, n odd.

C'. ¢(2) decreasing, g(») increasing, n even.

The case O’ can, however, be reduced to a simpler one:

C. ¢(@) decreasing, g(») increasing, n = 2.

In fact, if a decreasing function ¢(») satisties equation (1) with a fune-

Eiion g(w) increasing (and then n must be even), then the function y(w)
=¢*x) is increasing and satisfies the equation

V(@) = (o)

icm
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(case A). Thus having solved eqﬁation (1) in cases A and B it is enough
to give only the solution of the equation

(5) #*(@) = g(=) é
(with the function g () increasing) in the class of the continuous decreasing
functions.

Now we are going to investigate separately the cases A, B and C.

A. p(z)increasing, g(x) increasing, » arbitrary.

At firgt we shall prove the following

Levma IT. If ¢(x) i o continuous and inecreasing solution of equa-
tion (1) in B, then I = {x: v ¢ B, p(z) = x}.

Proof. The inclusion {#:we¢F, p(®) =2} CI is evident. In order
to prove the converse inclusion let us suppose that for a certain z, ¢ B
we have @(xy) # @y, e.g.

(6) @ (@) > @, .

Since the function () is strictly increasing in B, it follows from (6) that
v=0,1,2,..

Consequently ¢*(xz,) #= @, for » =1, 2, ... and in particular g(z,) = ¢*(,)
# m,. Hence the statement of the lemma follows immediately.

The set #—1I is a sum of at most an enumerable number of disjoint
intervals. These intervals are open, possibly with the only exception
of the intervals possessing a common end with the interval E. Solutions
of equation (1) will be constructed in each of these intervals separately.

Let (a, b) be one of these intervals and let us suppose that « and b
are elements of the set I*. Moreover let us agsume that g(z) > @ in (a, b)
(if g(w) < @, the considerations follow similarly). We shall prove

LemyMa III. If @(2) is a continuous and increasing solution of equa-
tion (1) in E, then
) @ ((“5 b)) C(a, ).

Proof. If neither a nor b belongs to I, then (a, b) = F and (7) follows
from (3). If a eI and b eI, then on account of lemma IT p(a) = a and
¢(b) = b. Ag has been proved in [5], in such a case ¢ {(a, b)) = (a, b), which
in particular implies (7). If a ¢ I and b € I, then ¢(b) =b and a is an end
of the interval . Then we have by (3) ¢(a) > a, whence relation (7)
follows easily. In the case when aeI and b¢ I, we argue analogously.

Now we shall give a construction of an arbitrary continuous and
strictly increasing solution of equation (1) in (a4, b) when a and b belong
to I*. Let @, be an arbitrary point of the interval (a, b) and let us choose
points @y, ..., Xy—1 in such a manner that

(8) By < By < v < By < G(@0)

@+ (@) > ¢'(a)  for
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We put further
(9) Ban=g®), r=0,x1,£2, ..

As ha&been proved in [5], the sequence z, (v > 0) is increasing and con-
verges to b, the sequence .., (v = 0) is decreasing and converges to a.

Lot @(@), -, Pu-a(®) be arbitrary functions which are defined, con-
tinnous and strictly increasing in the intervals <@y, @1, ..., {Bn-2, Tn-r)
respectively and fulfill the conditions
(10) @) =@, QiB) =iz, t=1,..,n—1.

We put

(A1) pronle) = s [ sl (pinms(a) )]}
%€ Byppn—1s Bpny , ¥ =0, k1, £2,..

We shall prove that each function ¢,(#) is defined, continuous and strictly
increasing in the interval (@,-., > and

(12) ‘}7’(99'«—1) =y, ‘Pv(wu) = Byp1+

The proof follows by induction. For » = 1, ..., »—1 it is s0 by hypothesis.
Let us suppose that the functions ¢,(#) are defined, continuous and
strictly increasing in the intervals {w,_., ,> respectively, and that rela-
tions (12) hold for » = 1, ..., p = n. Consequently, all the functions ¢; (@),
i=p—n+2,..,p are defined, continuous and strictly increasing in the
intervals {@p—niz, Tp—n+sDs -y {&p, Bpy1> Tespectively and assume values
from the intervals {Zp—nt1, Tp-ntads s Hp-1, Tpp Tespectively. Thus the
function
Ponia gatnial-- (75 (@) )]

iz defined, continuous and strictly increasing in the interval (&, @p41)
and its values remain in the interval {Zp—n+1, Tp-n+2y C (@, ). Consequently
the function @,.4(2) is (by means of relation (11)) defined, continuous and
strictly increasing in the interval (&, #p4:>. Using succesively relations
(12) for » = p,...,p—n+2, and then making use of relation (9), we
obtain that (12) bolds also for » = p+1.

Setting in relation (11)

&= <Pv+n—1[--- (%+2(%+1(1J))) ]
we obtain (writing again @ in the place of ¥)
(13) Brtftotnai o (Brralpena(@) . ]} = o(@)

Baging on relation (13) we can (quite similarly as above) prove by in-
duction also that for » < 0 each function ¢(x) is defined, continuous
and strictly increasing in the interval <,-., #,> and that relations (12)
hold. ‘
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Now let us put
(14) @) Eafm) for zelBo1,m).

The function ¢(#) is by relation (14) defined in the whole interval (a, b).
It is obvious that ¢(2) is continuous and strictly increasing in (a, b). It
follows from (13) that @(z) satisfies equation (1).

Since the function ¢(#) is increasing, we have by (12)

(15) li_lflb o(x) =b, il_’n; p(e) =a.

Now we shall prove that taking all possible systems of points
@y vy Ln1, Tulfilling condition (8), and all possible systems of functions
@), ...y Pu—a(w) which are defined, continuous and strictly increasing in
the intervals <@y, @;),...){Bn—2, Tn—1) respectively, and fulfill relations (10),
we obtain by means of relation (14) all continuous and strictly inereasing
golutions of equation (1) in FE, restricted to the interval (a,bd). Let ¢(z)
be an arbitrary solution of equation (1) in F that is continuous and strictly
increasing. The assumption g(#) > » in (@, b) implies the inequality

plx) > i_n (a, b).
Hence it follows on account of lemma IIT that the sequence
w,ng'(mn) , v=41,4+2,..,
fulfills relations (8) and (9), and that the functions
olw) Lp@) for well, s>, i=1,..,0—1,

are defined, continuous and strictly increasing in the intervals <@, %3 ...,
{n—2, Tpn_y) TEspectively, and fulfill condition (10). Moreover, it is easy
to prove that if two functions, ¢(x) and v(x), both satisfy equation (1)
in B and

p(@) =y for zelm, g(@),

then they have to coincide in the whole interval (a, b). Hence it follows
that formula (14) defines the general continuous and strictly increasing
solution of equation (1) in (a, d).

It remains to be investigated the case, when one of the ends of the
interval (@, b) does not belong to I*. If a ¢ I*, and beI*, then we may
proceed quite analogously as before, assuming @, =a and confining
ourselves to » > 0 only. Similarly, if @ € I*, but b ¢ I*, we may also proceed
analogously, assuming this time @, = ¢~(b) and confining ourselves to
» < n. Lastly, the case o ¢ I* and b ¢ I* cannot occur. In fact, if a¢ I*
and b ¢ I*, then necessarily <{a, by = E. But then no point of the inter-
val § would belong to I* which contradicts condition (4).
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From the above considerations follows

TeRoREM L. If the function g(w)zEwx s defined, continuous and
strictly increasing in an interval B and fulfills condition (4), then equa-
tion (1) possesses infinstely many solutions p(w) that are defined, continuous
and strictly increasing in B. We can obtain all these solutions, constructing
in the above described manner (formula (14)) continuous and strictly in-
creasing solutions independently in each of the intervals of the set H—I
and putting o(z) = for xel. Relations (15) guarantee that so obtained
functions are continuous in the whole interval B.

B. ¢(x) decreasing, g(») decreasing, » odd.

The procedure in this case is somewhat analogous to that of the
case A. Therefore we confine ourselves to a sketch of this procedure only,
omitting some oppressive details.

The set I = I* contains now only a single element = c¢. But in
the present case the sets I, and IF will play an analogous part as the
sets I and I* in the case A. In particular we shall prove the following

Lemva IV. If p(z) is a continuous, strictly decreasing solution of
equatiors (1) in E, then

(16) pl@)=g@) for wel,.

Proof. Let ¢(z) be a continuous and strictly decreasing solution of
equation (1) in E. Then the function w(w)g(pz(m) is a continuous and
gtrictly increasing solution of the equation

yH{@) = g¥(x)
in B, in which the function ¢?(x) is increasing. Thus it follows from lemma IT
that
p(x)=2 for wmel,.
Hence we have
@) =g(@) for wel,,

whence, according to (1), relation (16) follows immediately.

Thus it is enough now to construct the solution of equation (1) in
the set F—1T,. The set B—1I, is a sum of at most an enumerable number
of disjoint intervals. These intervals are open, possibly with the only
exception of the intervals possessing a common end with the interval H.
Solutions of equation (1) will be constructed in suitably chosen couples
of these intervals separately.

Let (@, b) be one of the intervals of the set H—1I, and let us assume
that @ and b are elements of the set I¥. Let us assume moreover that
¢*(®) > o in (a,b). The interval (g(b), g(a)) is then also ome of those of
the set B—1I;, g(b) and g(a) belong to I¥ and ¢%a) < in (g(b), g(a).

@ ©
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Let @, be an arbitrary point of the interval (a, b) and @, an arbitrary
point of the interval (g(x), gX(2,)). Let us choose points @, ..., o1 in
such a manner that

Lo << By < By < oo < By < G(24)
Ly > Ly > L5 > oo > Bpee > (W) , (1)

and let the sequence z, be defined by formula (9). The sequence x, (v = 0)
ig increasing and converges to b, the sequence #_,, (v > 0) is decreasing
and converges to a. Similarly the sequence @o4; (v > 0) is decreasing
and converges to g(b), the sequence x_s,—; (» > 0) is increasing and con-
verges to g(a).

Let @), ..., Pn-a(®) be arbitrary functions which are defined, con-
tinnous and strictly decreasing in the intervals (@, %), %3, £, .-+,
{@n-8y Tn—1y Lny Bn—2) respectively, and fulfill the conditions

amn

Qi(@-1) = By, @l@1) = Biye, G=1,..,n—1.

Turther, let the sequence of functions @ x), v=10, &1, £2,... be
defined by formula (11). It can be easily proved (quite analogously as in
the case A) that each function ,(#) is defined, continuous and strictly
decreasing in the interval {(z,—i, #4+1> O (By11, L1 (according to » being
odd or even) and that

(18) qjv(wﬂ—l) =y 4 ‘pv(wv+l) == Tyt2 .
Now we pub
(19) p@)Lp@) for wzed,,

where A, = <(®,_y, @,+1) for 0dd v and 4, = (%,41, %2> for even ». The
function @(#) is by relation (19) defined in the whole set A = (a, b) v
v (g(b), g(a)). It is obvious that ¢(x) is continuous and strictly decreasing
in A. Tt follows from relation (18), which is equivalent with relation (11),
that ¢(x) satisties equation (1). Quite similarly, as in the preceding case,
one can prove that in this manner all solutions of equation (1) in ¥ re-
stricted to the set A have been obtained.
Since the function ¢(w) is decreasing, it follows by (18) that

E}}}ﬂ(w) =g(a), HM%) =g(b),

(20) lim p(z) =a, lim p(x) =0b.
w-rp(a) z—+g(b)

The cages when @ or b is an end of the interval B must be thoroughly
investigated. At first we shall prove

(*) Since the function g(w) is decreasing, it follows from the condilion g*xz) > =
that g™4x) > g(x) for = € (@, b); thus the interval (g(®a)» gan)) is ot empty. Moreover

@y < g w,) implies g (xy) > %o. Consequently conditions (17) can be realized. (Let us
notice that the function g *(z) is defined in (@, d) because a and b belong to I}.)
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LemMA V. If one of the ends of the interval E belongs to I3, then so
also does the other.

Proof. Let a < g be the ends of the interval F and let us suppose
that e I3:

glg(a)] = a.

g(a) must be the second end of the interval H:
g(a) =§,

for otherwise for @e(g(a), f) the function g(#) should assume values
less than @, which contradicts relation (4). Consequently, g(8) = ¢*a) =
and ¢¥B) = ¢g(a) = §, which was to be proved.

Now let us suppose that a is an end of the interval F (the discussion
of the case when b is an end of the interval B follows similarly and leads
to similar conclusions). We must distinguish two subcases:

1. aeIf. Then g(a) has to be the second end of the interval E. The
solution of equation (1) in (a, b) v (g g(a)) is given by formula (19).
But if a ¢ B, then according to (16) (a) = g(a) and on account of (3)
¢(a) e E. Thus the interval F must be on both sides closed, or on both
sides open.

2. a¢ I$. Let us denote by g the second end of the interval H. Of
course, 8 ¢ I¥. Moveover let us assume for the present that the interval B
is closed. We shall prove

Levmma VI If a ¢ IF and if there exists a solution o(z) of egquation (1)
continuous and strictly decreasing m E, then g(a) = and g(fB) + a.

Proof. Let us suppose that ¢(a) = . Then g(8) > a, for otherwise a
should belong to I3. Since ¢*(z)— m has a constant sign in <a, b) and

g%a) = glg(a)] = g(B) > a,
2 3 b
which implies go>a o <b,
w)>a in  <a,d).

Consequently the sequence ¢*(a) is strictly increasing, and thus gn—%(a) > a.
Hence ¢"(a) < p(a). From relation (3) the inequality ¢(a) < f results.
Hence we have

=g(a) =g™a) <gp(a) < B,
which is impossible. Oonsequently g(a) % . Similarly one can prove
that g(B8) + a.

In order to build the continuous solution of equation (1) in the set
<a, b) w (g(b), B> we may adopt the above described procedure, choosing
xy=aand 2, € (g(a), B>. We must show that it is possible to choose points
@ay <y Tn—y 80 that relations (17) were fulfilled. It follows from lemma VI

icm

©

On the functional equation gn(z) = g(x) 169

that the interval (g(z
g(@,) > g(B), whence g(wl)
@y > g ().

But we must choose the points @, ...
besides relation (17) also the eondition

, B> is not empty. The inequality , < 8 implies
a = %,. On the other hand we have evidently

, %p—1 in such a manner that

(21) o1 < 9 (6)

may be fulfilled (3). In relation (21) the equality is possible if and only
if g(B) < g(@y), ie. if o < B

Thus we may construct the solution of equation (1) with the aid of
formula (19) for » > 0 and for odd » < 0 till we reach the point » = 8.
If B> @oyys1, a0d @_,—; is not defined, then we put in formula (19)
A_, = (B_ys1) By for even v < w+1, A 1= (B_y41, >, and 4., =0
for even v > % +1 and for odd »> 0.

Now, if the interval E is not closed, we can continue the function g(x)
onto £ and then construct the solution of equation (1) in E. If at this
construction we choose 4, = f, i.e. p(a) = §, then we must take o, < g(8),
ie. ¢g"Ya) < g{(B), which i3 equivalent to the relation ¢(B)> a. Thus
we have in this case

Oonsequently, if interval E is open or closed on the right, we shall obtain
the solution of equation (1) in B by the restriction of the solution of equa~
tion (1) in & to the interval B. But if B = <a B), then, according to con-
dition (3), we must choose %, 7 f.

Similarly, if we choose @,—, = g(f) {and then already necessarily
@, # B), which implies ¢(8) = a, we shall have

p(H) = <a, p) .

Consequently, if the interval B is open or closed on the lefs, we shall
obtain the solution of equation (1) in E by the restriction of the solution
of equation (1) in & to the interval E. But if B = (a, §), then, according
to condition (3), we must choose Zn—1 # ¢(B)-

Gathering the above considerations, we obtain the following

TaworeM II. If the function g(x) is defined, continuous and strictly
decreasing in an interval B, ¢*@)=£» in B, and if condition (4) and one
of the following conditions is fulfilled:

1. the ends a and B of the interval B both belong to If and the interval E
is either on both the sides closed, or open;

(*) This follows from the fact that if ¢ () is a monotonic solution of equation (1),
then aceording to ( :p(/;‘ > a, and hence (in view of the fact that the function ¢" ()
is increaging) g(B) = ¢"(B) = ¢"Ma).
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2. neither of the ends a and p belongs to I¥, g(a) < B, g(B) > o;
then equation (1) possesses infinitely many solutions p(w) that are defined,
continuous and strictly decreasing in E. We can obtain all these solutions,
constructing in the above described manner (formula (19)) continuous and
strictly decreasing solutions independently in each couple of the corresponding
intervals of the set B—1I, and putting ¢(x) = g(x) for = ¢ I,. Relations (20)
guaraniee that so obtained functions are continuous in the whole interval B.

If the relation g¥(z) = @ holds identically in E and E is on both sides
closed or open, then equation (1) has exactly one solution defined, continuous
and strictly decreasing in K:

T oel@)=g().

C. p(2) decreasing, g(») increasing, n = 2.

As we have shown in the beginning of this paper, looking for the
decreasing solutions of equation (1) with the function g(#) increasing,
we may confine our considerations to equation (5).

For an arbitrary point ¢ ¢ I we shall denote by 4, and B, respectively
the sets

AL wnel*, < e}, Bcg{m:msl*, @ =c}.

DerFINITION IT. A point cel will be called semiregular if there
exists a function f(x), defined and strictly decreasing on the set A, and
such that

(22) f(4,) =B,.

The set E—1 is a sum of at most enumerable number of digjoint
intervals. These intervals are open, possibly with the only exception of
the intervals possessing a common end with the interval H.

Let ¢ e I be a semiregular point and let f(z) be a decreasing function,
fulfilling condition (22). Further, let a and b be two consecutive elements
of the set A4,. It iy evident that then f(b) and f(a) are two consecutive
elements of the set B,.-

DEFINITION IIL If (@, b) is an interval of the set B—I and a eI*,
b e I*, then the interval (f(b), f(a)) will be called conjugate to (a, b) by the
function f(#). If a ¢ I* or b ¢ I* (then a resp. b is an end of the interval B),
then by the interval conjugate to (a, b) by the function f(x) will be meant
the other of the intervals of H—1I having a common end with the inter-
val H. '

DepmvITION IV. A semiregular point ¢ I will be called regular, if
there exists a function f(s), defined and decreasing in the set 4, such
that relation (22) is fulfilled and in intervals conjugate by the function ()
the expression g(z)—2 has a converse sign. Such a function f (@) will be
said to map regularly” the set .4, onto B,.

icm®
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It is easy to show that if ¢(x) is a continuous, strietly decreasing
solution of equation (5) in E, then the point ¢ such that p(e) = ¢ is a re-
gular point of the set I. Thus the existence of a regular point in the set I
is a mecessary condition of the existence of the edntinuous and strictly
decreasing solution of equation (5) in Z.

Solutions of equation (5) will be constructed in the couples of conjugate
intervals of BE—1. So let ¢eT be a regular point, f(z) a function that
maps regularly A, onto B, and let (a, b) be an interval of E— I. Moreover
we suppose for the present that a and b belong to A,. Then the interval
conjugate to (a, b) by f(a) is (f(b), f(a)).

Let be e.g. g(z) > in (a, b). Then g(2) <  in (f(8), f(a)). As has
been proved in [4], the functional equation

(23) plo(@)] = gly(=)]
has infinitely many solutions ¢ (#) that are continuous in the interval (@, b)
and assume values from the interval (f(b), f(a)). Namely, for an arbitrary

function wy(#) which is defined, continuous in the interval oy 9 (@)D
and fulfills the conditions

wl(@) € (f(0), (@) for @ e<m, g(a0),

ol g (20)] = glwol@)] ,
there exists a function (), defined and continuous in the interval (a, b),
assuming values from the interval (f(b), (@), satisfying equation (23)
and such that y(x) = yy(@) for & € <{zy, g(m,)p. It is easy to verify that
if we choose the function y(x) strietly decreasing in <@, g(w)>, then
the function y(«) will be strictly decreasing in (a, b) and will fulfill the
conditions

(24) limy(e) =7(b), limy(e)=7/(a).
z-b -0

Consequently equation (23) possesses infinitely many solutions w(z) that
are defined, continuous and strictly decreasing in the interval (a, b) and
fulfill conditions (24).
Let y(x) be such an arbitrary solution of equation (23). We put
(@) for wel(a,bd),
(25) pla) ) ; .
pg@)] for we(f(b),f(a) .
The function () is defined, continuous and strictly decreasing in the
set (a,d) w (f(b), f(a)) and fulfills the conditions
limp(e) =f(0), Ime()=7/(a),
(26) z—b T->a
lim p(2) =0, limg(z) =a.
z~+1(b) z—~f(a)

‘We shall show that ¢(x) satisfies equation (5).
Annales Polonici Mathematici XY 12
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Tet us take an arbitrary @ e (e, b). Then ¢(x) =p(®)e (f(b),j(a)),
Oonsequently
#@) = gly(@)] = v {gly @)},
whence by (23)

o) = v ylg(@)]} = g(@) .

Now let us take an ariaitrary Te (f(b), f(a)). Then p(z) = y~Yg(x)] € (a, b).
Consequently
o) = ey @]} =vs@])} =g(@) .

Thus the function ¢(z) actually satisfies equation (5).

We supposed that both @ and b belong to 4,. The case when a and b
belong to B, can be reduced to the former by taking the interval con-
jugate to (a, b) instead of (a, b). Thus only the case remained to be con-
sidered when @ or b iz an end of interval E and does not belong to I*.
‘We shall prove

LemMa VIL If equation (B) possesses o continuous and strictly de-
creasing solution ¢(x) in B, then either both the ends of the interval B belong
to I*, or none do.

Proof. We may assume that the interval B is closed, for otherwise
we can continue the function p(x) onto E. Let a < 8 be the ends of the
interval B and suppose that feB,. This means that
(27) P =8.

Since the function ¢ (x) is strictly decreasing in B and fulfills condition (3),
the equality ¢(x) = f# may be realized in # only for # = a. Thus we have
by (27) .

(28) p(f)=a and ga)=4,

whence g(a) = ¢¥0o) = a and a4, C I* Similarly one can prove that
if aed,, then feB..

COROLLARY. It results from relations (3) and (28) that if the ends of
the interval B belong to I*, then equation (5) may have a continuous and
strictly decreasing solution in B only if the interval B is either open, or closed.

Now we shall investigate the case when a ¢ 4.,. Then a is an end
of the interval E; let # be the second end of H. Thus (f(b), B> is the in-
terval conjugate to (a,d). From the relation a¢ 4, and condition (4)
we obtain the inequality g(a)> a. Thus g(#) > # in {a, d) and g(o) <
in (f(b), B>.

We can construct solutions y(®) of equation (23) as above, assuming
2, = a and p,(a) € {g(B), B>. We define the solution p(») of equation (b)
by the formula

(29) o) & p(®) for ®@ela,b),

T lvie(@)]  for we(f0), ).
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If p(a) =y(a) = B, then
P(B) =y [g(B)]>yUp) =a,
for the function y~Y(w) is decreasing and g(B) < . And if g(a) =y(a)
= ¢(f), then
B =vgB]l=a.

Hence it follows that if the interval E is not on the both sides closed,
we obtain the solution of equation (5) in the set F L B ~ {<a, b) u ({(b), A}
by the restriction of the function ¢(x), defined by formula (29), to the
set F, however under the condition that if F = <a,d) w (f(b), f), then
we must choose p(a) = yy(x,) # §, and if F = (a,b)u (f(), B>, then we
must choose @(a) = () # g(B).

Thus we have defined the solution ¢(z) of equation (5) in the set
E—1. Now, for eI we put

fley  for wed.~E,
(30) pl@) e for w=c,
fiz) for zeB,AH.

It is easy to verify that if both the ends of the interval B belong to I*
and ¥ is either open, or closed; or if neither of the ends of the interval E
belongs to I*, then the function ¢(x) defined by formula (30) is decresaing
and satisfies equation (5) in I.

Now we ghall prove that every continuous and strictly decreasing
solution ¢(x) of equation (5) in B can be expressed with the aid of for-
mulae (30) for x € I, and (25) or (29) for # € #—1I. The former assertion
is a consequence of the fact that the point ¢ such that ¢(¢) = ¢ is a regular
point of the set I and the function @ () maps regularly the set 4, onto B,.
Moreover, if we put

f@)Lo@ for wed,nB,
then we have by (5) for xe Bon F
p(@) = ¢ g(@)] = ¢7Y(w) = f=).

To prove the second assertion let us notice that on account of the
monotonity of the function p(x) we have for @ e (a, b)

(@) € (p(b), p(a) = (f(b), f(a)

where @ and b are two elements of the get 4,. From the relation

P} = p[p*(@)] = plo(@)]
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it follows that every solution of equation (5) satisfies also equation (23).
We have further by (5)
p(@) = g ()],

whence it follows that if two solutions of equation (B) are identical in the
interval (a,b), then they are also identical in the interval (1), f(a).

Now we need only to show that if the ends « and § of the interval B
do not belong to I*, then

(31) p(a) e <g(B), B>
The inequalities
(32) ple)<f and og(f)=e

follow from condition (3). We have further from the second of inequa-
lities (32)

(33) 9(8) = ¢*(B) < ¢(a).

Relations (32) and (33) imply (31).

Thus we have the following

TaRoREM IIL. If the function g(x) is defined, comtinuous and strictly
increasing in an interval B, if the set I contains at least one regular point
and if condition (4) and one of the following conditions is fulfilled:

1. the ends of the interval E both belong to I* and E is either open, or
closed;

2. neither of the ends of the interval B belong to I*;
then equation (B) possesses infinitely many (%) solutions (x) that are defined,
continuous and strictly decreasing in’ B. We can obtain all these solutions,
comstructing continuous and strictly decreasing solutions independently in
each couple of the conjugate intervals of the set B — I (formulae (25) and (29))
and defining the function @ (x) for ® e I with the aid of formula (30). Relations
(26) guaraniee that so obtained functions are continuous in the whole interval E.
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Note added in proof. Recently we have learned that equation (1) has been
investigated also by P. I. Chajdukow (II. M. XajixykoB, O6 omwcxameu gynxyud no
3adannott umepayuu, Y4. san. Byparck. roc. mex. uH., Beim. 15 (1958), p. 3-28. See Pedepa-
tueHbn JKypHan, Martematuxa, (1961) 9B, p. 69). Unfortunately the paper by Chajdukow
is not available for us, so we have not been able to determine what exactly has been
proved in it.
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