

ANNALES POLONICI MATHEMATICI XI (1961)

Concerning an expansion formula for a type of integrals

by LEETZE C. HSU (Changchun)

The object of this paper is to investigate some conditions ensuring the validity of an expansion formula for integrals of the form

$$I(\lambda) = \int_{0}^{c} \Phi(\lambda t) f(t) dt,$$

where c may be finite or infinite, $\Phi(t)$ is a real piecewise continuous function defined on $[0, \infty), f(t)$ is a function having derivatives of all orders, and λ represents a positive parameter whose value is often very large in practical problems. Finally, a certain approximation method for evaluating $I(\lambda)$ will be sketched.

1. In what follows we always assume that the Laplace transform $\Psi(s)$ of the function $\Phi(t)$ has an abscissa of convergence $s_c \leq 0$. Evidently this assumption is satisfied by many familiar functions of practical importance, e.g. $\Phi(t) = e^{-t}$, $\Phi(t) = e^{-t}$, $\Phi(t) = \cos t$, $\Phi(t) = \sin t$, $\Phi(t) = (\sin t)/t$ (t > 0), $\Phi(t) = J_0(t)$, $\Phi(t) = J_1(t)$ (the Bessel functions), etc.

First let us prove the following:

THEOREM 1. Let $f(t) = \sum_{0}^{\infty} c_n t^n$ be an entire function such that both $\Phi(\lambda t) f(t)$ and $e^{-st} |\Phi(\lambda t)| \sum_{0}^{\infty} |c_n| t^n$ are integrable (in the sense of Riemann) over $[0, \infty)$, where s > 0 is arbitrary. Then

$$(1) \qquad \int\limits_{0}^{\infty} \varPhi(\lambda t) f(t) \, dt = \lim_{s \to 0+} \sum\limits_{0}^{\infty} \frac{1}{n!} (-1)^n \varPsi^{(n)}(s) f^{(n)}(0) \left(\frac{1}{\lambda}\right)^{n+1}.$$

In particular, if $|\Phi(\lambda t)| \sum_{n=0}^{\infty} |c_n| t^n$ is integrable over $[0, \infty)$, then

(2)
$$\int_{0}^{\infty} \Phi(\lambda t) f(t) dt = \sum_{0}^{\infty} \frac{1}{n!} (-1)^{n} \Psi^{(n)}(0) f^{(n)}(0) \left(\frac{1}{\lambda}\right)^{n+1}.$$

Proof. For each fixed $\lambda>0$ and $s\geqslant 0$, it is easily verified that the series $\sum_{0}^{\infty} c_n \Phi(\lambda t) t^n \cdot e^{-st}$ converges uniformly for all values of t in any finite interval [0,R]. Moreover, the integrability condition imposed on $e^{-st} \sum_{0}^{\infty} |c_n| |\Phi(\lambda t)| \cdot t^n$ ensures that the general theorem for term-by-term integration is applicable to the case of the following (with s>0)

(3)
$$\int_0^\infty \left\{ \sum_n^\infty c_n \varPhi(\lambda t) t^{n_i} \cdot e^{-st} \right\} dt = \sum_n^\infty \int_0^\infty c_n \varPhi(\lambda t) t^n \cdot e^{-st} dt.$$

By the analytic character of the Laplace integral $\Psi(s) = \int_0^\infty e^{-st} \phi(t) dt$, we know that $\Psi(s)$ is analytic for $s > 0 \ge s_c$, and we have (with s > 0)

(4)
$$\mathcal{Y}^{(n)}\left(\frac{8}{\lambda}\right) = \int_{0}^{\infty} \Phi(\lambda t) (-\lambda t)^{n} e^{-st} d(\lambda t) .$$

Consequently we get, by making use of (3),

$$\lim_{s\to 0+} \sum_{0}^{\infty} \frac{1}{n!} (-1)^n f^{(n)}(0) \Psi^{(n)} \left(\frac{s}{\lambda}\right) \left(\frac{1}{\lambda}\right)^{n+1} = \lim_{s\to 0+} \sum_{0}^{\infty} \int_{0}^{\infty} c_n \Phi(\lambda t) t^n e^{-st} dt$$

$$= \lim_{s\to 0+} \int_{0}^{\infty} \Phi(\lambda t) f(t) e^{-st} dt = \int_{0}^{\infty} \Phi(\lambda t) f(t) dt.$$

Here the last equality is actually obtained by the analogue for integrals of Abel's theorem on power series. In fact, the integral $\int\limits_0^\infty \varPhi(\lambda t) f(t) \, e^{-st} dt$ is uniformly convergent in $0 \leqslant s \leqslant \delta$ ($\delta > 0$) under the assumption that $\varPhi(\lambda t) f(t)$ is integrable over $[0, \infty)$. Hence we have shown that the left-hand side of (1) can be deduced from the right-hand side.

Moreover, if $|\Phi(\lambda t)| \cdot \sum_{0}^{\infty} |c_n| t^n$ is integrable, so is $\Phi(t) \cdot t^n$ for every $n \ge 0$, and consequently the relations (3) and (4) are valid for s = 0. Hence, using (3) and (4) with s = 0, we may again deduce the left-hand side of (2) from the right-hand side.

To see that the integrability conditions concerning $e^{-st}|\Phi(\lambda t)| \cdot \sum_{0}^{\infty} |c_n| t^n$ and $\Phi(\lambda t) \cdot f(t)$ do not imply each other one needs only to consider the examples

$$\Phi(\lambda t) = \sin(\lambda t), \quad f(t) = e^{-t};$$

 $\Phi(\lambda t) = \sin(\lambda t), \quad f(t) = 1.$

$$\int\limits_0^\infty e^{-\lambda^2\ell^2}\cos t\,dt = \frac{\sqrt{\pi}}{2\lambda}\sum_{k=0}^\infty \frac{1}{k!} \left(\frac{-1}{4}\right)^k \left(\frac{1}{\lambda}\right)^{2k} = \frac{\sqrt{\pi}}{2\lambda}\,e^{-1/4\lambda^2}\,,$$

which is known to be also obtainable by use of Cauchy's residue theorem,

COROLLARY. Let the Laplace transform of $|\Phi(t)|$ have a non-positive abscissa of convergence. Then the formula (1) is valid for any entire function f(t) of finite order $\varrho < 1$ such that $\Phi(\lambda t)f(t)$ is integrable over $[0, \infty)$.

Proof. Since the entire function $f(t) = \sum_{0}^{\infty} c_n t^n$ is of finite order ϱ , so is the function $g(t) = \sum_{0}^{\infty} |c_n| \cdot t^n$ (see, e.g. Titchmarsh [6], § 8.3). Consequently we have $g(t) = O\left(\exp\left(t^{\varrho+\varepsilon}\right)\right)$ $(t\to\infty)$ for every positive value of ε . Take ε so small that $\varrho+\varepsilon<1$. Then $O\left(\exp\left(-st\right)\cdot\exp\left(t^{\varrho+\varepsilon}\right)\right) = O(e^{-\sigma t})$ with $0<\sigma< s$. Hence it follows that $e^{-st}|\varPhi(\lambda t)|g(t) = O(e^{-\sigma t})\cdot|\varPhi(\lambda t)|$ is integrable over $[0,\infty)$. The corollary is therefore implied by Theorem 1.

We have not yet known whether the condition $\varrho < 1$ of the corollary can be improved to $\varrho \leqslant 1$. The following result seems sharper, though it does not give a complete answer to the question just mentioned.

Theorem 2. Let both the Laplace transforms of $\Phi(t)$ and $[\Phi(t)]^2$ have non-positive abscissae of convergence. Then the formula (1) is valid for any entire function $f(t) = \sum_{n=0}^{\infty} c_n t^n$ such that $\Phi(\lambda t) f(t)$ is integrable over $[0, \infty)$ and that $c_n = O((n \cdot \gamma_n)^{-n})$ with γ_n increasing to $+\infty$ as $n \to \infty$.

In the statement of Theorem 2 the number γ_n may tend to $+\infty$ very slowly with n, e.g. $\gamma_n = \log n$, $\gamma_n = \log \log n$.

Proof. It suffices to show that, for each fixed s > 0, we have

(5)
$$\int_{0}^{\infty} \boldsymbol{\Phi}(\lambda t) f(t) e^{-st} dt = \sum_{0}^{\infty} \frac{1}{n!} (-1)^{n} \boldsymbol{\Psi}^{(n)} \left(\frac{s}{\lambda}\right) f^{(n)}(0) \left(\frac{1}{\lambda}\right)^{n+1}.$$

By Abel's method or the second mean-value theorem we evidently have

(6)
$$\int_0^\infty \Phi(\lambda t) f(t) e^{-st} dt = \int_0^N \Phi(\lambda t) f(t) e^{-st} dt + e^{-sN} \cdot \xi_N,$$

where N > 0 and

$$\inf_{N\leqslant x<\infty}\int\limits_{N}^{x}\Phi(\lambda t)f(t)\,dt\leqslant \xi_{N}\leqslant \sup_{N\leqslant x<\infty}\int\limits_{N}^{x}\Phi(\lambda t)f(t)\,dt\,,$$

so that $\xi_N = o(1) \ (N \to \infty)$.

Notice that $\Phi(\lambda t)f(t) = \sum_{0}^{\infty} c_n t^n \Phi(\lambda t)$ is uniformly convergent in any finite interval [0, N]. Thus we have

(7)
$$\int_{0}^{N} \Phi(\lambda t) f(t) e^{-st} dt = \sum_{0}^{\infty} \int_{0}^{N} c_{n} t^{n} \Phi(\lambda t) e^{-st} dt$$
$$= \sum_{0}^{\infty} c_{n} \cdot \int_{0}^{\infty} e^{-st} t^{n} \Phi(\lambda t) dt + \sum_{0}^{\infty} c_{n} \cdot \delta_{n} ,$$

where the convergence of $\int_0^\infty e^{-st}t^n\Phi(\lambda t)\,dt$ is ensured by the analyticity of the Laplace transform (cf. (4)), and δ_n is defined by

$$\delta_n = -\int_N^\infty e^{-st} t^n \Phi(\lambda t) dt \qquad (n = 0, 1, 2, ...).$$

We now proceed to prove $\sum_{0}^{\infty} c_n \cdot \delta_n = o(1)$ $(N \to \infty)$. By use of Buniakowski's inequality and Stirling's formula we may estimate $|\delta_n|$ as follows

$$\begin{split} |\delta_{n}| & \leqslant \Big(\int_{N}^{\infty} e^{-st} t^{2n} dt\Big)^{1/2} \Big(\int_{N}^{\infty} e^{-st} [\varPhi(\lambda t)]^{2} dt\Big)^{1/2} \\ & \leqslant \Big(\frac{(2n)!}{s^{2n+1}}\Big)^{1/2} \cdot \Big(\frac{1}{\lambda} \int_{N}^{\infty} e^{-su/\lambda} [\varPhi(u)]^{2} du\Big)^{1/2} \\ & \leqslant \frac{1}{s^{n} \cdot \sqrt{s}} \Big(\frac{2n}{e}\Big)^{n} (4\pi n)^{1/4} \left(1 + \frac{1}{n}\right) \cdot o(1) \quad (N \to \infty) \end{split}$$

where the last inequality holds for all sufficiently large n, and the factor o(1) (independent of n) is implied by the assumption that $[\Phi(t)]^2$ has a Laplace transform with a non-positive convergence-abscissa. Consequently we obtain

$$\begin{split} \Big| \sum_{0}^{\infty} c_n \cdot \delta_n \Big| &\leqslant \sum_{0}^{\infty} |c_n| \cdot \left(\frac{2n}{s \cdot e}\right)^n \cdot n^{1/4} \cdot o(1) \\ &= o(1) \cdot \sum_{0}^{\infty} \left(\frac{2}{s e^{\gamma_n}}\right)^n \cdot n^{1/4} = o(1) \quad (N \to \infty) \end{split}$$

in view of the fact that $\sum_{0}^{\infty} (2/se^{\gamma_n})^n \cdot n^{1/4} < +\infty$.

Finally, comparing (6) with (7), we obtain (3) by letting $N \to \infty$. Since (3) is equivalent to (5) our proof is complete.

2. For the case $I(\lambda)$ being a definite integral (i.e. $0 < c < +\infty$), the formula (2) is valid under much weaker hypotheses. In fact we have

THEOREM 3. Let $\Psi(s)$ be the Laplace transform of $\Phi(t)$, where $\Phi(t)=0$ for $t\geqslant K>0$. Then for any function f(z) which is analytic in a region containing $|z|\leqslant c$ we have

(8)
$$\int_{0}^{c} \Phi(\lambda t) f(t) dt = \sum_{n=0}^{\infty} \frac{1}{n!} (-1)^{n} \Psi^{(n)}(0) f^{(n)}(0) \left(\frac{1}{\lambda}\right)^{n+1},$$

provided that $\lambda c \geqslant K$.

Proof. Since $\Phi(t)=0$ for $t\geqslant K$ we see that the convergence-abscissa for $\Psi(s)$ is $s_c=-\infty$. Moreover, the series $\sum_0^\infty \frac{1}{n!} f^{(n)}(0) t^n \Phi(\lambda t)$ is uniformly convergent for all values of t in $0\leqslant t\leqslant c$. Hence by the term-by-term integration we have

$$\int_{0}^{c} \varPhi(\lambda t) f(t) dt = \sum_{0}^{\infty} \frac{1}{n!} f^{(n)}(0) \int_{0}^{c} \varPhi(\lambda t) t^{n} dt$$

which is precisely equivalent to (8) in view of the fact that (cf. (4))

$$(-1)^n\int\limits_0^c\varPhi(\lambda t)t^ndt=\left(\frac{1}{\overline{\lambda}}\right)^{n+1}\int\limits_0^\infty\varPhi(u)(-u)^ndu=\left(\frac{1}{\overline{\lambda}}\right)^{n+1}\cdot\varPsi^{(n)}(0)\;.$$

3. It is known that some approximation methods for evaluating integrals of rapidly oscillating functions of the form $\Phi(\lambda t)f(t)$ have already been investigated by Filon [2], Erugin-Sobolev [1], Krylov [4], Longman [5] and the author himself [3], etc., respectively. Here, basing upon the formula (2) or (8), we may propose another approximation method for evaluating the integral $I(\lambda)$ (λ being a large parameter).

Suppose that we want to construct an approximation formula without using the derivatives $f^{(n)}(0)$. Naturally we have to replace $f^{(n)}(0)$ by their approximate values on using certain numerical differentiation formulas. Denoting $\Delta f(x) = f(x+h) - f(x)$, $\Delta^{n+1} = \Delta \Delta^n$, we know that there is a useful formula due to Markoff, viz.

$$h^n f^{(n)}(x) = \sum_{k=n}^m \frac{n}{(k-n)! \, k} \, B_{k-n}^{(k)} \cdot \varDelta^k f(x) + \varepsilon_m \,,$$

cm[©]

where $\varepsilon_m = O(h^{m+1})$ in case $f^{(m+1)}(x)$ exists and is continuous, and $B_r^{(k)}$ are Bernoulli's numbers of order k given by the generating function

$$\frac{t^k}{(e^k-1)^k} = \sum_{v=0}^{\infty} \frac{t^v}{v!} B_v^{(k)}.$$

Thus, if the parameter λ is large, then we may take, for instance, $\hbar=1/\lambda$, and construct an approximation formula as follows

(9)
$$\int_0^c \Phi(\lambda t) f(t) dt \approx \frac{1}{\lambda} \sum_{n=0}^m \frac{1}{n!} (-1)^n \Psi^{(n)}(0) \cdot A_n,$$

where the numbers A_n and $\Psi^{(n)}(0)$ are given by $(A_0 = f(0))$

(10)
$$A_n = \sum_{k=n}^{m+r} \frac{n}{(k-n)!k} B_{k-n}^{(k)} \cdot \Delta^k f(0) \quad (n=1,2,...,m),$$

(11)
$$\Psi^{(n)}(0) = \int_{0}^{\infty} \Phi(t)(-t)^{n} dt \qquad (n = 0, 1, ..., m)$$

respectively, the number r being a non-negative integer chosen to be fixed.

References

- [1] Н. П. Еругин и С. Л. Соболев, Приближенное интегрирование некоторых колеблющийся функций, Прикл. Мат. Мех. 14 (1950), р. 193-196.
- [2] L. N. G. Filon, On a quadrature formula for trigonometric integrals, Proc. Royal Soc. Edinburgh 49 (1928-1929), p. 38-47.
- [3] L. C. Hsu, Some approximation formulas for the integration of violently oscillating functions and of periodic functions, Science Record (Academia Sinica, Peking) III, No. 11 (1959), p. 544-549.
- [4] В. И. Крылов, Приближенное вычисление интегралов от функций, содержащих быстро колеблющиеся множители, ДАН СССР 108 (1956), р. 1014-1017.
- [5] M. I. Longman, Note on a method for computing infinite integrals of oscillatory functions, Proc. Cambridge Philos. Soc. 52 (1956), p. 764-768.
- [6] E. C. Titchmarsh, Theory of functions, second edition, London 1933, 1944.
 § 8.3.
 - [7] C. J. Tranter, Integral transforms in mathematical physics, 1951, § 5.3.
- [8] H. F. Willis, A formula for expanding an integral as series, Philosophical Magazine 39 (1948), p. 455-459.

DEPARTMENT OF MATHEMATICS, NORTH-EAST PEOPLE'S UNIVERSITY (JILIN UNIVERSITY) CHANGCHUN, CHINA

Reçu par la Rédaction le 27. 6. 1960

ANNALES
POLONICI MATHEMATICI
XI (1961)

О функциях $\varphi_2(n), \, \mu_2(n), \, \zeta_2(s)$

В. А. Голувев (Кувщиново) и О. М. Фоменко (Краснодар)

§ 1. Рассмотрим следующие обобщения числовых функций Эйлера и Мёбиуса.

Пусть функция $\varphi_2(n)$ выражает число пар натуральных чисел a_1, a_2 , с условиями $a_2-a_1=2$, $(a_1,n)=1$, $(a_2,a_n)=1$, $a_1\leqslant n$. Легко доказать, что $\varphi_2(n)$ мультипликативная функция и что при n нечётном:

(1)
$$\varphi_2(n) = n \prod_{p|n} \left(1 - \frac{2}{p}\right),$$

где p>2 простое число. Если n чётное, то

$$q_2(n) = \frac{1}{2} n \prod_{p|n} \left(1 - \frac{2}{p}\right), \quad p > 2 \quad \text{простое}.$$

Введём функцию $\mu_2(n)$, определяемую равенствами:

$$\mu_2(n) = \left\{ \begin{array}{lll} (-1)^{k+1} \cdot 2^k, & \text{если} & n = 2p_1p_2 \dots p_k, & p > 2 \;, \\ (-2)^k, & \text{если} & n = p_1p_2 \dots p_k, & p > 2 \;, \\ \mu(n) & \text{для остальных натуральных } n \;. \end{array} \right.$$

Это определение можно получить, рассматривая функцию типа $\zeta(s)$. Пусть:

(4)
$$\zeta_2(s) = \left(1 - \frac{1}{2^g}\right)^{-1} \prod_{p \ge 2} \left(1 - \frac{2}{p^g}\right)^{-1},$$

где $s=\sigma+it$, произведение распространяется на все простые p>2. Запишем $\zeta_2(s)$ в виде ряда Дарихле, для чего введём ещё функцию $\varDelta(n)$:

$$\Delta(n) = \left\{ \begin{array}{ll} 0 \,, & \text{если} & n = 1 \,, \\ \alpha + \beta + \ldots + \lambda \,, & \text{если} & n = 2^{\theta} p_1^{\alpha} p_2^{\beta} \ldots p_k^{\lambda}, & p_i > 2 \,. \end{array} \right.$$

Тогда

$$\zeta_2(s) = \left(1 + \frac{1}{2^s} + \frac{1}{2^{2s}} + \ldots\right) \prod_{p>2} \left(1 + \frac{2}{p^s} + \frac{2^s}{p^{2s}} + \ldots\right) = \sum_{n=1}^{\infty} \frac{2^{d(n)}}{n^s}.$$