224 . Siwek
Le rveste R se décompose, d’aprés la condition II, en couches dis-
jointes H (k) déterminées par la condition:
(&)W () =k =const, ol —oo<k<oo
(dans R on doit avoir W(y) # 0, puisque W{g) = * et 5 7 ). Done:
hl
R= )

-0 k00

(07) H (/C) .
2

Ta couche H(0) se compose, d’aprés la condition ITT, de trois do-
maines de transitivité: D,, Dy, Dy, correspondant respectivement aux
cas ol la partie symétrique & du point x appartient & Dy, D,, Dy.

Chaque couche H(k), olt k> 0, se compose de deux (1011)"@1110-5 de
transitivité Dy(k) et Dy(k) correspondant aux cas ol la partie symé-
trique & appaitient & Dy et Dy, ' o

Chaque couche H(k), ot %k < 0, forme un domaine de transitivité
Dy(k).

Tout espace X, se décompose donc en neuf domaines de transitivité
sexceplionnels”: Dy, Dy, oy D, et.m;'o:cs familles (dépendant ('I’Lb pamm-ctw:e
continu k) de domaines de transitivité Dy(k), Dy(k), Dy(k), qué sont définis
de la maniére suivante:

D miraitairai=0, |
Dy m 20, w201 s ms0, W =0,
Dy #,<0, £,<0] N=0,
Dy x>0, :I:4>Ol WiE) >0,
Dy oz, <0, z, < 0]
Dg: W(E <0,
D, EeD
Dy §eD, W) =0
Dy EeDy
Dyk): &eD, W (&) n#0.
= Iu > 0
Dyk): & eDy W ()
W
DyR): gy =k <0

Travaux cités

[11 8. Golab et E. Siwek, Sur los domaines de transitivité d'un growpe de troms
formations, ce volume, p. 209-216.

Regu par la Rédaction le 27. 5. 1960
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On the evaluation of the solutlons of a system of ordi-
nary differential equations Wlﬂl an analytical rlght ~hand
member .

by TsIN- I{WA \HU (Kmko“)

Introduction. We consider an ordinary differential equation

dw
oW T

fow) .

with the 1n1t]a,1 condition w(0) = 0,2 and 0. heing complex v‘uubleb a,nd
f(z, w) being analytic in the domain.

(2) ]z| <a, lwl<b
(a, b are positive constants).
Moreover, we consider- the equation .
ds | .o
6) ‘ p -E (ry ) ) o
with the initial condition §(0) = 0, 7 zund s belng th(, real variables and
F(r,s) being a function continuous in the- 1ceta11gle

4) 0<7 < a, 0<s<b
(a, b are 1dent10a1 to those in f(nmulzu (‘3)).
In the year 1956 A. Wintner proved [3] the following theorem:

THROREM 0¥ A. WINTER. We. assume that the inequality

(5) ]f(z, W)!-*iff’(lz'l,-‘]%]«) :
holds 4f = and w both satisfy (2). We assume glso that F(r,s) does not de-

erease with respect to the 'mm wble s in rectangle (4). Suppose we have given
an arbitrary solution of (3) which satfas']'o,é3 the" initial condition $(0) =0
and exists in an 'Lntewal [0,a) (a: <.a). {hen we have the following
proposition:

Bach function in the sequence 0]‘ successive uppmwimatzons of the
solution of (1) R TS I
(6) wy(2) =0, wy(2) wy2) ,

Annales Polonici Mathematici X 16
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B

where .
wnis = | FE wal8))dE, n=0,1,2,..,
0

exists, it is an analytic function and satisfies the equality
|wa(2)| < s(2])

in the circle |2] <a for n=10,1,2, .. ) . ' )

Moreover, sequence (6) converges uniformly in every circle 2| La—e
(0 < &< a) and there exists a solution of (1) with the initial condition
w(0) = 0. This solution is analytic at least in the circle |z| < « and satisfies

the inequality:
o] < «.

for
In the paper [4] (1956) A. Wintner has proved the following theorem:

Assume that F(r,s) is continuous in a certain rectangle (.'4) and ﬂ‘mt
the functions f(z, w) and F(r, s) satisfy inequqlity (8). If s("r) is a solui_'mn_,
of équation (3) with the enilial condition $(0) =0 and if @t is (le.fme(],
in the interval [0, «) (a < a), then the solution of (1) w(2) (w (0).= 0) is an
analytic function in the circle |¢| < a and satisfies the inequality

| (2)] < s(|2])

lw(2)| < s(2]) -
A similar theorem was proved by T. Wazewski [2] (1937) for the
system

(M)
(8)
There z and w;, ¢=1,2,..,%, are complex variables and functions
fig, wyy ooy wa), £=1,2, .., %, are analytic in an (n-+1)-circle domain,

('Zzol = fy(2, Wy, Wy, ..y W),

dz
wi(0) =0,

2

-

7 i=1,2,3,..,n,

i=1,2,...,n.

(9) 0<lel<a, O0<|w|<b, 1=1,2,..,7m,

a,b;, §=1,2,..,n, being positive constants. . '
Tn the theorem of T. Wazewski (1937) the majorating system for (7) is

(10) - ﬁzlﬂi(‘r,shsﬂ, ey 8n), 1=1,2,.,n,
(11) 50) =0, 4=1,2,.,n
and it is assumed that the inequalities
(2, Wy oy wa)| SF2], J0nl, ooy Jn]),  E=1,2, .y 0

are satistied for (2, wi, ..., wa) € (9) and that Fy, ¢ =1,2,..,%, are de-
fined in the set

-1

Im A system of ordinary differential equations
(12) o<r<e, 0<s;<b;, ©=1,2,..,n,
a and by, 4=1,2,..,n being constants identical to those in (9).

Moreover, it is assumed that each ¥;, i =1,2, ..., %, is continuous
in set (12) and not decreasing with respect to any of the variables
81y 825 ooy Sim1y 8it1; -y $n, and that the integral of system (10) is the
upper integral satisfying (11) and not an arbitrary integral as in the
theorem of A. Wintner [4].

The present paper contains a generalization of the above results
of A. Wintner and T. Wazewski. The point is that we agsume only the
continuity of the right-hand members of (10) and solution of (7) is ma-
jorated by an arbitrary integral of (10). It should be noticed that under
our assumption it is not necessary that the majorating system (10) should
have its upper integral satisfying (11), as has been assumed in the paper
of T. Wazewski. We base ourselves here on the method of differential
inequalities.

§ 1. DerNirioN 1. Let U(r, s, ..., 8») be a real function of the
real variables 7, s, ..., sn defined in a closed set of points (7, s,, ..., Sa).
We say that U(r, sy, ..., 8,) satisties the condition of Lipschite with respeet
to the variables s, s,, ..., s, if there exists a constant N such that for
an arbitrary pair of points (v, 8, 8, ..., ), (¥, 51, 52y -.., 54) of that set
we have

n
(U, 81, 80y oo )= U (7, 51, 5oy ooy Ba)| S V- ) [5—54],
where N is a constant independent of the choice of ploints.

DEFINITION 2. We say that U(r, sy, ..., 8,) satisfies the condition of
Lipschitz with respect t0 s,, 8, ..., 8, tn & cube (12), it U(r, 8y, 83y .., $n)
satisties the condition of Lipschitz in every closed cube contained in
the cube (12).

DErINITioN 3. Let the real function Fy(r, sy, ..., $2) be defined in (12)
and the funetion f(z, wy, ..., ws) be the complex function of % -1 complex
variables 2, wy, ..., wn defined in the (n-4-1)-circular domain (9). If the
inequality:

[f(zy Wiy Way oeny w”)] <\:-F(Iz|; |w,], lw2

s oy |Wal)
holds in (9), then we say that Fyr,s,,...,s,) is for the function
f(z, wyy ..., wn) a majorating function of the type T(0,0,...,0).

§ 2. We consider n analytic functions 7(z, w,, ..., we), i =1, 2, ..., #,
which are defined in the (n+1)-circular domain (9).

We define the real functions Hy(r, sy, ..., s») of the real variables
Ty 81, ...y 8 In the following manner:
(13)  Hyr, 84, 85y ey 8y) = max

[fu(z, wi, 10y, ...y wa)],
&)=, lwi] =81, lwa|=8g,.., 10n| =8y

i=1,2,..,n.
16*
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The functions Hy(r, 81, ..., $n) arve defined in (12).
The following three propositions ean ecasily be proved.
PROPOSITION 1. Hy(r, 85, oovy 8n)y &= 1, 2, ..y 0y ave continuous in (12).
PROPOSITION 2. Hy(r, 81, ..., Sn) 98 not decreasing with respect to the
variables ¥, 81, $ay vy Sn 00 cuwbe (12) (4 =1,2, ..., n).
We have the following evident inequalities:

(&, wyy Way ..y wa)| < Hyl|2], |90, [20a]5 ey lwal), t=1,2,..,n

in the (n+1)-cirele domain (9). Then the function H(r, sy, ..., 8) is
for f(z,wy, .., ws) a majorating function of 1'(0,0,..,0) type in
domain (9).

PROPOSITION 3. The function Hyr, sy, .., $a) (1=1,2,...,n) defined
above is the smallest among all the majorating functions of the type
T{0,0, ..., 0) for the function fi(2, wy, ..., ws) (E=1,2,...,0).

LBMMA 1. The functions Hy(r, Sy, ..., Su), 4 =1,2,..,n, satisfy the
condition of Lipschitz in (12) with respect to the variables sy, ..., Su.

Proof. We consider an arbitrary but fixed closed cube

E: o0<r<a® 0<s <t i=1,2,..,n,

a and b; being constants satisfying the inequalities

0<a® <a,

0 < b < by,
Tu order to prove our lemma it will be sufficient to show that
Hy(r, 815 ..., 8a) (j is arbitrarily fixed) satisfies the condition of Lipschitz
with respect to the variables s, s,, ..., s» in the cube K.
We denote by D, a closed (n-+1)-circular domain contained in the
(n+1)-circular domain (9) ecorresponding to the cube K;. Since
(2, wy, ..., wy) is analytic in (9), its partial derivatives of arbitrary order

are bounded in D,. We have

§=1,2,..,n.

(14) ]fz;);(zxﬂ717-~-7"0n)li"§ M, 1=1,2,..,n,

for (2, Wy, .., Wn) € D,.

Now we consider an arbitrarily fixed pair of points (r, §, Sa, ...; &)
(r, %1, Say -., 5n) Which belong to the cube K,. Since K, is a convex set,
then the difference Hy(r, 5y, By .y Su) —H (7, 5y, 85, vy Su) may De re-
presented as follows:

(18)  Hy(r, 8y, Say ey 8n)— Hylr, 51, S35 v, §n)
= Hy(r, 51, Say oy Sn) = H(r, 81, 8oy vy 8n) F

+H1("'7 §1; Say eney gn)—Hi(Vy §17 :—%7 gy veny 371)"'

+H (7,31, Say cony 8n—1y Sn)— H{r, 81, Say «vvy Sn) -

icm®
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We now evaluate the first difference which appears in the right-hand
member of (15), i.e. Hyr, 5, ..., 5a) — Hir, 31, 5, ..., &). In view of the
definition of Hy(r, 81, 8s, ..., 8») and by the continuity of the function
[fi(2, wy, ..., wa)| therve exist for points (r, 5, ..., ), (7,8, 5, .. , 5a) two
another points (Z, w,, W, ..., Wa), (2, Wy, ..., wy) such that

I§l=7'7 Iﬁll"—‘glv ) lfwﬂ‘zgn;

El=r, |o|=%, % vy |Wa| =5,

b
Hﬂ'("':gugm fi(zywlv--w'wn)la
(

Hy(r, 515 82y oo

(2, Wy Way -y Wn)|,
we then have
(16)  Hy(r, Sy Bay «ony Sn)— H(1, 51, Sy -ny Sn)

= |{(Z, By, ..., Ba)|~f3(Z, W1y o5 W)

For w, we choose 7; in such a way that (see Fig. 1)

(17) ]?]1| =5, I'w1'"ﬁ1| :[51*§1|4
z 7
Z
i=2....n
7
Fig. 1
It follows by the definition of the function Hyr, sy, S, ..., ss) that

(18)

[77‘(27 ';_715 7’_015 (RN} %Tn)[ sHv’("‘; §1: 521 LEER} gn) = lf](zj ﬁ!.) seey ﬁ'rb)[ .

By formulas (16) and (18) we obtain
HJ‘(""’ 51’ 327 L] §n)~H1(’"7 El’ gy eeny 5”0)

< |;/7'(5a 'TUI; Wy, -

< [fi(éy 'wu Wy, .

)l_lfi(lza %1: @2, sy wﬂ)!

.y Ty
" "—Uﬂ)”‘f:i(z: ’713 Way veny w’rb)[

w
= .:ffful(i, N1y Way ovvy Wn) dm‘
m

< Lflf"]”l(57 M1y Way -ny w,,)| d'y]]‘
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" and henee (14) and (17) yield

Hy(r, 51, Say s Sn)— Hj(7, 81y Fay ey 30) S M\~ = M- |5, -5,
In a similar way we obtain

Hi{ry 51y Say woey Sn)— H{(T, 81y By oory Bn) S M- [5— 5]

which yields

(19}, [H{(1, Byyory 8a)— Hylr, Fiy By ey B0)| MR- F[

By the same method we obtain

(19), | Hy(r, 81y Bay ey Sn)— Hy(r, I P Ba)| << M- |58l

(19)n [H(ry 81, 8ay ooy Fu1y Sn)— Hilr, 81, §ay oeey Su)| <O |85 —8a] .

Now by the formulas (15), (19)1, ., (19)n follows the inequality

13
V0 51, Tay ooy S) = Hy(7y By By ooy B)| S M- D[]
fusl

q.e.d.

§ 3. Hyvormesis K. We say that the real functions of the real
variables Us(r, 81, Sa, «vy Su)y © =1, 2, ..., 0, vatisfy hypothesis XK if

1) Ui(r, 81, 8y ey 8m)y & =1,2,...,m, are continuous in cube (12);

9) Uyr, 81, 83y .y 8a) (oes not decrease with respect to any of the
variables 8, ..., S$i-1, Sit1y -y Su i cube (12) (i =1,2,..,n).

Tn the following we shall make use of the following result of T. Wa-
zewski (cf. [1], p. 124, theorem 2).

LeMMA 2. We consider the system

dy; : ”
L= U@, Y1y Yoy -y Yn),  $=1,2, ., 0.

(20) o

We assume that Uy, ..., Un satisfy hypothesis K. By that hypothesis the
upper integral of system (20) with the indtial condition ¥i(0) =0,
i=1,2,..,n, evists in an interval [0, a) (a < a). We denote this integral
by yo=1x), i =1,2,..,% )

We now choose a curve y; = @), 4 = 1,2, ..., n, which is continuous
in [0, a) and is contained in cube (12).

Moreover, we assume that

?i(0) =0,
for 0 <z < a.

P+‘P’l(w) < Ut(ﬂ?, [ € PN rpﬂ(m)) y  =1,2,0, 0,

A system of ordinary differential equations 231

Under these assumptions the following inequalities hold:

i=1,2,..,n for O0<a<a.

Also the following lemma will be used in the sequel (cf. [1], p. 143,
theorem II): :

LeyMA 3. We consider two systems of equations,

dy; .

(21) 7f£: U@, Y15 Yoy s ¥n),  E=1,2,..,n,
dy; .

(22) (lllvl=Gf(‘v7y17 y27--'yyﬂ)7 "’=1727"'7 n.

We asswme that Uy, ..., Un satisfy hypothesis KX and G, Gy, ..., Gn are
continuous in cube (12). Moreover, we assume that the inequalities

Ui < Gy,

t=1,2,..,n,

hold wn cubs (12). Let y; = @i(w) be the lower integral of system (21) containing
the point (0,0, ..., 0) and defined in an interval [0, o) (a < a). Let y; = ()
be an-arbitrary integral cwrve of (22) defined in [0, a) and satisfying the
ingtial condition y;(0) =0, i=1,2,..,n. Under the above assumptions
we have the inequalities:

pl@) <y, 1=1,2,..,0 jor O0<a<a.

4. TuroreEM 1. Consider the system of equations
Y q

dw; .
p = fi(g, Wy, Wyy ooy wn),  T=1,2,..,mn,

(23),

with the initial condition

(23), wi0) =0, i=1,2,.,n,

z and w being complex variables. We assume that fy, fa, ..., fu are analytic
functions in the (n-+1)-circular domain (9).
Simultaneously with system (23) we consider also the system

ds;

DY
(24) dr

=1"115(":81:‘92) ---ys'n), ‘l;=1,2,...,1‘l/,

with the initial condition
(24), 8(0) =0, di=1,2,.,n.

We assume that Fyr,s,, .., s), i =1,2,..,n, are continuous real
functions of real variables. We also assume that

[fizy wyy ooy wn)| S Fil2], Jo0y], ey |wnl)y,  $=1,2,..,0,
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in the (n-1)-cireular domain,(9).  We denote by s; = s{r) @n arbitrary
solution of (24), sat@sfz/zw the initial condition (24), and we assume that
this solution exists in an interval [0, ) (a < a). We denote by wy(z) the
solution of (23)1, which, satisfies the. initial condition (23),.
" We state that under these conditions
1) wyz) is analytic. in the cirgle |2 < a;
2) in the circle'|2| < a ‘we have the inequalities

)| Ssillr))y o t=1,2, 0,0,

Proof. We take into consideration an auxiliary system

AEPIN A

ds; o
- =H,-(r,slv,‘gz,l.‘._,,sn),

23 all
(25) L

with the initial condition =

(26) s,((l)—O t=1,2,.,n, .

. S . Ve = D4 .
Hir, 814 83400 sn), i=1,2, ,n, ‘being - defined by fo:.mulas‘ (13). In
view of lemma 1 and ploposmon 1:there existy exactly eone solution of

{(25), (26). We denote it by s; = gi(r). By the propositions 6f § 2 we have
in cube (12) the inequalities RIS e
Hi(r, $14 8y, .4y 8n) < T2y Spy Sy ooy 8a),  6=1,2,.5,n0.

Tt follows by lemmia 3 of §'3 that'in the common interval of ‘the existence
of the integral curves s;(r) and g,r) we have ,

(27) ai(r) <si(r)
By the theorem on the continuation of the integral curves it follows

that the integral curve s; = gi(), ¢'= 1, 2, ..., n, exists at least in‘the
_iJ,\l‘teryal [o, q) Thcn in the whole mtexvml [0 a) we have the inequajities

i=1,2,..,n

(28) ' (,)\31 :’5_12 RO

TR \\‘\' g "
By the themem of Gmuchy Kovalevskm wt( ) is mmlytw in some circle.
We denote by f# the maximal.radius of the circle of mm]ymmy of w(2),

i=1,2,..,n We put
Y N
Mir) —-Jﬁaxm, My i=1,2,..,n, for |e|<p.
g =r o [

By the theorem which has bee.n proved in [5],p. 1, M (r ), § =1, 2 L My
exist and there exist points. E, G=1,2,..,n, such that -

i MRy = D, i=1,2, .., 0.
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For the points & the following relations hold:

(29) |6 =, M) =|wdd)], i=1,2,.,n,

(29), lwi &) < M(r), d#].

Since w;(2) satisfy system (23); we have

(30)  MY(r) = [wi(&)] = [ful&, (&), .y walE)],  i=1,2,..,n.

By the definition of Hy(r, sy, 82, ..., 8z), the formulae (29),, (29), and by

proposition 2 from § 2 we have
(B1) €, wi(€), wol€), vy wal )]
=< Hiﬂfq, in.(fiH, ]wz('fl)ly ey ]wn(fi)n
< Hilr, M(r), M), oy M), i=1,2,.,m.

Relations (30), (31) yield

(32) ME(r) < Hylr, MYr), M2(r), ., M), i=1,2,..,n, for 0<r<§p.

Evidently we have

(33) MH0) = [wif0)] = 0i(0) =0, i=1,2,..,%.

It follows by the definition of M'r) and by proposition 1 of § 2 that
M¥(r), i=1,2,...,n, are continuous in the interval 0 <<» < § and that
their graph is contained in cube (12). Hence, by lemma 2 of § 3 we obtain

(34) M) <o), 1=1,2,.,n, for 0<Lr<p,

8; = gi(r), 1 =1,2,...,m being the unique integral curve of (23), (26).
It follows by (28) and (34) that we have

Mir) <sfr), i=1,2,...,n, for 0<7»<min(e,p).

The definition of M'(r), i =1, 2, ..., n, yields the relation

(38) wi(?)| <si(lel), i=1,2,..,m, for < |¢| < min(a, ).

Now we ghall prove that min(ea, f) = «. In fact, if we suppose § < o,

then we have

lwi(z)] <sillz]), ¢=1,2,..,n, for <ol < B.

Since F; >0 in cube (12) then s;(r) does not decrease in [0, a). Since
8(0) = 0, we may conclude that

0<s(r) <by, 1=1,2,..,n, for O0<r<a.
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Hence
0 < 8ir) <8 B) < iy

Then we deduce the inequalities:

i=1,2,..,n, ftor 0<Lr<p.

lwiz)| <e;<bi, 1=1,2,..,n, for 0:Cle|< B (< a,

where ¢;, ¢ =1, 2,..., %, are constants.

Now we make use of a certain lemma, which has been proved by
T. Wazewski (c¢f. [2], . 99, lemma 2). By that lemma we may econclude
that there exists a number § with the properties:

1) f<d< o

9) wi(z), i =1,2,..,n, are analytic in the circle J¢| < 4.

This contradicts the assumption that A is the maximal radius of
the cirele in which wy(z) (¢ =1, 2, ..., n) is analytic. Hence we conclude
that

1) wi2), 4 =1,2, ..., n, are analytic in the ecirele |2] < a;

2) in the cirele |2| < a the following inequalities hold:

Jwi(z)| < sill2]), i=1,2,..,n, for ||<a.

This completes the proof of theorem 1.

PROPOSITION 4. We define the sequence of successive approwimations
of the solution of system (23) in the following manner:

(36) wl(z) =0, i=1,2,..,n,

(36)mer W (2) = [ ful€, wi™ (£), W™ (8), o, WiV (E)dE,  i=1,2,..,n,
’ for m=0,1,2,..,

2z
the curve of integration in [ being the straight line segment Oz. Then all
[

the funciions wi™(z), i =1,2,...,n, are well-defined, analytic and satis-

fying the inequalities:

i) <sdlel), t=1,2,.,n, m=0,1,2,..,

in the circle |2| < a at least. s;(r) denotes here the solution of (24), (24)
defined in [0, a).

Proposition 4 can be proved by the method of mathematical indue-
tion and the lemma of Zygmund.

PROPOSITION B. From the foregoing proposition 4 and the Lipschitz
condition for the functions f;, ¢ =1, 2, ..., n, i follows directly that sequence
(38) converges uniformly in the circle |2| < a to the solution of (23),, (23),.

I wish to express my great thanks to Prof. T. Wazewski, and
dr Cz. Olech for their valuable adwices and kind help during preparing
this paper.
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