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1. Introduction. Let C™ be a space of n complex variables
Ry Ry s 2y W22 1, where 2y = a1y, Let 2z = (2, ...,24) be a point
of C". We shall consider the series of the form

(o)
(1.1) D P,
r=0
where
(1.2) P,2) = 2 a/klkg...k"zflz?_‘y:u _..z:”;ﬂy v=20,1,..,

ErtTeat ot kop=v

is a homogeneous polynomial of degree v (polynomial of the form (1.2),
for which all the coefficients ayg,.x, = 0, is also called the polynomial
of degree »).

Given a closed bounded point set E of the space C", let G(F) be the
largest set such that every series (1.1) for which

|[Pe)| <M, »=0,1,.., 2eB, M=const,

converges for 2z ¢ G(H).

The aim of the paper is, first of all, to give a construction of the
set G(E) and to prove a sufficient condition for the set G(H) to have
interior points. For thig purpose, using an interpolation formula for
homogeneous polynomials (see § 2), we ghall connect with the set &
a function t(2, B), abrolutely homogeneous of order 1, which, in the case
of the space (%, is identical with that defined by F. Leja with the aid of
the so called friangle distance (see for instance [3], [4]). The function
i(z, B) is a limit of some sequences of homogeneous extremal functions
(see (4.3), (4.5) and (4.8)), attached to the set E. The methods of the
proof of the existence of the limits (4.5) and (4.6) given by F. Leja used
the fact that every homogeneous polynomial above C? is a product of
homogeneous polynomials of degree 1. This fact no longer holds in €7,
n =3,
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In the last part of this paper we shall find the relations between the
set G(E) and the envelope of holomorphy of the circular domains; for
this purpose we shall use fact that 1*(z, E) (upper regularization of ¢(z, E))
is plurisnbharmonic in ™.

2. Interpolation formula for homogeneous polynomials of
7 complex variables. The Iholynomial (] .2) may be written in the form

y Beyghegy.n

(2.1) mzlﬂz"ﬂ 2t
where v, = ("::f; 1) is a number of coefficients of P,(2) and ky~+ ku+ ... +ky
=wpforl=1,2,..,n.

Let p(u) = {plﬂ)z: ey pv.} and (3; p?)) = {})171)27 vy Pie13 %5 Pitayensy ph}
be systems of », points, where p; = (21, sy ooy 2Zn)y ¢ =1,2, ..., n, and
, 2u). Let V(p™) be a determinant

Vip®)

2= (21, Zay oo

b Ty K. K,
(2.2) =det (e ¥27...2M),  1,8=1,2,..,%,

and let V(z,p{”) be a determinant whose i-th row is 2ftefe, . gk,

1=1,2,..,»,and whose other rows are the same as in V(p®). Let us
assume that V(p®) # 0 and define the homogeneous polynomials

) ) I/( 9
(2.3) Tz, p?) = V(;}{f)), i=1,2,..,7,.

We have T%(p;, p’) = 8;;. Now, it is easy to prove that if P(z) is an
arbitrary homogeneous polynomial of degree v, then the following interpolation
formula holds:

e Pe) = X P10, ).

In fact, the function W(z

ZP

polynomial of degree » and at the points of the system p® it is equal
to P(z), ), 4=1,2,..,». Since the determinant V (pm)+#0,

YT, p») iy a homogeneous

Wi(p) = P(p;
there exists exactly one homogeneous polynomial of degree v, assuming
values given in advance.

3. Definition of the »-th extremal point system of set Z.
Let- B be a closed bounded point set of C" and let there exist for any
?="0,1,.. & gystem p® = {p,, p,, ..., p,,} of », points of E such that
V(p®) 0. Let

(8.1)

9 = {q,, Gay ooy Do} s

r=1,2, ..,

icm

On an exlremal function 299

be sueh a system of », points of B that for every p® C E
(3.2) IV (g®)| =V ()|,

Such a system (one at least) certainly exists, since [V (p®)] is a real
continuous function with respect to p® = {p,, ps, ..., p.,}C E and B i
compact.

System (3.1) will be called the v-th extremal point system (or »-th
system of the ewtremal points) of the set B. In the case of (2 system (3.1)
i identical with the »-th extremal system of B with respect to the triangle
distance (compare [3], [4]).

v-—l,.;,...

4. Extremal function i(z, E). The definition of the extremal
system ¢® implies that the funetion T, ™) given by (2.3) satisfies
the inequalities

(£.1) 129, ¢™) <1, zeB, i=1,2,.,.
Let
(4.2) t(z, B) = n(mx]l’m ™, v=1,2,..

THREOREM 1. Al every point 2 of C™ there ewists a limit t(z, B) (finite
or not) of the sequence {i"'t,,(z,E)}

(4.3) : (2, B) =lim }'3,(z, B) .

Pl oof. It I'S obvious that t,(0, E) =0, whence t(z,0)=10. Let
(2, 25, ... ,20) =250 be a fixed point of C" We may assume, without
loss. of gmemlmy, that the first coordinate 23 5= 0. Let x be a fixed na-
tural number. For every » = 0, 1, ... there exists one and only one pair
of non-negative integers k and 7 ‘such that »=ku+r and 0 <r < p.
For any fixed 4 and given 2° there exists an index 4, such that 1 <1y < vy
and t,(<°, B) = | T, ¢*)|. Let us denote by P(z) the following homo-
geneous polynomial of degree »

' P(z) =
By interpolation formula (2.4) and inequality (4.1) we have
y=1,2,.0,

[_L‘("')(z qu) (2 )

#(2°, B A < n M, B)

where I = max |z1] The last inequality is equivalent to the following one:
geli ,

tﬁ/(lcmﬁ-r)(zo, B) lz[x)lm < (”*M)]lv f/rt,,(z‘), E)‘: p=1,2,..,

whence, if »->o00, we have

(4.4)

w=1,2,..,

Fide® L)<11m1nt]/t,,z° W, B,

P->00
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and consequently

lim sup| {2, E) < lim inf | (%, B) .
Since 2° ig arbitrary, it follows that (4.3) is true.
The function (2, E) is, in the case of (%, identical with that defined
by F. Leja ([3], [4]). It is the consequence of the following
TeEOREM 2. The function t(z, E) is also the limit of the following
sequences:

(4.5) (2, B) = lim /3 VIT‘” 4,

=1

(4.6) t(z, B) =lim | inf {max | 7%z, p™)1,
>0 ep (@)
the infimum being taken over p® C E for which V (p®) 5% 0.
Proof. It is evidently sufficient to prove only that the following
inequalities are true:

(4.7) 42, B) < DT, @) <nlie, B), w=1,2,..,
=1
and
(4.8) v(z B) < inf {max [T, p®)} <tle, B), »=1,2,..
T pMcE  ®

Inequalities (4.7) and the second one of (4.8) ave obvious. The proof
-of the last one may be as follows: Let p® be a system of », points
{P1s Pay oy P,} CE such that T(p®)s£0. Then, owing to the inter-
polation formula (2.4), we have

(20, )] <ramax |70z, p)] ;= 1,2, 0,

whence, since the system p® may be arbitrary, the required inequality
follows.

5. Some properties of the extremal function t(z, B). It is
an immediate consequence of the definition of t(z, B) that th]s funetion
Is absolutely homogeneous of order 1, i. e. that ¢(i, B) = |A|t(2, B) for
any ze (" and any eomplex A We also have

(5.1) Uy B) > m(ja]+ 2] + ... +[el) ,

where m > 0 depends on B only. Indeed, it follows from the interpolation
formula (24) that |2 < 2 M4z, B), v =1,2, ..., where M = max [ex}
zeH)
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and k= 1,2, .., 0 Therefore, to complete the prrof of (5.1), it is suf-
ficient only to 1)ut m = 1/n]l[

(5.2) The funciion t(z, B) is lower semicontinuous in G
By (4.4), (4.7) and theorem 1 we have

e [N

(5.3) V\T<i>zq‘")|<tzﬂ> e, »=1,9,

=1

ey

so that, owing to (4.3), the function t(2, E) is the upper envelope of the

(™

continuous functions V IT9%, ¢™)],» =1, 2, .. Hence t(z,B) is
. A *‘l 1 .
lower semicontinuous.

(5.4) If t(=, B) is bounded on the unit sphere 2] |af 4. =1}
and t*(z B) ~hm supt( , B), then Logt*(z, B) is a plurisubhar-

monic function in 0"

for the definition of plurisubbarmonic function, see [1], [2]).

Indeed, under the hypothesis of the theorem, the function ¢(z, B),
being absolutely homogeneous, is bounded on every compact set of ¢™
and therefore the function Logt*(z, E), being the upper envelope of
plurisubharmonic functions (1/») Log {max ]Tm 2, ™|}, is again a plurisub-

harmonic one in €™ (see [1]).
(5.5) If ECF, then t(z, B) = 1t(z, F).

This follows from (4.6), since

inf {max [T, p)|} = inf {max|T%e, p)[}.
pWcE P @

Let us denote by E, the subset of such points 2 = (2, 23, ..., 2») of
the set B that no point sz = (szy, 825, ..., 82,), where s is a real number > 1,
belongs to E. Then
(5.6) t(z, B) =t(z, B) .
This equality is a consequence of the obvious fact that every »-th extremal
point gystem of # is a »-th extremal point system of E, and vice versa.

Let By, k=1,2,..,n, be a closed bounded point set lying in the
plane (2;). Let d(Hy) be its logarithmic capacity. Let F, contain only
one point 20 7= 0. We ghall prove the following

TaeorEM 3. If d(B;) >0, k=2,3,..,n and B = {&} XBy X ... x By
(Cartesian product), then there ewists a number M > 0 such that ’

e, B) < M (o] +|oa|+.+|2a]), 2.
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Remark. The set B is lying in the hyperplane z, = 2{. Obviously,
we could take an analogous set in each hyperplane 2 = 2, 2<k<n.
Proof. Let .&% = (& & .. &, k=2,3,..,n, denote the »-th
extremal point system of K, with respect to |2—Ce| (see [4], p. 260).
Let 2 = (2), 2, ..., 2n) and let P(¢) be an arbitrary polynomial (not
necessarily homogeneous) of degree <(». Then, iterating n—1 times the
Lagrange interpolation formula for one complex variable, we have

(3.7)  P(z")
= N P& ey ST 2, BN L2, ) L, 1)
Farkgyurenin =0

where

v

2— &

(g)
L™z, EBj) = é,' £
s=0(s#ky) ®F1 T S8

It P(z') = T, ¢%), then by (4.1) and (5.7)

(5.8) |7, ¢ < (v4-1)" me[L” (26, By
F=n OST<0
i=1,2,.,7, v=1,2 ..
But we know ([4], p. 265) that there exists a limit L(zy, Ey)

—11m]/2 |Z?2, By)| and the function L(ze, By, % =2,3, .., n, is

bounded in any compact set contained in the plane (2;). It is also known

{
that max |LP(2, By)| < Liex, By) for any 2, k = 2,3, ..., n. Therefore
@
there exists a number L > 1 such that if |2 < |+}|, k = 2, 8, ..., n, then
n
[ max|Z9, By <12,
iy 0ST<Y

whence by (5.8)

(6.9) T, ¢%)| <[ +1IT .

The polynomial T, ¢*) may be written in the form

(5.10) T, ¢*) =

k"
Krtlegt ety =y

bk;k:g...lc,,ziﬂ ZZ.f’ vy
By (5.9) and owing to the Cauchy inequalities, we have the inequality

Bl a2 < [(v 4 1) LYt st otlen

icm®
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which is equivalent to the following one:
. » 1 n—1 _
(3.11) lb;.-lkﬂ,..k,,lsLLQ,,)*—, o=1r/L"",
whence by (5.10)
179, (") <nO+ D", Jal<e, k=1,2,.,m, i=1,2,.,m,
Therefore

e, B) <vlv+1)", lad<e, k=1,2,..,n, »=1,2,.,
or

1 t(2, F)/lv 1" <o, k=1,2,..,0, »=1,2,..,

whence, if »—>o0, we have

iz, By <1, |a|<e, ¥k=1,2,..,n.

Since t(z, H) is absolutely homogeneous of order 1, we have

iz, B §%(|z1|+1z2]+...+[zﬂ|), ze .
If we now put M =1/p, our theorem is proved.

COROLLARY. If E contains interior points then t(z, E) is bounded on
any compact set of C".

Now we shall prove an inequality which is entirely analogous
to the inequality of Bernstein-Walsh for polynomials of one complex
variable. Namely, if P(z) is a homogeneous polynomial of degree p and
M= mz;x]l-’(z)|, then

gel

(5.12) |P(2)]| < Mt"(z, B), zeC".

In fact, if & is any integer and ¢® = {g, gay -y Gou,} 18 the (ku)-th

extremal point system of E, then, in accordance with (2.4),

Pi(s) = ‘{' P T ™)
whence 1=1
1P < Mk(k#)*ﬂ(lgxlfl’”’(z, ¢ .
Therefore
|1P(2)| < Jll'!i/(ky),k [?i‘yn}g,xim(ﬂ(z, qw))llu’ k=12, ..

and thus, by virtue of (4.2) and (4.3), the desired inequality is proved.
Inequality (5.12) may be used for proving some theorems concerning
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the best approximation of functions of several complex variables defined
in the circular sets by polynomials. It will be the subject of my other paper.
From (5.12) and from the definition of £(z, E) it follows that i(z, E)

is an upper envelope of all functions VIP,)] | P,(2)|, where P,2) is a homo-
geneous polynomial of degree »,v =1,2,..., satisfying the inequality
|P.(2)] €1, 2B (instead of the constant 1, one could take any sequence

{M,} such that VI,—1). In particular, if for a bounded point set F
there exist %k homogeneous polynormals Qi(2), @u2), ..., Qu(2), of degree

¥y, ¥y e, 9 Tespectively, such that B ={2]|@e)| =1, i=1,2, .., K},
then e
m Y e
t(z, B) = max { V]G], 110, ..., VGG -
E.g. it B is a polycylinder, B = {2] |2| =, k=1,2, .., n}, then
t(z, B) = 2|l
1<k<n

6. Application of i(z, F) to the estimation of the domains
of convergence of series (1.1) whose terms are uniformly
bounded on E. THEOREM 4. Each series (1.1) whose terms are uniformly

bounded on E converges absolutely at least in the set G(H) given by
(6.1) G(B) = {2|t(z, B) <1}.

Proof. Let the polynomials P,(z),»=0,1,
lities

., satisfy the inequa-

|Pf2)| <K, zeB, K =const.

By virtue of inferpolation formula (2.4) we have

2 Pg (z) (2 qo/)),

whence, if ¢ is an extremal point system of E,

y=20,1,..,

2)| < nKi(z, B),

y=1,2,..

Then, according to (4.3), we have the inequality

(6.2) limsup /[P,

P00

@ <ilz, B),

which implies the theorem.
Let us add that (6.2) implies that a series whose terms P,(z) are
u:aﬁormly bounded on E converges uniformly absolutely for z in G,(F)
={elt(z, ) <1—g), 0 << 1.

icm®
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Tf t(z, ) ds bounded in_any compact set of C", then G(H) contains
interior points. l’he interior G(E) of G(B) is given by

(6.3) &(B)
B) =limsupt(z’, E).

2z

In fact, if for a given point 2° we have t*(2, E) < 1, then by the upper
semicontinuity of #*(z, B), the inequality t*(z, £)<1 must hold in
a neighbourhood of 2°. Naturally ¢(z, E) < 1 holds in that neighbourhood.
Therefore 2° is an interior point of G(E).

Conversely, if 2° is an interior point ot G(F), then in a neighbourhood
of 2 the inequality #(z, ) <1 holds, which implies that t*(z, B)< 1
in that neighbourhood. Since t*(z, F) is homogeneous of order 1, then
t*(z°, B) < 1, whence, because of the upper semicontinuity of z*(z,E),
it follows that 1*(z, B) < 1 in a neighbourhood of 2% Thus (6.3) is proved.

Bach series (1. 1) whose terms are uniformly bounded on F converges
almost uniformly absolutely on: G(E)

Now we shall prove that

= {2| t%(z, By < 1},

where t*(z,

There exists a series of homogeneous polynomials uniformly bounded
on B whose domain of almost uniform comvergence is evactly equal to G (E).

Indeed, let {px} be a sequence of points each of which is repeated
in that sequence infinitely many times. Moreover, let the set P of points
of this sequence be contained in E, = {z|t(z, ) = 1} and let P be dense
in E,. Put P2) = T™(z, ¢"), where ¢* is the »-th system of extremal
points of E and |T%(p,, )] = max |T%p,, ¢*)]. By (4.1) we have

i<y

o
2)| <1, zeB. Then the series D P,(z) converges almost uniformly
=0
absolutely in G(B). Since for a given p e {py}

lim sup i‘/[_l’:(};ﬂ = limsup lv/X[T("V’(p, ™) =1,
$—+00 . y—00

the series diverges in the set {z|2 = Ap, p € {ps}, which is dense
in the complement of G(E). Therefore the series constructed ecannot
converge in any domain containing G (E).

7. Envelope of holomorphy of starlike circular domains.
Let D be a circular domain starlike with respect to 0, i. e. such a domain
that, if 2° € D, then {22 =12, |t| <1} C D (¢ being a complex number).
Let B = D, D denoting the boundary of D. Let H(D) denote the en-
velope of holomorphy of D. H(D) is the interior of the intersection of all
domains of existence of functions holomorphic in D (see [2]). Bach func-
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tion holomorphic in D is analytically continuable on H (D). I shall prove
that

The set G(E) defined by (6.3) 4s in this case identical with envelope of
holomorphy of D,

(7.1) G(B) = H(D).

Indeed, since the domain D is starlike, then it does mot possess
a Nebenhiille (see [2]). Therefore H (D) = H (D), i. e. H(D) is the interior
of the intersection of all domains of existence of funetions holomorphic
in D. But each function holomorphic in D may be expressed as a series
of homogeneous polynomials converging uniformly on D (see [2], p. 114).
The terms of the series must be uniformly bounded on F = D", Therefore
the series converges uniformly on G(H) at least, whence G"(E)CH (D).

On the other hand, since i(z, E) = t(z, D), each series (1.1) whose
terms are uniformly bounded on F converges almost uniformly in D at
least, whence it follows that it converges almost uniformly in H (D) at
least (see [2], p. 276). Therefore H (D) C G(E), and (7.1) is completely
proved.

We have thus proved that in order to construct the envelope of
holomorphy of a given circular domain, it is sufficient to construct #(z, D).

8. Final remarks. 8.1. A remark on circular domains.
With any circular domain D, starlike with respect to 0, one may connect
a homogeneous function ip(z) in the following manner. We define the
value of ip(z) at a point 2'eC" as equal to |2Y|/||s?], where |z}

n PY
=y S
{‘zllz_tz’*, 0 <t<1} belongs to D and les on the half straight-line
going from O through z'. The function #p(2) is absolutely homogeneous

of order 1, upper semicontinnous and such that D = {z| tp(2) < 1}.

and 2® is such a point of the domain D that the segment

| o

THEOREM. The circular domain D, starlike with respect to 0, is a domain
of holomorphy (i.e. D= H(D)) if and only if the function logtp(z) is
plurisubharmonic in C™.

.., Proof. Sufficiency. It is known (see [1]) that if a domain & can
be expressed in the form & = {z| V' (2) < 0}, ¥ (2) being a plurisubharmonic.
funetion in a neighbourhood of @, then @ is a domain of holomorphy.
Smge logip(z) iz plurisubharmonic in ™ and D = {z| logip(e) < 0}, then,
in gecordance with the theorem cited, the domain D must be a domain
of holomerphy.

The necessity of the condition follows from (7.1) and theorem
cited, since, putting B = D', we have G(E) = D, whence ip(z) = t*(z, ).
Buf, we know by (5.4) that logt*(z, F) is plurisubharmonic in C".

icm®
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8.2, A remark on n-cireular domains. We say that D is
a complete n-cireular domain (a Reinhardt domain) if together with
PeD we have {z]]2] = |2], k =1,2,...,2}CD. It is obvious that every
complete n-circular domain is @ ecircular domain starlike with respect
to 0. Tt is easy to prove that the real funection f(2) =f(2y, ..., 2x),
upper semicontinuous in an %-circular domain D, depending only on
absolute values of the coordinates of z (i.e. F(zy,...,%n) = F(|&], ..., [enl);
if |%] = |2k, k=1,2,..,n), is plurisubharmonic in D if and only if
the function F (&, &y ..., &n) = (€81, 60, .., €8n), £ = log| 2k, (21,22, ..., 2n) € D,
is convex with respect to (&, &, ..., &). Using this theorem one may
prove that the complete n-circular domain is a domain of holomorphy
if and only if the function logip(z) is convex in C" with respect to
{log|zl, ..., log |eal).

8.3. Examples of #(z, E) for some sets E. If B = {&|[ =1},
i.e. it B is a sphere with radius 1 and centre 0, then #(z, F) = ||2|//r. This
follows from the fact that the sphere is a starlike domain of holomorphy
and the unique function absolutely homogeneous of order 1 and equal
to 1 on the sphere is the function ||z||/r.

T E = {2l ea =25, |2k =7, k=1,2,..,0—1}, |Z]| =170, 7 % 0,
then t(¢, B) = max {|2;]/ry, |2:|/ray ..., |2a|/ra} . This follows from the fact that
every series (1.1) whose terms are uniformly bounded on E converges at
least in the domain {z| mkax |2|/rx < 1} (it is a consequence of the Cauchy

inequalities for coefficients of expansion in the power series; compare
the reasoning of [5], p. 21) and, hence, that this domain—as a poly-
eylinder—is a domain of holomorphy.
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