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A note on approximation of solutions of abstract diffe-
rential equations

by W. MLAK (Krakdw)

We present in this paper some theorems concerning the approxi-
mation of solutions of the equation

(%) W Ao+ita), 0<i<a.

A(t) is a closed linear operator and the domain and range of A(t) are
included in the Banach space K. The function f(, #) is defined on the
Cartesian product <0, «) x B and takes on values in .

Owr method is closely related to the Hille-Yosida theory of semi-
groups of linear bounded operators [3]. On the other hand, we apply
in this paper a technique similar to that developed in [4]. For the termi-
nology and notation we refer to [3].

In [2] and [7] it is assumed that (+) implies a suitable intergal equa-
tion. In what follows we do not need any integral equations implied
by (). The case of time-independent A (f) = 4 = const corresponds to
the abstract Cauchy problem (see for instance [3]) discussed by Hille.
For other general results in this matter we refer to [9].

Let E be a real Banach space. The norm of an element ¢ F is denoted
by |@|. The norm of a linear operator V is denoted by |V]. By small Greek
letters we denote the real-valued functions. The right-hand upper Dini
derivative Digp(t,) is defined Dby

D.gp(ty) = limsup

B0+

5 Po+h)— ()
AT

Let the function @(¢) be defined in the neighbourhood of ¢,. The values
of x(t) belong to B. The right-hand derivative Dix(t,) is defined by

. @(tg+h)—z(t

Dia(ty) = lim ___(le_)»_(_?l
h->0+ h
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We shall make use of the following assumption:

(1) The non-negative function o(t, %) is continuous for te {0, u) and
2> 0. The right-hand maximum solution c«(t, %) of the ordinary
differential equation ' = o(t,u) satisfying the initial condition
(0, 1) = U, exists in <0, a) for each a, > 0.

The following lemma will be needed for later use:
Temya 1. ([8]). Let the function @(t) =0 be continuous on <0, a).

Suppose that (1) holds. Let the inequality

Dap(t) a(t, @l )
be satisfied nearly everywhere on 0, a) (*). Then g(t)
We now prove the following

Lmanea 2. Suppose that o(t, «) satisfies (1), and w(t, 0) == 0 in {0, a).
Let the functions pu(t) =0 be continuous on <0, a) and suppose that the
!

< wft, ¢(0) in €0, a).

sequence pu(t) = jvzpn(s)(ls converges to zero almost wniformly on <0, a).

Suppose that hmu,, =0, un = 0. Our assumptions imply that the sequence

wn(t) of the mght -hand maximum solutions of equations w' = o(t, u)+ @a(t)
such that wn(0) = un s alsmot uniformly convergent to zero on <0, u).

Proof. The function w,(t) satisfies the equation
oi(t) = ot, o)) +@alt)

for 1€ <0, an), an < a. We now define gu(t) = wv,b(t)—f Pa(8) ds = wa(t)—yalt).

[}
Hence

onlt) = o(t, on(t) +walt )) .

The sequence on(t, ) = oft, u+wa(t)) converges to o(t, w) almost uni-
formly for (¢, u)e {0, a)x <0, co). Consequently, the sequence #a(t) of
right-hand maximum solutions of equations ' = ou(t, ) such that
7a(0) = up tends to w(t, 0) = 0 almost uniformly on <0, a). On the other
hand, .gs(t) < 7a(2). We conclude therefore that wa(f) < 7a(t) --ua(t). This
completes the proof.

The last lemma is the following one (see [4], lemma 2):

Lenma 3. Suppose we are given two linear operators A, and 4,. We
assume that (AI—A) " = R(4, 4,), (AT—A,)" = R(A, 4,) ewist for A suf-
ficiently large. The functq,ons a'l(t) wy(t) are défined for /e(!; E4-8) (0> 0),

z(&) e D{A;) and

Diz&) = Awi(8) 4y (1=1,2).

() This means that the set of those ¢ for which the inequality is not satisfied is
at most denumerable,
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Suppose that

UmAR (4, d) dwy(é) = Awi(§)  (i=1,2)

and let the inequality
| 701, 40108~ 2R (2, A)oe)+ ] 0| < Fo o) —mue)]

be satisfied for A sufficiently large. Then D+|sc1 )—@(8)] < p.

We now prove the following

THEOREM 1. Suppose that Uy(t) ¢ a closed linear operator and
[AR(%, Uyt)| <1 for 2> 0,1 <0, a) and D[Uy(t)] is dense in B for each
1€<0,a). Let Uyt) be a family of linear operators such that D[ U,t)]
CDIU,(#)] for te<0,a). Let the funciions z{1) (i =1,2) be continuous
on 0, a) and suppose that

Dazi(t) = Uit zi(t) +y:lt) (i=1,2)

for t € Z C <0, a). Our assumptions imply that the inequality

D+1zl(t)—22(t)l < |[UL(t) — Ua(t) 125t "*‘ |y2(t) — ()]

holds for teZ C <0, a).

Proof. Suppose that ée Z. It is a sunplc matter to Ver]fy that the
operators 4, = U,(€), 4, = 0 and y, = [Uy(€) — Uy(£)]4x(&) + [42(8) — ya(£)];
Yo = 0, 24(t) — 2(t) = a,(2), @u(t ) = 0§ satisfy ’rhe assumptions of lemma 3.
Furthermore, p = |[Uy(£)— Uy(£)12a(8)]+ |9:(&) —ya(£)]. The assertion of
our theorem now follows fmm lemma 3.

Suppose we are given a sequence {4,(t)} of closed linear operators
with domains D{4x(t)] dense in E. According to the Hille-Yosida theo-
rem [3] Ax(f) are infinitesimal generators of semi-groups of contraction
operators if and only if
(2) ]lR(l, An(t)){ <t for A>0,

te0,a), n=1,2,..

Let A(t) be for each ¢ <0, a) a linear operator and suppose that

(3) DIA(#)]C D[4at)], te<0,a), n=1,2,..

We now introduce some assumptions econcerning the approximation
of & non-linear member of (x).

(4) For every g¢> 0 the sequence fu(f,®) is uniformly convergent to
f(t, ) for te <0, a—n) (5> 0), |2|< o.
19+
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(5) The function o(f, ) satisties (1) and ]f(t,m)—-j(t,y)] < ofty jw—y))
for 1 <0, ) and w, y € B. Furthermore, w(t,0) =0 on (0, a).

THREOREM 2. Let conditions (2)-(b) be satisfied. Suppose that
(6) Dym(t) = A(t)a(t)+(t, o(2)

nearly everywhere on <0, a). Let the function xu(t) (n=1,2,..) satisfy
nearly everywhere the equation

M) Daft) = Anlt)2n(t) -+ ult, (1)) -

We assume that w(t), aa(8) are strongly continuous on <0, ). Suppose that
@a(t) 48 uniformly bounded on each subinterval of <0, a). We assume that
limay(0) = 2(0) and that .
n—-02

(8) [[Aa(t)— A @@ ()] = ya(t)

nearly everywhere for each n. It is supposed that y(1) are continuous on
<0, a) and

1
(9) Plt) = [ yals)ds—>0
0
almost wuniformly on <0, a).
Our assumptions imply that wu(t)—a(t) almost wniformly on <0, a).

Proof. It follows from theorem 1 (U, = 4, U, = 4) that the ine-
quality

Daa(t) — 2 (t)| < yult) -+ |7alt, @n(t)) — 1 (¢, w(1))|
holds nearly everywhere on <0, a). By (3)

|Tult, @a(t)) —F(t, w(D)| < oty |on(t) —2 () + |falt, 2a(0) ~ 1 (¢, @b))| -

It follows from (4) that

en = Sup |fult, an(®) b, ault))|~0 .
Hence ‘
T)*'f”’%(t)"w@)] < O'(t; |@n(t) — @ (t) I) ~+ gm(t)

where @u(l) = pu(t)+¢,. The last inequality holds nealy everywhere on
0, a—n). Making use of lemma 1 we conclude that

(10) [#alt) ~ 0 ()] < on(t)  for  te<0, a—nd

for " sufficiently large: wn(t) denotes hore the right-hand maximum
solution of equation w' = o(f, u)+pu(t) such that wy(0) = |2(0) — a(0)]-

e ©
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By lemma 2 wn(f)—0 almost uniformly on <0, a). The assertion of our
theorem follows from (10).

Remark 1. It is a simple matter to formulate theorems similar
to theorem 2 in the case where (6) and (7) are satisfied almost everywhere,
Lemma 1 may be then replaced by a suitable theorem concerning dif-
ferential inequalities with right-hand members satistying the Carathéodory
agsumptions (see [1] and [5]). The real-valued functions |a(t) — #(2)] may
then satisfy any of the conditions (I), (II), (ITI) or (IV) of [56]. In order
to apply the technique used in the proof of theorem 2 one must introduce
instead of (2)-(5) some suitable conditions formulated in the language
of the Lebesgue-Bochner integral theory.

Remark 2. Suppose that fu(t,»)=f(t,®) = 0. Let Ax(t) be bounded
operators and suppose that -

1 |CAa(t)— A (1)] ()] -0

almost uniformly on (0, ¢). Asswme that IZR(Z,An(t))| <1 for A>0
and t¢{0,a), n=1,2,.. We can then apply our theorem. Condition (11)
is the consistency condition appearing in Lax’s stability theorem (see [6]).
If for each ¢ A(¢) is the infinitesimal generator of a semi-group of con-
traction operators, then we ecan take An(l) = nAM)R(n, A@) or An(?)
=n|T(1/n, A(#))—I]. Then the convergence in (11) is a pointwise one:
in order to ensure the uniform convergence one wust introduce some
additional conditions. The simplest situation is that where A(f) does not
depend on t— A (f) = A = const. We may then put A, = n[T(1/n, 4)—I],

Ap=ndR(n, A), 4n = :;—Lf.ll’ﬁ(%L , A) and thus obtain by theorem 2 the

formulas of Dunford, Yosida and Hille respectively.

Remark 3. Suppose that (2) holds and let A () be for each ¢ the
infinitesimal generator of « semi-group of contraction operators. Let
the functions ga(t) = |[Aa(t)— A (¢)]@(£)| be continuous on (0, a). Observe
now that (dn(t)—A @) (t) = (da{)— A () -R(1, A()(I—A()a(t). We
may apply theorem 2 if the following conditions are satisfied:

(@)  [An(t)—A@)]a—0 for te0,a), xeD[A{)],

B)  [4al)—A@IR(L, AW) <M on 0,0,

() |&'@)] = At (t)| Oya—m>  (n>0).

Indeed, (x) implies that @u(f)—0. By (8) and (v) @a(t) < M[|2'(2)] +

+[2(8)]]1 = v(#) and (¢) is summable over <0, a—n>. It follows from the
1

is summable over

Lebesgue theorem that [ ¢(s)ds—0 almost uniformly on <0, a— 5, which
0

was to be proved.
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Investigation of some measures and sequences related
to the extreme points

by A. Szysrax (Krakéw)

I. Introduction. Let X be » Hausdortf space. We shall denote
the points of this space by a, @, y,... Let @ be a function defined on
X x X and satisfying the conditions

1. D@, y) = D(y, ).

2. D(x, ) = ~co.

3. @ (@, y) is continuous on X x X.

We ghall name this function @ a Fkernel. The function w(w,y)
= exp (—P(z, y)) (where by exp(—oo) we mean 0) will be named the
generating function.

We fix in X a compact set . We choose on F n+1 points 2y, ..., Zn
and we seek

i b .\ @
(;{éfE é; D(w;, 25)
o<t f<sn

sup ” w(®;, w) .
dCE a7
o<i<isn

or, which is the same,

By the above conditions on @ and F there exists at least one system
of points {75, ..., yu} such that

min D' G(ai, ) = D B, 7).

{ICH {4f i%]
This system {57, ..., #y} will be named the n-th exireme system of E with
respect to the kernel #. The object of this paper is the investigation of some
measures and sequences obtained by the extreme points. In the classical
extreme points theory, formed by M. Fekete and developed by G. Polya,
G. Szegd and T. Leja, the extreme points have been used for the con-
struetion of some polynomials, X being the complex plane. Some sequences
related to those polynomials converge to some functions which give the
solution of the Dirichlet problem or are useful in the theory of double
power series.
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