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On some properties of Borelian methods -
of the exponential type

by L. WLODARSKI (L6dz)

§1. Let A be a functional method of limitability defined by the
sequence of real functions {a(t)} for #, <t < T (T < 400). A sequence
& = {£&,} is said to be limitable by the method A to the number & if:

00
1° the series D an(t)£, is convergent for ¢, <t < T,
n=0
o0

20 the limit im > an(t)én = & exists.
=1 — n=0

The transform A (f, z) of the sequence z = {£,} with respect to the
method 4 is called the expression

(1) Alty ) = ) anlt) én.
n=0

We say that the transform A (f, #) exists when condition 1° is satisfied.

In this paper we shall deal with Borelian methods of the exponential

type Ba, (a> 0, y real, otherwise arbitrary) defined by the functions

an~+y
9 = gt mo— <
(2) Duyn(t) = ae Tl Ty 51 for 1<ti<oo
and we agsume as usual
(3) I'k) =0 for k=0,-1,-2,..

Thus the transform B,(f, ) of the sequence x = {&} with vespect to
the method B, is found to be

3-01 tun»)-y
4 ] = qe—t 2 — e &
(‘[”) Buy(.t; '7") aé p 1’(’a-n+y+1) sn ‘
n=

If the above transform exists and
lim B, (t, ©) = &
{00
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178 T.. Wlodarski’

then the ‘sequence o = {£p} Is said to be limitable by the method B, to
the number &

In my previous papers [12] and [13] T dealted with a subclass of the
methods B, with o = of (B =0, £1, £2,...), and y = 0. In paper [14]
T gave the results concerning the case a > 0, y = 0 (which was presented
at a meeting of the Lodz section of the Polish Mathematical Association,
October 10, 1957).

In the meantime these methods have been dealt with, independently
of me, by D. Borwein, who has extended in [1] (p. 28, I) my previous
consigtency theorem for thie methods B, to the case « > 05 y = 0.

A functional method defined by the functions {a.(1)} for ¢ <t < T
is said to be comtinuons if:

T° the functions an(t) are continuous for f, =1t < 15

TT° there exists such an increasing sequence of positive numbers
{tm}, to < tn < T tending to T that for each z = {&,} the convergence of
the series (1) for ¢ =t, and ? =tu4 implies the uniform convergence
of the series (1) within the interval &, <t <tuyr-

The properties of continuous methods which I have found in [11]
are as general as those given by 8. Mazur and W. Orliez [5] for the
matrix-methods. Moreover, these methods include, in the sense of equi-
valency, the matrix-methods as well (this means that for every matrix-
method there exists a corresponding continuous method which agsociates
precisely the same sequences with the same limits). Typical continuous
methods ave the methods of Abel and Borel.

o
In general if P(1) = 3 patn for |t| < X', pa >0, where there are in-
1]

Py
finitely many p» > 0, ilixfnﬂ P(1) = +oo, then, as iy easy to verify, the
method defined by the functions an(t) = pat?/P(t) for 0 i< T is regular
(permanent) and continunous.

TuEoREM L. The methods B, (a> 0) defined by the Junctions (2}
are continuous.

Proof. Tt is evident that property I° takes place. In order to show
that property II° also takes place, we shall write the transform By, (¢, @)
in the form

(5) Byt @) = a6 Wp() for 1=i< oo,
where
NI
; = ST
(©) pu) Z T T

Let {t,} be an arbitrary increasing sequence (i, = 1) convergent - oo.

©
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1]

Expression (6), as a power series, possesses the following property:
the uniform convergence of this series in the interval f;, < « < &, follows
from its ordinary convergence at the points % = ¢, and u = t,4,. Taking
into account formula (3) we see that the uniform convergence of series (4)
in the interval #, <t <, follows from its ordinary convergence at
the points ¢ =t, and ¢ = {,,4,, which was to be proved.

DrrINITION 1. Tf 2 stands for a sequence {&, &, &, ...} then by =,
(p being a positive integer) we shall denote the sequence {&,, £p11, &pra, ...}
and by 2-, the sequence {£_,,& pi1,Epre, o, &y &y &,y oo}, Where
£ py b pr1y ey Eo1 aTe arbitrary numbers.

Remark 1. The limitability of the sequence x = {&), &, &, ...} by
the method B, is equivalent to the limitability of the sequence
rp = {&p, Ept1s Epyey oo} by the method B, .p,.

Proof. Let us note that
p%l tau+1l

T —aet D
(‘) Buy(tﬂ”) = ae t"énl ]’(uﬂ-{-;v—!—l)

’Sn ’:’ Ba,y%—pa(ta mp) .

In view of the fact that the first term on the right of (7) always tends
to zero as t—>oo, our remark is true.

DeriNiTION 2. We shall write f(8)~g () if lim f(1)/g(t) = 1.
#—00
Next we shall prove a lemma which is necessary for the proof of
regularity of the methods B,,. This lemma has been given by Hardy

(37, p. 198) for the case y = 0; the idea of my proof, in the general case,
iy different from that of Hardy.

LeMmA 1. For an arbitrary a> 0, a veal y and an integer k the following
formula is true:

901 anty 1
i —t —_— ==
®) ' tlg}.;l [6 ;./;kJ F(an—l—y—(—l)] a’

Proof. Without reducing the generality of the proof we may assume
(9) 0<y<a and k=0.

For, if these conditions are not satisfied, then let =, denote such an
integer that

0L d=any+y>a.
Then we have

fd q

jmty S‘f‘ Janra oty
_ — ot _ ~t IR &
(10) ¢ L Flan 770 ~° Z Tlano4D) 1% & Tlanty+1)

131:

n=0
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where
for ne>%k wehave e=+1,p=Fk, q=n—1;
for wy="% we have &=0;
for n,<k we have =1, p=mny, ¢=k-1.

Since the second term on the right of (10) always tends to zero as
{->c0, we see, indeed, that the case of an arbitrary y and % has been
reduced to case (9).

Thus in the sequel we shall assume that hypothesis (9) holds.

Now, for the proof, let us consider the function:

tu

(11) folw) = -  for

w0,
T =0

Let us obgerve that
>1 for w<i,

fi(w) i . .
(12) o =— =1 for w=t,
flu—1) | <1l for wu>t
and that
t I +1)
(13) filu N CES)) [logt INOR %‘l)]
For the logarithmic derivative of I-function we have the following formula
) F'(u-+1) \1 1
(14) v =T =0t T

where C is BEuler’s constant
¢ = 0.577215665...

(see e.g. [4], p. 18).

As can be seen from formula (14), the function p(w) is an inereasing
one, and, when % is a positive integer, we have

. 1 1

(15) 1/)(71;):-—-(14‘1-[——2' +...+;'j.

Now let us assume that
(16) Cotza+2.

. It follows from formulae (13), (14) and (15) that function (11) possesses
exactly one maximum M, = f{%), and from formula (12) it follows that

{17 =l <u<t.
It follows from Stirling’s formula (see e.g. [8], p. 402)
(18) T4 +1)~ ) 2muntifzg=n

'

icm®
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that
(19) lim fy(u) = 0.
U0

Under hypothesis (16) the graph of function (11) has approximately
the following shape:

=Y

Fig.

Now we shall prove that for the maximum M; =
tion f(u) the following asymptotical formula is true:

fi(ue) of the func-

(20) lim [e—tM,] =0 .
{-»00

As we know,

™ (wta)™
a
o= filw) = D(ug+1) ~ T +1)°
where
(@1) 0<dy=t—my<l.
Using Stirling’s formula we have
leg (’“t'l"' 6, ( m gl 1
@2) 1/27:1«"‘““ ~t gf + W Vom Y

which tends to 0 by (21).

Let us notice now that for a function of such type as the one in the
above figure, i.e. a continuous function increasing for 0 < w <, and
decreasing for > w,;, we always have the following:

(a) the integral ff (u)dw converges simultanously with the series Z f(n);

n=0
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) ]f]‘ (w)du— V/(n)l < My, where M; = sup f(u).

uz0

Tt follows from formula (20) and from property (b) that for func-
tion (11) we have

v 1
(28) ¢ J T u+] j 211 n+l
Applying to the function
tuu-ﬂ; ' :
o [ B — s [) I
giu) = f{aw-+y) N CTETESY) (a>0, 0 <y «)

an argument similar to that (mplwd Defore to function (11), we receive

o)

3 t,_m,w i au+7' h
2 —t l
(24) e P((11L+y+1 .I Iaw 4y -+1) du = Tu J [ ”’
for maxgt(u) = maxfu). In view of (9), (16) and (17) is also maxggu)
o uz=0 Wz=0
max /t(u ) and eonsequently
U0

lim[e~tmax g u)] = 0.
00 w0

Let us notice that, taking into consideration (9) and (16)

a

|JM+1 fm+1 ‘ fm+1)’z‘< f‘l‘(wf+1>‘7” < ety

Thus, taking into account equality (23), we have

ot f ' 9:‘ °'°__J’_'., I
I'(v+1) g LI(v+1) T

in view of which it follows from cquznlity (24) that

e N b
~ Tlan+y+1) ~ &

which proves our lemma.

TrEOREM 2. The methods B, (a>0, y— any real number) are
regular (permanent).

Proof. It ig known (see e.g. [11], p. 163, Th. IIT ¢) that a continuous
method A defined by a function sequence au(t), % < &< 1' is regular
(permanent) if and only if the following three conditions ave satisfied:

©
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1° Hm an(t) =0 (0 =0,1,2,..),

[~1'—
o
20 lim Y an(t) =1,
i—=T'— n=0

oo
30 sup D |aalt)| < oo

Ly<i<T n=0
Condition 1° is obviously satisfied for functions (2). Condition 2° is
satisfied for function (2) because of lemma 1, and consequently, because
of a,(t) =0, condition 3 is also satisfied.

DErINITION 3. The faet.that the sequence x = {£,} is limitable by
a method A to the number £ will be denoted in symbols as A-limé, = &
or A(x) =&

DeriNiTION 4. The convolution of the two functions j(t) and g(t)
is called the function A(f) defined byithe formula A(l) = f]’(r (t—7)dr.

Or in symbols
h{t)=F(t)%g ().

LemmA 2 (for the proof see [13], p. 146, lemma 1). Let f(z) be a complex
funetion of @ real variable defined and continuous for t = 0. If in addition
Hmjf(t) = m (m being a finite number or --oo) then for the function

00
a

g(t) = 1 (1) % ot (jH) (a>1)

we have also limg(t) = n.

{00

THEOREM 3. If a sequence x = {£,} is limitable by a method By, (a > 0
v real, otherwise arbitrary) to the number &, it is limitable to the same number
by every method B, provided é > y, which means that the methods B are
more general and consistent with B, for all 6 > .

Proof. It is enough to prove the theorem in the case y = 0. For,
let us assume that the theorem is true for all y > 0 and we want to prove
it for a certain ¥ < 0. Let us take into consideration an arbitrary method
B,, and an arbitrary sequence » = {£,} limitable by the method B,, to
the number & We shall prove that the sequence z is also limitable by
a method B,s to the number & provided 6 > . Now let p be such a posi-
tive integer that

(25) paty=0
Because of remark 1 we infer that

(26) By(z) =& is equivalent t0 - Buprpul@) = &
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(see def. 1 and 3). But in view of (25) we infer that

(27) Biyipd®p) =& implies B sipaay,) = &

since we have assumed that the theorem is true for every y, = y +pa = 0
and evidently &, = 0 4pa > p, = y-+pa. Because of remark 1 we again
infer that

(28) -Bu,d+pa(m1)) = 5
From (26), (27) and (28) it follows that B,(x)=§& implies B(x) = &

provided & > y, which means that our theorem is true for an arbitrary y
if it is true for y > 0. Thus without reducing generality we may assume

is equivalent  By(x) = &.

(29) y >0,

In the sequel we shall uge the idea of convolution (see def. 4). The con-
volution-product is, as we know, commutative, associative and dis-
tributive with respect to addition (see e.g. [7], p. 2-4). The following
formula is also known ([7], p. 105, formulae (55.3) and (55.4)):

(30) . ia . tb a0 +1
s _ el = ¢ -
Ty oD = “ T b Tl
for a, b > —1. In particular, we have
tun+y td-—-y—-L tnn +8
(31 et et = = ot - .
) a7 70 To=7=1) Tlan F 5717

We state that for & sequence ® = {£,} limitable by the method
B,, the following relation is true:

F—yp—1

(32) Bt 0) %~ pri——

= Bu(t, x) .

In view of formulae (4) and (31) in passing from the left to ‘rho right

in (32) we only have to change the order of the signs 2 and f Such
e

a change is permissible for it follows from that limitability of the sequenco
2 = {£4} that, in particular, series (4) under agsumption (29) is uniformly
convergent in every finite interval 0 <t <4, < co. Thug the correctness
of formula (32) has been proved.

) It follows from the assumption B, -limé, = & (see def. 3) that
}EBay(t,w) = £, whence on the grounds of formula (32) and lemma 2

we have tl_ig:Ba,,(t,sc) =§ or Bg-limé&, = £, which was to be proved.

Thus the proof of theorem 3 has been given.

icm®
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TupoREM 4. The methods B, (a> 0, y — real, otherwise arbitrary)
are capable of displacement to the right, i.e. the limitability of a sequence
@ = {&, &, &y ...} bY the method By, to the number & implies the limitability
of the sequence ®_; = {&_1, &, &, ...} 10 the number &.

Proof. It follows from formula (4) that

14

. I3
(33) B,,(t, x—) = aé et m

+Bu,v+u(t) {D) .

In virtue of the assumption

lim B, (t, x) = §&.

1—00

Tt follows from theorem 3 that also

lim B, 4ty ©) = &,

-0
whenee in virtue of formula (33)

limBuy(ti m_l) = E ’

t—co

which proves our theorem.

5

= [eo(t)dt

[1]

~

§ 2. DeriNivioN 5. The TLaplace transformation F(s)

will be denoted briefly by the symbol F(s) = L{f(t)}.
We know that the operation .2 is reversible. It is obvious that the

functions .27 {F(s)} = f(t) may differ by a term N (t) for which f N(z)dr

= 0 for all £ > 0 (see [2], p- 35). (It can easily be proved that the Laplace
transform 2 {N (1)} = Fy(s) of a function N (?) is identically equal to zero.)
The operation 2 is completely reversible if we are dealing with continuous
functions, as is here the case.

In this seetion we shall deal with cutam functions and their esti-
mations. Let us begin with the funetion

+ica
(34) golt, ) = L7 {e""’e} ="‘>11§5 f exp (ts—vs’) ds
—foo

(L denotes a transformation reverse to the Laplace transformation).

. Mikusinski has proved in [6] that the function g(f,7) is 2 real
and conmnuous funetion for all 0 < 6 <1, > 0 and v> 0. In addition
I have proved in [10] that under the same agsumption functions (34)
are non-negative.
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In the theory of Laplace transformation the following elementary
formula is known (see e.g. [2], p. 401):

=1
(35) Jj_l{;—ﬁ} = jtT(E for >0, .

Function (35) is, of course, positive for > 0.
Now we shall use
TCHEBYSHEFF'S THEOREM. If the integrals corresponding to the fune-

] 4]
A X ot oo < ) .
tions Fy(s) = DJ e~ h() A and Fys) ==UJ ¢~Uy(8)dt are absolutely convergent

o
for s = 8,, then Uj e"“’[fl(t)%fu(.t)jdl s also absolutely convergent for s = S

and s equal to Jy(s)- Fos) or L2410 % [o(0)} = L{(0} L{1)}, which mplies

LTHEs) Fols)} = L7{F ()} % L7 {Fyfs)} .

For the proof see [2], p. 161, Th. IV b.
Let us now write

, 1L '
(36)  Tgslt, 7) = .2 I{Eﬁ 6‘"’0} where 0<0<1, 70, fi>0.

In vivtue of formulae (34), (35), (36) and the theorem of Tehebyshett
we have l

f—1
(37) Tog(t, T) = gyt L
ﬂﬁ( H ) 90( 7T) *lw(ﬂ)

(convolution with r(?sl.aect to #), whence, in particular, it immediately

.follows.from the definition of convolution (see def. 4) that function (3(5)

is continuous and ‘ .

—_ -1 1 —T
(38) hoglt, 7) = .0 {Eﬁe s”};o for 0<O<1, A0, t>0, v>0.

J . 3 ‘
- Now we want to estimate function (36). Tor this purpose we shall
ake ad;lzantage of a lemma which I have proved in [97, p. 184 and which
gives the formula for a transformation reverse to the Laplace trans-

formation:
Levma 3. Let G(s) be a function holomorph in an angle domain /A,
(39) larg(s—A)| < m/24+a  where A 0, 0 < a<mn2

which satisfies in it the inequality

(40) tG@)| <Mis|™  where M>0, §>0.

©
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Then
_ 1
(41) LHE(E) =5 fest(s)ds
C

where the integration path C is given by the equation

(42) Jarg (s — o) = g 4-a  where 0> 2
(see fig. 2).
We want to apply the above to the function

(43) G(s)zgﬁa'“’" for f>0,7>0, 0<O<1.

We shall verify that functicn (43) satisfies the conditions of lemma 3

in the domain @ provided we take an _

arbitrary 1> 0 and choose such an a>0 G a6

that the inequality =

(44) 0(n/24a) < o <2 1

takes' place. S
Tt is not difficult to verify that if

8 e (formula (39)) and o satisfies con-

dition (44), then

(43) R(8") = (Acosa) cosw = o> 0 (Y).

In view of (45) we have the following
estimation for function (43):

3 - 1 —oT
(46) IG(s)lglgiﬁe .
Thus function (43) satisfies assumption Fig. 2
(40) (with M = 1). .

We apply lemma 3 to function (43) and receive a formula for
function (36) .
(41) 5ol - o L g
gb 21':’50 gb ’

where the curve C is defined by formula (42) (see fig. 2).
From formula (47) we immediately receive an estimation for fune-
tion (36) in domain (39) with a satisfying condition (44):

(48) ‘ lL—l{}}lﬁ 6—1&0}

() By R(2) we denote the real part of 2

< A(t)e o,
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where

(49) A =| [ Lm0z < +oo
: o 18l

and o> 0 is given by formula (45).
TFurther we see that

(30) Ay <BQ@)+C(),

where

(50a) Biy=2| [ om0z

PPy 8

and in this integral we have 0 << R(s) < o,

(50b) Oft) =2

[ e
o8
¢

and 1_11 this integral we have R(s) < 0.

C ig that part of the curve € on which the conditions arg(s— p)
==n/24a, R(s) <0 are satistied (see fig. 2). ‘

Remark 2. One can see from formula (45) that by choosing « suit-
ably small and 1 suitably large we can obtain an arbitrarily large ¢ in
inequality (48). On the other hand the functions A(t), B(f) and C(t)
depend on the choice of ¢ and also .
' Remark 3. It ean be seen from formulae (50a) and (50b) that B(t)
ig an increasing and C (i) a decreasing function of ¢ (¢ > 0)

Remark 4. For function (30a) we have the estimation

B(t) < 2¢et

f—il—/? ds ’ < Byeet
PPy I'gi
and for function (50b)

, )< C1)=0C, for i>1,
and thus ultimately

AQ) <Byet4+-C, for t>1, where By>0, Cy>0.

Let us consider now a transformation Wy, 0 < 6 < 1, f> 0 defined
by the formula
(51) F(t) = et f e'f(r).G""{élﬂe'""} dr

0

where .27 gtands for a transformation on reverse to the trangformation
of Laplace. Formula (51) will be written briefly F'(t) = Wy {f(7)}.

e ©
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Remark 5. The operator Wy, is additive and homogeneous, i.e.
Wos{af (v) +0g(0)} = aWes {f(2)} + 0 Wes {9 (v)}
provided the right side exists. In connection with transformation W we
shall define a class of functions Lg:

DEFINITION 6. A complex summable function f(z) of a real variable
>0 is said to be a member of the class Ly if the following conditions
are satisfied:

1° f(z) is bounded in any finite interval 0 <7< T' < oo;

2° the i‘ntxegml occurring on the right of formula (31) is convergent
for this function.

Now we shall use the formula of Efros, which I proved in [9] and
which we shall need here only in a special case (see [9], p. 187, formula 12):

(52) i {%F*(s”)} = j fm) L™ {gl,; e—“"} dr,

where 0<0<1, B>0, [eif(r)|dv< oo for some o320, F*s)
0

o
= | e~ f(v)dr, 27! denotes a transformation converse to the trans-
o

formation of Laplace.

TugorEM 5. The transformation W, 0 < <1, >0 defined by
formule (51) is permanent (regular) in infinity for Leg, i.e. for every
Function f(z) € Lgg (def. 6) for which (def. 6) lim f(zr) = m (m fiidte or + oo)

T4 00

we have as well limF (t) = m.

[

Proof. It is obvious that hecause of the addivity and homogeneity
of the operator Wy we may, without reducing generality, confine our
considerations to the case of real functions f(r). In the proof we shall
distinguish several subsequent cases.

Case I1° f{r} =m. Then

(53) F(t) = mbet ‘ a’.!_’_l{—'slg a—w”} de.
0
Now we shall apply to the integral on the right of formula (53) the

formula of Bfros (52), the assumptions for which are in our case plainly
satisfied. Then we receive

RN Ll 1
j e L2 {—S—Ee s}d‘r=,€ {FF:I}’
0

for in our case F*(s) = {e’}:-—s—i—]- (see e.g. [2], p. 401).
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On the other hand, agsuming that R(s) > 0, we have because of
the properties of Laplace transformation

- af 1 S 1 ,
. 1{315 55“1}" 1{«”" 1—5—"}_ﬁ {nﬁ“**“”ﬂ‘“"+~~-)}
{% tm)+/a—1
= & Tnl+5)
or ultimately
> (1 . ‘ooj tnﬁ»lrﬂ—«l
54 e 1{_... ,-,ao} e NPT
(54) (,{ LT dr 2, VA oUE

Thus returning to (53) we have
t’uo»}-/lwl

T 1) = 06—t [
F(t) =m0 néo’ NOETIR

Making use of lemma 1 we receive limF () = m, which proves the
00

theorem in our case.
Case II°: limjf(r) = 0. In this case for an arbitrary e > 0 there

7200

exists such a 7' that
(55) [Hr)| <4 for >7.

Now we ghall estimate function (31). For this purpose \.ve ghall
divide the integral D}O which occurs on the right of (51) into two integrals

T oo
J +i! where 7' is the same as in inequality (55). Then we obtain an
0
estimation
e

(56) |F(t)| < Moe—t f T P“l{l e—5€e}dr+ 0e~" { 61‘0“1{1—- ‘"’}(h
6 ’ g ¢ ’
where M = sup |f(#)| (M < oo for feLg (see def. 6)).
ost<T

Now we pass to further estimations. In virtue of formula (48) and
remark 4 we have

’
(57) ‘ f eze*l{-:F e~rs°} ds| < oT(Byott 4 Cp) T
0

Since in our case ¢ may be chosen arbitrarily (see lemma 3), we take,

for ingtance:

(58) o=14%.

©
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On the other hand, taking advantage of (54).and of inequality (38) we
obtain

[==] oo}
_ 1 " _ -1 tn9+ﬁ~1
50) 0< [ e emlar < [ o —rsﬂ}l I N A
(59) \if & jar OJ L FEa Ly 2 o0
Thus, comparing (58) and (39), we have
71b+ﬂ—1

. | < MOeTT —i2 L (' o~t) 1 & ot _
(60) |F ()] < M0 T (Byo~t + Gy + O 2 TGrTH

The first term on the right of (60) tends to zero as t—»+ oo, whereas the
second term, in virtue of lemma 1, tends to g/4. Thus we have
IF) <e for =14,
which proves the theorem in our case.
Case III%: limf(r) = m (m— finite). It follows from the additivity
of the transformation Wes that
(61) W {f ()} = Wog{m}+Was {f (v) —m} .

In virtue of case I° the first expression on the right of (61) tends to m
as {-»oo; in virtue of ecase IT° the second expression on the right of (61)
tends to zero as {— -+ oo. Thus the left side of (61) tends to m a8 t—oo,
which proves the theorem in our case.
Oase IVO: limf(z) = +oo. In virtue of the assumption for every N
700

there exists such a T that
(62) j@)>2N for >T.

Proceeding in a similar way as we did in case II° we receive the
following estimations:

T
() > 2N 06~ [ 0" 1{ o=\ s — 06~ | ’,.c"{gﬁ o) ar,
I 0
where M = sup |f(z)|.
o<l
Turther in virtue of (B7) and (59) we have
tn0+ﬁ—-1

F(t) > 2N et 2 TR — (M +2N) TO6T~4(Byect + Cy)

whence, assuming (08 and applying lemma 1, we have F() >N for
t > t,, which proves the theorem in our case. Thus theorem 5 has been
proved completely.
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Remark 6. Transformation (51) Wy becomes for 0= g =1 the
transformation W which I used in [13], p. 140, formula 4 in the proof
of the consistence of methods of the type Wuy (b =0, 41, 42,..).
Let us observe that indeed

]

Wige, 1 {f (7)) = ?; 'rtj e f (1)L f'i?’: et s}' de.
o

b

In virtue of a known formula from the theory of Laplace transformation

(see [2], p. 402, formula 18) we have

_L’"l ‘_.1_: et El‘ — _ql._: (5‘:2/4~l,
IV s Vit
and in thig way we receive
o0
. 1 ' ,
Wi {f(2)} = s—= o=t | o= evf(r)de
2 ) kit §

In the proof of theorem 6 we shall use a certain lemma, not very
difficult to prove:

LemmA 4.7f for n=10,1,2, ..
1° the functions fu(u) are defined and comtinuous for w20,

. 0o
2° the integrals f [fa(u)|du are convergent,
]
3
3° the series D) fu(u) converges wniformly in every finite interval,
n=0

40 ;0 alu)] < + o0

o0 00 0~ [3=]
then the integral [ 3 fu(u)du is convergent and equal 1o Y [ fu(u)du.
0 n=0 n=<0 0

THEOREM 6. If & sequence x = {£,} is Limstable by the method B, to
the nwmber & and under the following asswmptions

(63) 0<O<l, 6>0(y-+1)-1
its transform By ewists, then the sequence n 48 limdtable by the method
Bous to the number &,

Proof. In the same way as in the proof of theorem 3 we may assume
without loss of generality that y > 0.
Let us write

(64) B=06—0(y+1)+1>0

e ©
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and take into account the transformation Wy where 6 is a number
satisfying the hypothesis, and g is given by formula (64). Let us put
in formula (51) function (2) instead of f(r). Then we receive

_ - Tty -1 el
, o 1 Pl
Wop (Bayn(7)} = e OJ a1 2w
Applying formula (52) (formula of Efros) to the second number we obtain
gy 1
Wop {bayn(T)} = afe ™02 l{m}
or
tﬂan+8y+0+ﬂ——1 tﬂun+5
i = abe—t —— — bt .
Woa e} = abe™ rg 7078 ~ “ Tt o7

Putting for g value (64) we receive ultimately

(65) ‘ Wﬁﬁ {ba-,vn(r)} = bﬂa,ﬁ,n(i)
or
kel an+y fan-3

(66) J et L = T

; Ilan+y+1) §8— 0y +1)+1 I'(fan+4d-+1)
Now we shall prove that
(67) Wos {Bult, )} = Bouslt, )
or

el an > OBan-+&

N e LD

(68) J = Tlan 771 5 \worom ¢ & % T(han+o+1)""

In order to prove the formula (68) it is enough to prove that on

the left of (68) the order of the signs | and Y may be changed; then
o n=

=0
the theorem follows from formula (66).
For this purpose we apply lemma 4 to the function
. unty — 1
—_ =1 —s®
falw) = I(an+y+1) EnlC {36—6(r+1)+16 e }

Assumption 1° of lemma 4 iy obviously satisfied.

Assumptions 2° and 3° are satisfied because the sequence x = {£,}
in virtue of the assumption of our theorem is limitable by the method B,,.

Finally let us notice that, since function (36) is non-negative, in
view of (66) in our case we have

oo
tt}an+d

J ol = g 4l
Annales Polonici Mathematici X 14
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Agsumption 4° of lemma 4 is satisfied, since for the sequence » = {&,}
the transform By s(t, #) exists, and consequently the series on the right
of (68) is absolutely convergent. Thus the correctness of formula (68)
and consequently that of formula (67) has been proved.

) In view of the fact that the sequence x is limitable by the method
B,, to the number ¢, the following relation must be true

lim B,,(r, @) = &.
00

In virtue of equality (67) and theorem 5 we must have also
{69)

LEquality *(69) proves our theorem, which ends the proof of theorem 6.
Remark 7. Theorem 6 is more general than my theorem given
in [14] or the theorem of Borwein given in [1], for in this theorem ¢ may
be smaller than 0y.
In the proof of theorem 7 we shall use the following lemma.

LevMA 5. If f(u) is a complex function of a real variable defined and
" ‘

continuous for w >0 and F*s) = [e~suf(u)du, where the integral on the
0

ﬁmBga,,’(t, m) = E .
t-ro0 .

right 48 absolutely convergent for R(s) > 0, then lmsF*(s) = m.
8->04

THEOREM 7. If a sequence x = {&,} 18 limitable by the method B,, to
the number & and its transform with respect to the method of Abel ewists,
then the sequence « is limitable by the method of Abel to the number &.

Proof. In virtue of the agsumption

5]

(PO) B(1 . tun+v

] = qe~ -
w(ly @) = ae < Tlan+y+1) En

exists, '

(71) }B;}Bay(ty z)=4§

and the transform with respect to the Abel method

oo
(72) Aty @)= (1—1) D 0,
exists. "

" Let p stand for an integral non-negative number such that
(73) ap+y 20
and let us write
(74) b=up+y>0.

icm®
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Tn virtue of remark 1 the limitability of a sequence z = {&, &, &, .-}
by the method B,, to the number & is equivalent to the limitability of
the sequence @, = {&p, &ps1, £piey -} DY the method B, to the number &,
i.e. the transform

o
fan+s

Bult, 05) = a0 Y sy o

n=0

(73)
exigts and

(76) lim Bo(t, @p) = €.

{—o0

By means of the formulae for the Laplace transformation, making
use of assumption (72) and applying lemma 4, we can eagily show that

SR
LBt )} = —— Y Epin.
{ y(,%)} (8+1)n'§'0:(8—|—1)msp+”

Multiplying by s both members of this relation and substituting
in the second member

1
(77) - =1
(s+1)
we receive .
1t
(78) 82 (Bt &} = 5= A1, ),

where A(f, #) stands for function (72), and @p is given by def. 1.

Tn virtue of (76) and lemma 5 the left side of (78) tends %o & as
$§—0-+. Thus in virtue of (77) the right side of (78) also tends %o 3
as t—>1—.

The first factor on the right of (78) tends to 1 as—1—, and ultimately
we receive .

HmA (#, 2p) = £,

t—rl—
i.e. the sequence z, is limitable by the method of Abel to the number &.
But it is known that the method of Abel is capable of displacement to
the left and right, and therefore the sequence @ = {{x} is also limitable
by the method of Abel to the number §. Thus theorem 7 has been proved.

Remark 8. Since the transform of a bounded sequence with respect
to Abel’s method always exists, it follows from theorem 7 that if a bounded
sequence is limitable by the method By, to the number £, then it is also
limitable by the method of Abel, and consequently also by the method Cy,
to the number £.

14%
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Sur une fonction extrémale liée a 1’écart arithmétique
d’un ensemble

par B. SzAFIRSKI (Krakéw)

Introduction. Dans le présent travail je me propose de résoudre un
probléeme de M. F. Leja, relatif & I’existence et aux applications de certaines
fonctions extrémales liées aux ensembles fermés et bornés de lespace
euclidien R™ & m dimensions.

Si BECR™ est un ensemble fermé et borné et si ¢ = {g, ..., g}
est le mfme systéme extrémal de points de B, c’est-a-dire un systéme de
points tels que

Z |wi— @]

2MCE 1gick<n

Z |¢i— | = sup

I<i<ksn

olt 4™ = {, ..., %y} désignent un systéme quelconque de m points de
Pensemble F, alors la suite de fonctions

n
1 7
D) = ;Z le—q|, n=1,2,..,

=1

converge en tout point de l'espace E™. Dans la prgmiére partie je donne
la démongstration de ce théoréme, ainsi que certaines propriétés de la
fonetion extrémale ainsi obtenues.

La seconde partie est consacrée & une généralisation naturelle des
notions et des théorémes de la premiére partie.

Premiére partie

1. Soit F un ensemble borné et fermé de points de T’espace eucli-
dien R™ & m dimensions, et |p— g| la distance des points p et g. Désignons
par p® un systéme de n points quelconques p,, ..., ps de H, par A (p®)
les sommes
(1) Apw) = > |p—pil

1<I<k<sn
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