are real, independent and are of course solutions of (10). They are given by the formulas
\[u^{m} = q^{m}(q^{m1} \cos y - q^{m2} \sin y), \]
\[u^{n} = q^{n}(q^{n1} \cos y + q^{n2} \sin y), \]
where \(q = \text{mod}(a_1 + i a_2), y = \text{arg}(a_1 + i a_2) \) and \(q^{m1}, q^{n1}, q^{m2}, q^{n2} \) are vectors whose components are real and imaginary parts of components of the vector \(q^{m} \).

This result we can express by the following:

Theorem II. If the independent variable in (10) is real and the coefficients \(a_j \) are real numbers, then a real fundamental system of solutions can be obtained, and solutions of this fundamental system are of the form (14) or consist of pairs (15).

References

Sur certaines fractions continues finies

par J. Mikusiński (Wrocław)

1. Développons chacune des \(n-1 \) fractions
\[\frac{1}{n} \frac{2}{n} \ldots \frac{n-1}{n} \]
en une fraction continue, et désignons par \(K(n) \) le plus grand nombre de termes dans les développements obtenus.

Par exemple, on a
\[\frac{1}{7} = (7), \quad \frac{2}{7} = (3, 2), \quad \frac{3}{7} = (2, 3), \quad \frac{4}{7} = (1, 3), \quad \frac{5}{7} = (1, 2), \quad \frac{6}{7} = (1, 6). \]

Les plus longues des fractions continues précédentes contiennent 3 termes, on a donc
\[K(7) = 3. \]

Le procédé ci-dessus détermine une fonction \(K(n) \) qui fait correspondre un nombre naturel \(K(n) \) à tout entier \(n \geq 2 \). Le but de cette note est de démontrer les inégalités
\[\frac{1}{2a} < K(n) < \frac{1}{a} \quad (n = 2, 3, \ldots), \]
ou \(a = \log \frac{1 + \sqrt{5}}{2} \).

2. Supposons que
\[(a_1, \ldots, a_k) \quad (k = K(n), \quad a_k \geq 2) \]
soit le plus long des développements de \(1/n, \ldots, (n-1)/n \) en fractions continues. Considérons encore la fraction continue
\[(1, \ldots, 1, 2) \]

\(^1\) M. W. Urbański a fait remarquer cette fonction.
de même longueur que (2); la fraction ordinaire correspondante à la forme \(b_{\theta +1} b_{\theta +1} \), où \(b_{\theta} \) désigne généralement le \(\theta \)ème terme de la suite de Fibonacci

\[
1, 1, 2, 3, 5, 8, 13, \ldots
\]

Comme la suite (3) est majorée par (2), on a

\[
(4) \quad b_{k+1} \leq b_{k+1} \leq n.
\]

D'autre part, on sait que

\[
(5) \quad b_{k+1} = \frac{1}{\sqrt{5}} \left[\frac{1 + \sqrt{5}}{2} \right]^{k+1} \left(\frac{1 - \sqrt{5}}{2} \right)^{k+1},
\]

d'où

\[
(6) \quad b_{k+1} \geq \frac{1}{\sqrt{5}} \left[\frac{1}{2} - \left(\frac{3 - \sqrt{5}}{2} \right)^{k+1} \right] \left(\frac{1}{2} + \frac{\sqrt{5}}{2} \right)^{k+1} > 0.4 \left(\frac{1}{2} + \frac{\sqrt{5}}{2} \right)^{k+1}.
\]

En vertu de (4), on a donc

\[
0.4 \left(\frac{1}{2} + \frac{\sqrt{5}}{2} \right)^{K(\theta+1)} < n,
\]

d'où

\[
K(\theta) < \frac{\log n - \log 2}{\log \left(\frac{1 + \sqrt{5}}{2} \right)} = 2 - \frac{\log n}{a}.
\]

La deuxième des inégalités (1) se trouve donc démontrée.

3. Remarquons maintenant que l'on a, quel que soit l'entier \(k \geq 3 \),

\[
\left| \frac{b_{k-1} - b_{k-2}}{b_{k}} \right| = \frac{1}{b_{k-1} b_{k}}.
\]

Il s'ensuit que, pour \(n > b_{k-1} b_{k} \), il existe un entier entre les nombres \(n b_{k-2} b_{k-1} \) et \(n b_{k-1} b_{k} \). Or, l'inégalité \(n > b_{k-1} b_{k} \) peut s'écrire

\[
\frac{1}{5} \left[1 - \left(\frac{3 - \sqrt{5}}{2} \right)^{k+1} \right] \left(\frac{1 + \sqrt{5}}{2} \right)^{k+1} < n.
\]

Cette inégalité sera certainement satisfaite pour \(k \geq 3 \) lorsque

\[
\frac{1}{5} \left[1 + \left(\frac{3 - \sqrt{5}}{2} \right)^{k+1} \right] \left(\frac{1 + \sqrt{5}}{2} \right)^{k+1} < n,
\]

et d'autant plus lorsque

\[
0.225 \frac{1 + \sqrt{5}}{2} < n.
\]

La dernière inégalité équivaut à la suivante:

\[
k < \frac{\log n - \log 0.225 - 1}{2 \log \left(\frac{1 + \sqrt{5}}{2} \right)},
\]

qui est à fortiori satisfaite lorsque

\[
k = E \left(1 + \frac{1}{2a} \log a \right),
\]

en désignant par \(E(x) \) l'entier de \(x \).

On peut vérifier aisément que, pour \(n \geq 7 \), la valeur de \(k \), donnée par la formule (6), est \(\geq 3 \). D'après ce qui vient d'être dit, on conclut qu'il existe, pour \(n \geq 7 \) et pour (6), au moins un entier \(m \) compris entre les nombres \(n b_{k-2} b_{k-1} \) et \(n b_{k-1} b_{k} \). La fraction \(m/n \) est donc comprise entre \(b_{k-2}/b_{k-1} \) et \(b_{k-1}/b_{k} \). Or, les développements de \(b_{k-2}/b_{k-1} \) et de \(b_{k-1}/b_{k} \) en fractions continues sont de la forme

\[
(1, \ldots, 1, 2),
\]

le premier contenant \(k - 2 \) termes et le second \(k - 1 \) termes. Il en résulte facilement que le développement de \(m/n \) commence par \(k - 1 \) unités et qu'il contient donc au moins \(k \) termes. On a ainsi \(K(n) = k \), ou, ce qui revient au même,

\[
\frac{1}{2a} \log n < K(n).
\]

La première des inégalités (1) se trouve donc démontrée pour \(n \geq 7 \). Il est facile de vérifier directement que cette inégalité est aussi vraie pour \(n = 5, 3, 4, 6 \).

Cela complète la démonstration de l'inégalité (1).
4. Comme le développement de b_0/b_{k+1} se compose de $k-1$ unités et du nombre 2 à la fin, on a évidemment $K(b_{k+1}) = k$. Cela étant, on voit aisément, d'après (5), que

$$\lim_{k \to \infty} \frac{K(b_{k+1})}{\log b_{k+1}} = \frac{1}{a}$$

et, par conséquent, que

$$\limsup_{n \to \infty} \frac{K(n)}{\log n} = \frac{1}{a}.$$

Quelle est la valeur de $\liminf_{n \to \infty} \frac{K(n)}{\log n}$? La réponse est plus difficile. L'auteur suppose que cette valeur est $1/2a$.

Les manuscrits sont à expédier à l'adresse

ANNALES POLONICI MATHEMATICI
KRAKÓW, Tomasz 30.

Toute la correspondance concernant l'échange et l'administration est à expédier à l'adresse

ANNALES POLONICI MATHEMATICI
WARSAWA 10, Śniadeckich 8.

Le prix d'un fascicule est 2,50 $. Les ANNALES sont à obtenir par l'intermédiaire de

KSIAŻKA i PRASA
WARSAWA 10, Koszykowa 31.