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An acquaintance network is a social structure made up of a set of actors and the ties between them. These ties change
dynamically as a consequence of incessant interactions between the actors. In this paper we introduce a social network
model called the Interaction-Based (IB) model that involves well-known sociological principles. The connections between
the actors and the strength of the connections are influenced by the continuous positive and negative interactions between
the actors and, vice versa, the future interactions are more likely to happen between the actors that are connected with
stronger ties. The model is also inspired by the social behavior of animal species, particularly that of ants in their colony.
A model evaluation showed that the IB model turned out to be sparse. The model has a small diameter and an average
path length that grows in proportion to the logarithm of the number of vertices. The clustering coefficient is relatively
high, and its value stabilizes in larger networks. The degree distributions are slightly right-skewed. In the mature phase of
the IB model, i.e., when the number of edges does not change significantly, most of the network properties do not change
significantly either. The IB model was found to be the best of all the compared models in simulating the e-mail URV
(University Rovira i Virgili of Tarragona) network because the properties of the IB model more closely matched those of
the e-mail URV network than the other models.
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1. Introduction

We still do not understand human social systems
well enough, but in this study we try to come one
step closer. In the past few decades researchers
have extensively investigated networks in technology,
biology, and sociology. For instance, real-world
networks are include technological networks (such as
road networks, railways, and electric power grids), bi-
ological networks (such as neural networks, metabolic
paths, and vascular networks in plants), information
networks (such as citation networks between academic
papers and the World Wide Web), and social networks
(such as e-mail networks, phone-call networks, and
research-collaboration networks).

Researchers try to specify the network’s structure
and understand how networks evolve. Three components
in network studies have been identified (Newman,

2008). First, in empirical studies researchers try to
picture the connections between individuals by using
different techniques. These include interviews, the
observation of individuals, and the use of archival records.
Then, empirical data can be further investigated using
mathematical and statistical techniques. Finally, based on
the properties extracted from the network, we can build
mathematical models to simulate dependent processes
that allow us to predict the behavior of the network
(Barabási and Albert, 1999; Davidsen et al., 2002; Erdös
and Rényi, 1960; Jiang et al., 2011; Kumpula et al.,
2007; Leskovec, 2010; Ludwig and Abell, 2007; Marsili
et al., 2004; Péter, 2012; Wang et al., 2005; White et al.,
2006; Xiong et al., 2011).

Some of the most interesting networks are social
networks that represent the relationships and flows
between people, groups, and animals (Freeman, 2004).
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The social behavior of animals has been observed for a
long time, and the social patterns of simple animal species
such as birds, bees, and ants can yield insights into human
social behavior (Camazine et al., 2001; Wynne, 2001).

For example, ants can find the shortest path from
a food source to the nest. While walking from
the food source to the nest, ants lay a chemical
substance called pheromone on the trail. This pheromone
slowly evaporates. During the food search, each
ant probabilistically prefers to follow a direction rich
in pheromone (Grassé, 1959). This paradigm was
successfully used in combinatorial and continuous
optimization (Dorigo et al., 2000; 1996; Korošec, 2006;
Korošec et al., 2012) and network analysis (Handl et al.,
2006; Martens et al., 2007).

In this paper we combine the idea of pheromone
deposition and evaporation with balance theory (Heider,
1946), where interactions between individuals change
their connection strength. These interactions between
individuals are modeled using pheromone and they
appear according to balance theory. Thus, human social
systems are living structures where many simultaneous
interactions are happening between individuals all the
time and each interaction influences future interactions.
We present and study a new interaction-based model
where each interaction between two individuals influences
future interactions in a similar way to how pheromone
trails influence the ant’s future decision about its path.

2. Social-network properties

The term “social network” describes a social structure
determined by the interactions between individuals,
groups, and organizations. For a summary of the
progress of social networks and social-network analysis,
see the work of Freeman (2004). However, the
major developments in the field have occurred since the
beginning of the twentieth century, when graph theory
became more involved with statistics and algorithms.
Most real networks possess non-trivial topological
features. Their structure changes dynamically and lies
between order and perfect randomness.

Large real-world graphs do not only have large
numbers of vertices, but they also tend to be sparse,
clustered, and have a small diameter. These kinds of
graphs are termed small-world graphs (Watts, 1999). Let
G be a graph comprising of a set of vertices V (G) together
with a set of edges E(G). The diameter d of the graph G is
the longest shortest path between any two graph vertices:

d(G) = max
u,v∈V (G)

d(u, v),

where d(u, v) is the distance between the vertices u and

v. The average path length is defined as follows:

l(G) =
∑

u,v∈V (G)

d(u, v)
n(n − 1)

,

where n is the graph order. Some of the first studies
on distances in social networks were made by Rapoport
(1957) and later by de Sola Pool and Kochen (1978),
while at about the same time Milgram (1967) conducted
the first empirical work. In his experiment, Milgram
prepared letters addressed to a person in Massachusetts
and asked some people in Nebraska to send a letter to an
acquaintance who might be closer to the target person.
The average number of intermediate steps in the trials
that successfully reached the target person was found to
lie between five and six. From this result comes the
well-known “six degrees of separation” principle.

The local clustering coefficient of a vertex measures
how close the vertex neighbors are to being a complete
graph. The average clustering coefficient of the graph G
is the average local clustering coefficient of the vertices.
This coefficient is calculated as

c(G) = n−1
n∑

i=1

(|N(i)|
2

)−1

|E(N(i))|,

where N(i) is the neighborhood of the vertex i and
|E(N(i))| is the number of edges in the graph induced
by N(i). For the sake of simplicity, the average clustering
coefficient is referred to as the clustering coefficient.

Small worlds have O(n log n) edges, the diameter is
O(log n) and the clustering coefficient is a small constant
independent of the network size. Watts and Strogatz
(1998) found a natural way to build small-world graphs
by interpolating between lattice and random graphs. They
began with a regular lattice and then rewired every edge
with a given probability p. Kleinberg (2000) criticized
the Watts and Strogatz (1998) model because it does not
consider Milgram’s (1967) findings that individuals using
local information are collectively effective at constructing
short paths between two vertices in a social network.
Kleinberg (2000) built a model for which decentralized
algorithms are effective.

The strength of division of a network into
communities can be measured by a modularity measure.
The modularity Q measures the fraction of the edges
inside the given communities minus the expected such
fraction if the edges were distributed at random. It is
defined as

Q(D(G)) =
1

2m

∑

i,j

(
wij − kikj

2m

)
δci,cj ,

where D(G) is a division of the graph G into
communities, wij is the weight on the edge ij, ki =∑

j wij , ci is the community to which the vertex i is
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assigned, m = 1
2

∑
ij wij , and δci,cj is the Kronecker

delta of ci and cj .

3. Sociological principles

Most of the noticeable interactions that happen to
an average person during a day are the interactions
between the person and his or her acquaintances or the
acquaintances of his or her acquaintance. We can more
generally say that in social networks the connections
between individuals are formed on the basis of local
information about the network (Grossetti, 2005). Based
on this principle, Davidsen et al. (2002) simulated the
evolution of social networks. The dynamics of their model
are defined by randomly linking up neighboring vertices:
when a vertex does not have enough neighbors, one other
randomly chosen vertex is linked.

Interactions between people can cause positive or
negative sentiments. These sentiments define how people
perceive their relations with other people. Heider’s
balance theory (1946) says that two people equivalently
perceive their relations as either positive or negative.
Three people perceive their triadic relations as balanced
or imbalanced, depending on the number of positive and
negative relations between them. If there are three positive
or one positive and two negative relations, they perceive it
as balanced. Otherwise, if there are one or three negative
relations, they perceive it as imbalanced, as presented in
Fig. 1.

From the perspective of a person, the balanced
triadic relations can be understood by the following
statements: “friend of my friend is my friend”, “friend
of my enemy is my enemy”, “enemy of my friend is
my enemy”, and “enemy of my enemy is my friend”.
According to social-balance theory, imbalanced triads
are uncomfortable for the people involved. Moreover,
they could cause a reorganization of the entire network.
The people in the imbalanced triads tend to make them
balanced or some connections may break. Some studies
on this subject can be found in the works of Antal et al.
(2005), Marvel et al. (2011) and Srinivasan (2011).

Based on later insights, Ludwig and Abell

Fig. 1. Balanced and imbalanced triadic relations where every
two individuals perceive their relation as being positive
or negative.

(2007) built an evolutionary social-network model
by sequentially attaching randomly selected positive and
negative edges to a given set of vertices. During each time
step they take care that each vertex keep a small number
of imbalanced triads.

The differences in the relations are not just in terms
of positive and negative perceptions, but also in how
close (i.e., strong) the relations are between people.
Therefore, weighted networks were introduced: to the
edges of these networks are assigned appropriate weights,
where the weight quantifies the strength of the given
relation. It is natural to expect that weights have
an influence on the formation of the network. The
weak-link hypothesis (Granovetter, 1973) says that weak
ties between people connect two or more communities
and keep the network connected, whereas strong ties are
mostly inside communities.

Kumpula et al. (2007) presented a model where the
weights are generated dynamically. They distinguish two
mechanisms of tie formation. The first one refers to
forming ties with one’s network neighbor, while the other
refers to forming ties between people who share the same
activities, independent of the distance inside the network.
In their model these two mechanisms are called local
attachment and global attachment. The local attachment
process is a local two-step weighted self-avoiding random
walk. Here the visited edges and the edge between the first
and last vertex in the weighted random walk are reinforced
by a small amount. In the global attachment a random
edge is established with some probability p. Such a model
proves the weak-link hypothesis.

4. Interaction-based model

In this work we are interested in how networks are
formed if we consider sociological principles on the level
of everyday interactions. We have built a new social
network model, termed the Interaction-Based (IB) model,
founded on the fact that everyday interactions keep the
ties between us. The interactions between individuals
cause new connections to be established or the strength of
the connections to change. The more interactions happen
between two people, the more important this relation is
for them on a daily basis. The interactions can be positive
or negative, and they appear as described in the previous
section. These interactions have a strong influence on
how individuals perceive their relations. The more often
the interaction between two people is positive, the more
friendly their relation is, and therefore their connection is
stronger. Negative interactions between friends make their
friendship weaker, until the connection breaks or becomes
negative.

According to balance theory (Heider, 1946),
interactions between individuals in triads tend to be
balanced and the relations, as they are, are the results



686 V. Vukašinović et al.

Algorithm 1. Interaction-based model.
while not EndingCondition() do

for each vertex i do
GlobalInteractions(i, MG)
LocalInteractions(i, ML)

end for
Evaporation(E)

end while

Algorithm 2. GlobalInteractions(i, M ).
for M times do

choose u with probability d(u)+1∑
v∈V (G) d(v)+N

wiu = wiu + δ with probability pG

otherwise wiu = wiu − δ
end for

Algorithm 3. LocalInteractions(i, M ).
for M times do

//choose i’s neighbor j
if N(i)! = null then

choose j ∈ N(i) with probability pij = |wij |
si

,
where
si =

∑
l∈N(i) |wil|

else
j is chosen at random
edge ij is established

end if
//choose j’s neighbor k
if |N(j)| > 1 then

choose k ∈ N(j) \ {i} with probability pjk =
|wjk|

sj−|wij |
else

k is chosen at random
edge jk is established

end if
for edges e = ij, jk do

we = we + δ with probability pL

otherwise we = we − δ
end for
according to balance theory wik = wik ± δ

end for

Algorithm 4. Evaporation (E).
for each edge e ∈ E do

if we > 0 then
we = we − ε

else
we = we + ε

end if
end for

of balanced interactions between the individuals. It
seems that the interactions between people who are
connected with stronger ties take place more often, being
either positive or negative. There are some connections
between people that are not strong, but do they not
seem to be affected by anything. These are usually
weak ties between people from different communities
(Granovetter, 1973). We model the network growth by
simulating the interactions between individuals in dyads
(global interactions) and triads (local interactions), see
Algorithm 1.

With the interactions in dyads we simulate the
interactions that happen between people that have the
same interests and their interaction is the result of the
common interest, e.g., attending the same language
course, see Algorithm 2. These interactions are
independent of the local knowledge, which means they
can happen between some acquaintances or between
complete strangers. However, the people with more
acquaintances have a greater ability to interact and make
new connections than the others.

With the interactions in triads we simulate the
interactions that are influenced by the knowledge of a
local network for a given individual i ∈ V (G), see
Algorithm 3. The interactions happen more often between
individuals whose absolute value of the weights of their
connections are higher. In these triads usually at least two
people know each other.

In addition, people tend to forget, and if there are
no interactions the connections lose their strength; being
positive or negative. This is done with the function
Evaporation() described by Algorithm 4. Algorithm 1
ends after t time steps.

We consider a fixed size network of N vertices.
At every time step each vertex establishes MG new
interactions using the preferential random interaction rule.
The probability of choosing a particular vertex increases
with the vertex degree value. The weight of the connection
is increased by δ with the probability pG and decreased
otherwise.

Furthermore, at each time step, for each vertex a
simulation of the interactions influenced by the knowledge
of the local network is repeated ML times, see Fig. 2.
The vertex i chooses its neighbor j with the probability
|wij |/si, where wij is the weight of the edge between
the vertices i and j, and si =

∑
j∈N(i) |wij | is the

strength of i. The weight wij is increased by δ with the
probability pL and it is decreased by δ with the probability
1− pL. If the chosen vertex j has other neighbors besides
i, it chooses from them a vertex k with the probability
|wjk |/(sj − |wij |). Like before, wjk is increased by δ
with the probability pL and it is decreased by δ with the
probability 1 − pL. According to balance theory, the
link between i and k is established or reinforced by a
positive or negative amount of δ. If the vertex i or j
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Fig. 2. Simulation of local interactions and preferential random
interaction rules. A simulation of local interactions starts
at vertex i, proceeds to vertex j and then to k. Weights
on ij and jk are increased by δ with probability pL and
decreased by δ with probability 1 − pL. Weight on ik is
established or refreshed by ±δ considering balance the-
ory: vertices j and k are i’s neighbors (a), if vertex k is
not i’s neighbor, a new edge is established (b). A vertex l
is chosen by the preferential random interaction rule and
the edge il is established or refreshed by δ with proba-
bility pG and by −δ with probability 1 − pG: example
where vertices i and l are not neighbors (c).

has no neighbors, it creates a connection to a randomly
chosen vertex, where the connection is positive with the
probability pL and negative otherwise.

After each time step, the absolute values of the
weights on the edges are decreased by some amount ε
and the connections break if their weight is smaller than
ε. Thus, if the weight is positive, then it is reduced by ε,
and if the weight is negative, then it is increased by ε. The
weights of the edges lose their strength in a similar way in
which the pheromone amount on an ant’s trails evaporates.

5. Model evaluation

The basic version of the model, where p+ = pL =
pG, ML = MG = 1, and ε = δ/2, is presented by
Vukašinović et al. (2012a; 2012b).

In this paper we study the interaction-based model
from three different aspects. First, we provide a detailed
evaluation of the various parameters and we observe their
influence on the network structure obtained in the mature
phase. Second, we are interested how resistant the IB
model is to edge malfunctions. We did the experiments
on the IB model’s resistance by adding a large amount of
negative interactions and by deleting the edges between
vertices in the network. Third, we compare the IB
network’s structure to that of some other models and a
real-world network.

The proposed IB model is studied by simulations that
start from an empty graph of N vertices. The model was
tested for networks of the order N = 1000 and different
parameter values of ML, MG, ε, pL, pG, and t. The
meanings of the parameters are as follows:

• ML, number of times the simulation of local
interactions is repeated for each vertex in
LocalInteractions(i, ML),

• MG, number of times the simulation of global
interactions is repeated for each vertex in
GlobalInteractions(i, MG),

• ε, number of the evaporation factor,

• pL, number of the probability that the interaction
in the simulation of the local interactions process is
positive,

• pG, number of the probability that the interaction in
the simulation of the global interactions process is
positive,

• t, number of the number of time steps.

For each set of parameters, we carried out 50 runs and
computed the average properties of the networks.

Figure 3 shows the influence of the parameter ML on
the network formation at ε = 0.5δ, pL = 0.6, pG = 0.9,
t = 150 and different values of the parameter MG. The
number of edges slowly increases with the number of
repeated weighted local searches for new acquaintances
ML, see Fig. 3(a). As ML increases, the clustering
coefficient also increases, see Fig. 3(b). Eventually, its
value starts to decrease. This trend is very clear when
MG = 0, but is also expected to a lesser extent at higher
values of ML when MG = 1 and MG = 5. At the point
when the slope of the curve becomes negative, we can
expect that certain edges are reinforced so much that new
edges and edges with a smaller absolute value of weight
have a low probability of being chosen. The diameter
does not change significantly with ML at MG = 1 and
MG = 5, while its dynamics are more unpredictable at
MG = 0, i.e., in the case with no global interactions
(Fig. 3(c)). In this case it reaches its minimum at ML = 3.
The number of triangles and balanced triangles increases
almost linearly with ML, see Fig. 3(d).

Figure 4 shows the influence of the parameter MG

on the network formation at ε = 0.5δ, pL = 0.6,
pG = 0.9, t = 150 and different values of the parameter
ML. The number of edges and the number of positive
edges increase linearly with MG, see Fig. 4(a), while the
number of triangles and the number of balanced triangles
have superlinear growth, see Fig. 4(d). The clustering
coefficient (Fig. 4(b)) decreases until it stabilizes. The
diameter d and the average path length l decrease while
MG increases, see Fig. 4(c).

MG has a larger influence on the number of edges
than ML. With global interactions a lot of new
connections are established, while with local interactions
mostly old connections are reinforced, see Figs. 3 and 4.

Figure 5 shows the influence of the parameter pL on
the network formation at ε = 0.5δ, t = 150, ML = 5,
MG = 1 and different values of the parameter pG. The
results show that, while we change the parameter pL,
the different values pG = 0.6 and pG = 0.9 do not
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Fig. 3. Influence of the parameter ML on the IB model network formation: number of edges |E| and number of positive edges |E+|
(a), clustering coefficient c (b), diameter d (c), number of triangles Δ and number of balanced triangles ΔB (d). The results are
averaged over 50 realizations for N = 1000 networks.

Fig. 4. Influence of the parameter MG on the IB model network formation: number of edges |E| and number of positive edges |E+|
(a), clustering coefficient c (b), diameter d and average path length l (c), number of triangles Δ and number of balanced triangles
ΔB (d). The results are averaged over 50 realizations for N = 1000 networks.
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Fig. 5. Influence of the parameter pL on the IB model network formation: number of edges |E| and number of positive edges |E+| (a),
clustering coefficient c (b), diameter d and average path length l (c), number of triangles Δ and number of balanced triangles
ΔB (d). The results are averaged over 50 realizations for N = 1000 networks.

Fig. 6. Influence of the parameter ε on the IB model network formation (at t = 150 time steps and in the mature phase, where
properties are indexed by M): number of edges |E| and number of positive edges |E+| (a), clustering coefficient c (b), diameter
d and average path length l (c), number of triangles Δ and number of balanced triangles ΔB (d). The results are averaged over
50 realizations for N = 1000 networks.
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Fig. 7. IB model properties at different time steps t: number of edges |E| and number of positive edges |E+| (a), clustering coefficient
c (b), diameter d and average path length l (c), number of triangles Δ and number of balanced triangles ΔB (d). The results are
averaged over 50 realizations for N = 1000 networks.

Fig. 8. IB model properties as a function of network order: number of edges |E| and number of positive edges |E+| (a), clustering
coefficient c (b), diameter d and average path length l (c), number of triangles Δ and number of balanced triangles ΔB (d). The
results are averaged over 50 realizations for N = 1000 networks.
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Fig. 9. Degree distributions p(k) of the IB model are skewed and the position of the peak of the distribution does not change as the
number of vertices grows. In order to capture the differences between the simulated models corresponding to different graph
order, the degree values are plotted on a logarithmic scale (left). The clustering coefficient c of the IB model as a function of
the vertex degree k. The results are averaged over 50 realizations for N = 1000 networks (right).

have much influence on the network properties, except
for the number of positive edges. The network-formation
behavior at different pL values shows an interesting hop at
pL = 0.5. This is the case when the local interactions are,
with equal probabilities, positive or negative. The increase
in the number of edges (Fig. 5(a)) and the decrease in the
clustering coefficient and the diameter values (Figs. 5(b)
and 5(c)) are indicated.

Figure 6 shows the influence of the parameter ε on
the network formation at pL = 0.6, pG = 0.9, ML = 5,
and MG = 1. The evaluations at t = 150 and the
evaluations in steady state are shown. The steady state
is indicated when the number of edges in 5 repetitions of
adding 50 time steps does not change by more than 5%. In
the sparse networks, modeled by high ε values, the steady
state is established after a smaller number of time steps
than with denser networks modeled by small ε values,
see Table 1. As expected, ε has a significant influence
on the number of edges and the number of triangles in
the network (Figs. 6(a) and 6(d)). The numbers of edges
and triangles decrease rapidly as ε increases from 0.1 to
0.6. For larger values of ε, the decrease in the number of
edges and triangles stabilizes. Notice that the threshold
ε = 0.5 is the point where that of the local interactions
becomes larger than the impact of the global interactions.
If ε > 0.5, the weight of the connections becomes smaller
than ε for the edges, which are established and their value
is not additionally reinforced in each time step. This
means that these edges are not truly established and they
indicate only the interactions that are quickly forgotten.
As a result, the clustering coefficient and the diameter
become significantly larger, see Figs. 6(b) and 6(c).

Table 1 indicates how the networks’ properties
change with time in the mature phase. Here, the
networks’ properties in the mature phase and their change
in percentage after an additional 400 time steps are

shown. As indicated in Table 1, in the mature phase
the networks’ properties mostly vary beyond 5%. An
exception can be found in the behavior of the diameter d
and the average path l at ε values greater than 0.5. As
ε > 0.5, d and l remain unstable. We calculated the
modularity of the communities detected by the Walktrap
algorithm (Pons and Latapy, 2007). It is based on random
walks and uses the idea that the vertices encountered
on any given random walk are more likely to be within
a community than not. We compared the community
structure of the networks in the mature phase with
that before and after an additional 400 time steps with
the cc measure introduced by Rand (1971). Networks
formed with higher values of ε and therefore a smaller
number of edges have a higher modularity, but all over
the tested ε, cc values indicate that the community
structure does not change much. For comparison, the
average modularity of 50 Erdös–Rényi (ER) networks
with N = 1000 and |E| = 24000, 3300, 1500 was
Q = 0.083, 0.297, 0.515, respectively. We also made
50 community comparisons of ER networks with N =
1000 and |E| = 24000, 3300, 1500 and obtained cc =
0.779, 0.903, 0.539 on average, respectively.

Figure 7 shows the influence of the time steps t on
the network formation at pL = 0.6, pG = 0.9, ε = 0.5δ,
ML = 5, and MG = 1. In 433 time steps the model comes
into the mature phase, i.e., the state when the number
of edges does not change significantly, see Fig. 7(a).
Figure 7 shows that at that time the internal dynamics
of the network formation also stabilize, i.e., the number
of positive edges, the clustering coefficient, the diameter,
the average path length, the number of triangles, and the
number of balanced triangles do not change significantly.

In addition, we tested the model on N ∈
{100, 200, 500, 1000, 2000, 5000, 10000} vertices at t =
150. Figure 8 shows how the network properties change
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with the number of vertices. The parameters were set to
pL = 0.6, pG = 0.9, ε = 0.5δ, t = 150, ML = 5,
and MG = 1. The number of edges, the number of
positive edges, the number of triangles, and the number
of balanced triangles increase linearly with the number of
vertices, see Figs. 8(a) and 8(d). The clustering coefficient
for the network order N = 2000 stabilizes at the value c =
0.27, see Fig. 8(b). The average path length (Fig. 8(c))
increases in proportion to the logarithm of the number
of vertices N , which is again the small-world property
(Watts, 1999). The degree distributions p(k) (Fig. 9(a))
are slightly right-skewed, and the position of the peak of
the degree distribution does not change as the number
of vertices increases. The clustering coefficient c as a
function of the vertex degree k decreases gradually for all
the tested network orders, see Fig. 9(b).

Table 2 shows the numerical values of the tested
models at pL = 0.6, pG = 0.9 ε = 0.5δ, t = 150,
ML = 5, and MG = 1 and the different network order.

The IB model by itself does not have the property
of dynamically adjusting the organization of communities
depending on the external conditions, but it is interesting
to know how capable the IB modeling mechanism is at
reconstructing the primary network structure after some
edge malfunctions happen.

We performed two tests on the IB model’s behavior
in extreme situations. In the fist one, we simulated a
large number (25000) of negative interactions between
50% of all the vertices in the networks in the mature
phase. We measured the model properties, when networks
came into the mature phase, after the simulation of
negative interactions, and after the re-stabilization, at
different ε values. The simulation can reflect the model’s
response in riots, i.e., when in a small time period
a lot of negative interactions happen in crowds. The
results in Table 3 indicate a large increase in the number
of edges immediately after the simulation of negative
interactions and its subsequent re-stabilization. Similarly,
the average path length l, the clustering coefficient c, and
the modularity Q changed, but afterwards their values
re-stabilized with the trend of the model’s behavior in the
mature phase, see Table 1. The high cc values indicate that
the community structure before and after the simulation of
negative interactions remains very similar.

With the second test, we simulated the deletion of
edges between 50% of all the vertices in the networks
in the mature phase, see Table 4. Like before, we
measured the model properties in the networks’ mature
phase, after the simulation, and after the re-stabilization,
at different ε values. This simulation can reflect the model
response after natural disasters, when many connections
are roughly broken. After the re-stabilization the networks
have properties similar to those before the deletion.
The deletion causes the networks temporarily to have
a smaller clustering coefficient, but higher modularity

values. This indicates that an individual’s neighbors are
less connected, but the fraction of connections inside
communities with respect to the fraction of connections
if they are distributed at random is now larger. This
is an important observation that is in contrast to the
effect of adding negative interactions, where both the
clustering coefficient and the modularity values decrease,
see Table 3.

The results from both tests show that the IB
model has high self-repairing abilities when some edge
malfunctions happen.

Furthermore, we compared the different
topological properties of our interaction-based networks,
Barabási–Albert (BA) networks, Erdös–Rényi networks
and a real e-mail URV network (Guimerà et al., 2003).
The e-mail URV is a network containing 1133 members
of the University Rovira i Virgili of Tarragona in Spain,
and its edges are e-mail interchanges between the users.
We observed the average results of 50 runs of the BA
model, the ER model and the IB model with 1133
vertices. The other parameters of the IB model were set
to ML = 5, MG = 1, ε = 0.4δ, pL = 0.6, pG = 0.9,
and t = 150. We observed the BA model that starts with
a complete graph with five vertices and at each time step
a new vertex with degree five is connected to the existing
vertices with a probability that it is proportional to their
number of edges. In the ER model the expected number
of edges was set to 4.8N .

Table 5 shows the number of edges |E|, the diameter
d, the average path length l, the clustering coefficient c,
the number of triangles Δ of the tested models, and Q,
which is the modularity value of the network divided into
communities achieved using the Walktrap algorithm (Pons
and Latapy, 2007). The IB networks, as well as the
e-mail URV network clustering coefficient, are relatively
high, while the BA networks and the ER networks are
not clustered. Similarly, the number of triangles in the
IB networks and the e-mail URV network are much
higher than in the BA networks and the ER networks.
Although that of the IB model is higher than the clustering
coefficient of the e-mail URV network, it has a smaller
number of triangles, which is expected as the IB networks
are sparser. The modularity values of the IB networks
fit the modularity value of the URV network, while the
modularity values of the BA and the ER networks are
much lower. The values of the average path length in all
the tested networks are close to each other.

According to the classification of social network
models by Toivonen et al. (2009), the IB model falls into
the category of dynamic-network-evolution models. The
representative models of this category are described by
Davidsen et al. (2002), Marsili et al. (2004) and Kumpula
et al. (2007). For the basic statistics of these models fitted
to the e-mail URV network, see the work of Toivonen et al.
(2009).
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Table 1. Main properties of the interaction-based model in the mature phase and their differences after an additional 400 time steps in
percentages.

ε t |E| |E+| d l c Q cc

0.1 623 24163.6 -8.9 18410.3 -6.8 3.00 0 2.08 2.6 0.106 -1.4 0.154 7.0 0.827
0.2 512 9822.4 -6.3 7926.4 -4.9 4.00 0 2.70 1.5 0.131 0.4 0.301 3.7 0.892
0.3 471 5557.1 -4.8 4606.6 -3.8 5.00 0.8 3.31 1.9 0.198 1.6 0.449 2.8 0.934
0.4 457 3651.1 -3.9 3089.4 -3.2 7.00 1.4 4.14 2.5 0.302 2.6 0.560 2.6 0.957
0.5 433 3272.7 -3.2 2804.9 -2.8 7.28 5.8 4.37 2.2 0.299 2.5 0.618 2.1 0.960
0.6 394 1755.7 -2.1 1575.9 -2.2 39.66 -30.1 14.65 -37.2 0.713 3.2 0.957 1.3 0.985
0.7 373 1610.2 -2.0 1458.4 -2.1 28.60 -40.6 9.44 -51.8 0.725 3.3 0.971 1.2 0.988
0.8 378 1523.0 -1.9 1383.7 -2.0 27.64 -37.1 9.08 -50.5 0.721 3.1 0.974 1.0 0.987
0.9 379 1455.9 -2.1 1325.4 -2.2 29.44 -34.0 9.18 -39.5 0.714 2.4 0.974 0.8 0.985

Table 2. Main properties of the IB model for different network orders.

N |E| d l c Δ

100 374.8 ± 14.6 4.84 ± 0.37 2.65 ± 0.05 0.317 ± 0.017 250.3 ± 23.1
200 747.3 ± 23.5 5.34 ± 0.47 3.08 ± 0.05 0.293 ± 0.011 454.7 ± 33.3
500 1869.5 ± 33.6 6.10 ± 0.30 3.62 ± 0.04 0.279 ± 0.008 1067.2 ± 48.6
1000 3718.5 ± 45.5 6.96 ± 0.20 4.04 ± 0.03 0.274 ± 0.005 2063.2 ± 63.8
2000 7428.6 ± 77.0 7.38 ± 0.49 4.45 ± 0.03 0.270 ± 0.003 4064.8 ± 95.2
5000 18586.0 ± 87.8 8.10 ± 0.30 4.99 ± 0.01 0.270 ± 0.002 10144.0 ± 130.9
10000 37171.0 ± 134.3 9.00 ± 0.00 5.40 ± 0.01 0.269 ± 0.002 20252.0 ± 177.7

6. Conclusion

In this paper we introduced a novel social-network
model called the interaction-based model, which involves
well-known sociological principles. Heider’s theory
(Heider, 1946) states that two people equivalently perceive
their relation as friendly or unfriendly, while triadic
relations are balanced or imbalanced, depending on the
number of friendly and unfriendly dyadic relations inside
them. Each relation between two people is built on
the everyday interactions between them, either positive
or negative. The model is also inspired by the social
behavior of animal species, particularly that of ants in
their colony. Ants put pheromone on their path while
walking from a food source to the nest. Because the
pheromone is evaporable, it slowly disappears. Similarly,
the ties between people become weaker if no interactions
exist between them.

The model evaluation showed that the IB model has
characteristic social-network properties. The IB networks
turned out to be sparse, they have a small diameter and
an average path length that grows in proportion to the
logarithm of the number of vertices. The clustering
coefficient is relatively high, and its value stabilizes in
larger networks. The degree distributions are slightly
right-skewed. In the mature phase of the IB model, i.e.,
when the number of edges does not change significantly,
most of the network properties do not change significantly
either.

A further investigation of the model parameters
shows how inner changes to the social system cause a
change in the network topology. For example, higher
probability of positive interactions happening in the
network resulted in more clustered networks (higher
clustering coefficient), as well as an increasing number
of balanced triadic relations. While stronger evaporation
also caused higher clustering coefficients, the number of
balanced triadic relations decreased.

Two tests where an edge malfunction is simulated
showed that networks built as proposed in this paper
have high self-repairing abilities. In both cases, i.e.,
during the deletion of edges and during the unexpected
increase of negative interactions between individuals,
the LocalInteractions() function in cooperation with the
GlobalInteractions() function causes re-stabilization of
the network. Good self-repairing abilities are indicated
with similar network properties before and after the
malfunctions happened and which variations are close to
the variation trend explained by the model measured in the
mature phase.

The IB model was found to be the best of all the
compared models in simulating the e-mail URV network
because its properties more closely matched those of the
e-mail URV network than the other models.

In the future we plan to analyze additional properties
of the IB model (largest component size, average degree,
assortativity coefficient) and tune its parameters to various
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Table 3. Main properties of the IB model measured in the mature phase, after the simulation of negative interactions (25000) between
50% of all vertices, and after coming again into the stable state. The community structures are compared before and after the
simulation and their comparisons are indicated with cc values.

ε |E| l c Q cc

0.1 24163.56 45623.82 22479.74 2.08 1.94 2.12 0.11 0.16 0.10 0.15 0.12 0.16 0.828
0.2 9822.40 31960.26 9317.88 2.70 2.18 2.73 0.13 0.17 0.13 0.30 0.10 0.31 0.895
0.3 5557.12 27943.32 5336.04 3.30 2.34 3.36 0.20 0.21 0.20 0.45 0.06 0.46 0.931
0.4 3651.12 26130.56 3534.92 4.13 2.48 4.22 0.30 0.26 0.31 0.60 0.04 0.61 0.958
0.5 3272.74 25775.54 3185.40 4.37 2.51 4.45 0.30 0.26 0.30 0.62 0.04 0.63 0.961
0.6 1755.68 24323.56 1727.60 14.65 2.75 10.82 0.71 0.47 0.73 0.96 0.03 0.97 0.985
0.7 1610.24 24187.34 1585.18 9.44 2.77 5.86 0.72 0.47 0.74 0.97 0.02 0.98 0.987
0.8 1523.00 24105.38 1494.84 9.08 2.79 5.62 0.72 0.47 0.73 0.97 0.02 0.98 0.986
0.9 1455.94 24039.40 1429.96 9.18 2.79 6.06 0.71 0.46 0.73 0.97 0.02 0.98 0.984

Table 4. Main properties of the IB model measured in the mature phase, after deletion of edges between 50% of all vertices, and after
coming again into stable state. The community structures are compared before and after the simulation and their comparisons
are indicated with cc values.

ε |E| l c Q cc

0.1 24235.02 5829.58 20045.96 2.08 2.31 2.20 0.11 0.05 0.10 0.15 0.20 0.18 0.825
0.2 9818.36 2327.76 8427.86 2.70 3.12 2.80 0.13 0.06 0.13 0.30 0.37 0.34 0.885
0.3 5548.76 1304.60 4920.60 3.31 4.26 3.45 0.20 0.10 0.20 0.45 0.53 0.48 0.924
0.4 3647.98 853.30 3302.10 4.14 6.27 4.36 0.30 0.13 0.31 0.60 0.70 0.62 0.945
0.5 3257.14 756.64 3027.30 4.38 7.08 4.56 0.30 0.12 0.30 0.62 0.73 0.63 0.948
0.6 1746.70 391.84 1628.80 13.36 2.01 10.17 0.72 0.16 0.74 0.96 0.98 0.97 0.970
0.7 1603.42 355.10 1512.16 6.92 1.76 5.74 0.73 0.14 0.75 0.98 0.98 0.98 0.976
0.8 1512.76 343.74 1446.60 6.38 1.75 7.26 0.73 0.14 0.74 0.98 0.98 0.98 0.977
0.9 1444.44 330.52 1387.78 7.36 1.72 7.01 0.72 0.13 0.73 0.98 0.98 0.98 0.977

real-world networks. Additionally, we want to compare
the self-repairing mechanism studied in our model with
those inside real-world networks. The study of similarities
and differences in self-repairing behavior can provide us
with new knowledge of network-formation mechanisms.
Similarities can explain which part of the mechanism was
appropriately designed and the differences can explain
which part should be further investigated.
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Jurij Šilc received his Ph.D. in electrical engi-
neering from the University of Ljubljana, Slove-
nia, in 1992. He is now a senior researcher at
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