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With the aim to better preserve sharp edges and important structure features in the recovered image, this article researches an
improved adaptive total variation regularization and H−1 norm fidelity based strategy for image decomposition and restora-
tion. Computationally, for minimizing the proposed energy functional, we investigate an efficient numerical algorithm—the
split Bregman method, and briefly prove its convergence. In addition, comparisons are also made with the classical OSV
(Osher–Sole–Vese) model (Osher et al., 2003) and the TV-Gabor model (Aujol et al., 2006), in terms of the edge-preserving
capability and the recovered results. Numerical experiments markedly demonstrate that our novel scheme yields signifi-
cantly better outcomes in image decomposition and denoising than the existing models.
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1. Introduction

The subject of image restoration plays an extremely
important role in image processing and computer vision.
Given a contaminated image f , image reconstruction aims
at extracting the true image u from f . Solving this
inverse problem, one classical mathematical technique
known as the Total Variation (TV) regularization based
minimization scheme (the Rudin–Osher–Fatemi (ROF)
model), originally introduced by Rudin et al. (1992), can
be described as

inf
u

∫
Ω

|∇u| + λ

2

∫
Ω

|f − u|2 dx, (1)

where λ is a tuning parameter. Numerical experiments
demonstrate the capability of the model (1) for sufficiently
suppressing additive Gaussian noise, while preserving
the edge features. Furthermore, to better maintain the
fine details and junctions, the adaptive TV approach
(Chen and Wunderli, 2002; Barcelos and Chen, 2000;
Strong and Chan, 1996) and the edge adaptive weighted
regularization scheme (Prasath, 2011) were proposed for

image restoration. Thereinto, the adaptive TV strategy can
be formulated by

inf
u

∫
Ω

α(x)|∇u| + λ

2

∫
Ω

|f − u|2 dx, (2)

where α(x) represents a diffusivity function, used for
controlling the intensity of the diffusion. Generally, α(x)
can be chosen as

α(x) =
1

1 + K|∇Gσ ∗ f |2 ,

where K acts as an edge strength threshold factor, and

Gσ(x) =
1

2πσ2
exp
(
−|x|2

2σ2

)

stands for the Gaussian kernel with parameter σ.
Unfortunately, for texture image decomposition, the

models mentioned above cannot completely separate the
structural component u from the textural component v.
Therefore, Meyer (2002) introduced the G norm based
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image decomposition model

inf
u

{∫
Ω

|∇u| + λ

2
‖v‖∗, f = u + v

}
, (3)

with

‖v‖∗ = inf
g=(g1,g2)

{
‖
√

g2
1 + g2

2‖L∞ |v = ∂xg1 + ∂yg2

}

in the G space, where the G space is characterized by

G = {v|v = ∂xg1(x, y) + ∂yg2(x, y), g1, g2 ∈ L∞(Ω)}.
To easily compute the numerical solution of (3), Vese

and Osher (2003) adopted the Lp norm to approximate the
∗ norm, and formulated a novel model

inf
u,g1,g2

{∫
Ω

|∇u| + λ

2

∫
Ω

|f − u − div(�g)|2dx

+ μ
[ ∫

Ω

(
√

g2
1 + g2

2)
pdx

] 1
p
}

,

(4)

where λ, μ are trade-offs to balance three terms, and
p ≥ 1. In (4), by choosing �g = ∇g, f − u = v =
div(�g) and using the norm in H−1(Ω), Osher et al. (2003)
investigated a simplified and modified version (p = 2, the
OSV model) as

inf
u

∫
Ω

|∇u| + λ

2

∫
Ω

|∇Δ−1(f − u)|2dx, (5)

and employed the steepest descent method to solve
it effectively. Subsequently, Daubechies and Teschke
(2005) investigated a variational model for image
decomposition and restoration by means of wavelets.
Aujol et al. (2006) firstly took advantage of the Gabor
wavelets functions, and proposed a new TV-Gabor model
for structure-texture image decomposition. Compared
with the results by the ROF method, the H−1 norm based
OSV model (5) and the TV-Gabor model can maintain
more structure features, and yield better recovered images.

Meanwhile, Chan et al. (2007) combined higher
order derivatives, and developed the CEP-H−1 model
for image decomposition. Computationally, they applied
dual methods (Aujol et al., 2005; Chambolle, 2004; Chan
et al., 1999) to obtain the optimum solution quickly, and
demonstrated that this model can be used for substantially
reducing the staircasing in the structure component.
Lately, a coupled variational model for decomposing
and restoring a structure-texture image with blurry and
missing pixels has been developed and studied in detail
by Ng et al. (2013).

In this paper, inspired by the above models (2)
and (5), we investigate the spatially and scale adaptive
TV minimization model for edge-preserving image
decomposition and restoration as follows

inf
u

∫
Ω

α(x)|∇u| + λ

2

∫
Ω

|∇Δ−1(f − u)|2dx, (6)

where α(x) denotes a spatially and scale adaptive
parameter defined the same as in (2), for regulating the
degree of smoothing.

Our contributions can be summarized as
the following two points. Firstly, the proposed
edge-preserving regularization scheme performs better
in maintaining essential edges and structures than
the two TV regularization based models. Secondly,
to evidently speed up the energy minimization for
(6), this paper propounds the fast split Bregman
algorithm to derive its optimum solution. Mathematically
speaking, the steepest descent algorithm is generally very
slow, owing to the nonlinearity and strict restrictions
on the Courant–Friedrichs–Lewy (CFL) condition.
However, our proposed split algorithm computes the
non-differentiable item and the squared H−1 norm
item, respectively. Thus it dramatically accelerates the
computational speed.

The remainder of this paper is arranged in the
following manner. In Section 2, we describe the necessary
preparations about the model (6). The numerical method
for solving our novel strategy is investigated and proved
in Sections 3 and 4, respectively. Numerical experiments
intended for demonstrating the efficiency of the proposed
method are provided in Section 5. Finally, concluding
remarks are summarized in Section 6.

2. Preliminaries

In this section, our objective is to describe the necessary
preparations on the model (6). According to Chen and
Wunderli (2002), we now tersely represent two basic
theories below.

Definition 1. Let Ω ⊆ R
N be a bounded open domain.

Let u ∈ L1
loc(Ω), and α(x) ≥ 0 be a continuous and real

function. Then the α-total variation of u is defined as∫
Ω

α|∇u| = sup
φ∈C1

c (Ω,RN )

{∫
Ω

u(x)divφ(x) dx :

|φi(x)| ≤ α(x), ∀x ∈ Ω, 1 ≤ i ≤ n
}
,

(7)

where φ is a vector-valued function φ = (φ1, . . . , φn).
Furthermore, the α-BV seminorm is characterized by

‖u‖α−BV (Ω) =
∫

Ω

α|∇u| + ‖u‖L1(Ω).

Theorem 1. (Lower semicontinuity) Assume that

{ui}∞i=1 ⊂ L1(Ω)

and
ui → u in L1(Ω).

Then we have∫
Ω

α|∇u| ≤ lim inf
i→∞

∫
Ω

α|∇ui|. (8)
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Combining lower semicontinuity for the α-BV
seminorm and Theorem 2.3 of Osher et al. (2003),
we establish the existence of the minimizers for the
variational model (6) as follows.

Theorem 2. Suppose that f ∈ BV (Ω) + {v ∈ L2(Ω),∫
Ω

v(x) dx = 0}. Then the minimization problem

inf
u

{∫
Ω

α|∇u| + λ

2

∫
Ω

|∇Δ−1(f − u)|2dx,

∫
Ω

(f − u)dx = 0
}
,

(9)

has a solution u ∈ BV (Ω).

3. Computational method

For quickly solving the optimization problem (6), in this
section we elaborate on a fast numerical algorithm: the
split Bregman iteration.

The split Bregman method was initially introduced
and studied in image processing by Goldstein and Osher
(2009), and the corresponding convergence analysis was
exhibited by Cai et al. (2009) and Jia et al. (2009). Due to
its high efficiency and robustness, various applications of
this fast iteration algorithm have been reported in image
restoration (Cai et al., 2009; Jia et al., 2009; Liu and
Huang, 2010; 2012; 2013; 2014; Setzer et al., 2010),
hyperspectral images analysis (Szlam et al., 2010), and
compressed sensing (Zhang et al., 2009), etc.

Here the split Bregman method is campaigned to
solve the following optimization problem:

û = argmin
u

{
‖α∇u‖1 +

λ

2
‖∇Δ−1(f − u)‖2

2

}
. (10)

Firstly, we take the effective replacement ∇u → d.
By introducing the auxiliary variable d, this leads to a
constrained optimization problem

min
u,d

‖d‖1 +
λ

2
‖∇Δ−1(f − u)‖2

2, s.t. d = α∇u, (11)

which can be reduced to the following equivalent
unconstrained formulations:

(uk+1, dk+1) = argmin
u,d

‖d‖1 +
λ

2
‖∇Δ−1(f − u)‖2

2

+
γ

2
‖d − α∇u − bk‖2

2,

(12)

with the update formula for bk+1

bk+1 = bk + (α∇uk+1 − dk+1). (13)

Since u, d are decoupled together as shown in (12), it
can be transformed into two subproblems as follows:

uk+1 = arg min
u

λ

2
‖∇Δ−1(f − u)‖2

2

+
γ

2
‖α∇u − dk + bk‖2

2, (14)

dk+1 = arg min
d

‖d‖1 +
γ

2
‖d − α∇uk+1 − bk‖2

2, (15)

bk+1 = bk + (α∇uk+1 − dk+1). (16)

Numerically computing (14), we derive the
following optimality condition for uk+1:

0 = λΔ−1(uk+1−f)+γ∇T (α∇uk+1−dk +bk), (17)

which implies that

(λ

γ
Δ−1 − αΔ

)
uk+1 =

λ

γ
Δ−1f + div(bk − dk), (18)

where ∇T = −div and Δ = −∇T∇. Noticing that
the system (18) is linear and symmetric positive definite,
the subproblem for uk+1 can be efficiently solved by the
fast Fourier transform. Denoting by F(u) the Fourier
transform of u, we obtain the solution of the u subproblem
as

uk+1

= F−1

(
λ
γF(Δ−1) ◦ F(f) + F(D̂−

x ) ◦ F(bk
x − dk

x)
λ
γF(Δ−1) −F(α) ◦ F(Δ)

+
F(D̂−

y ) ◦ F(bk
y − dk

y)
λ
γF(Δ−1) −F(α) ◦ F(Δ)

)
,

(19)

where “◦” stands for the componentwise multiplication,
D̂−

x , D̂−
y and Δ = D̂−

x D̂+
x + D̂−

y D̂+
y respectively denote

the Fourier transform operators of their corresponding
convolution kernels.

Motivated by the techniques of Goldstein and Osher
(2009) as well as Wang et al. (2007), here we employ
the generalized shrinkage formula to deal with the
subproblem (15), which is outlined as follows:

dk+1 = shrink(α∇uk+1 + bk,
1
γ

)

= max(‖α∇uk+1 + bk‖1 − 1
γ

, 0)

× α∇uk+1 + bk

‖α∇uk+1 + bk‖1
.

(20)

In summary, the optimization problem (10) can
be effectively solved via the alternating minimization
method, which is formulated as Algorithm 1.
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Algorithm 1. Split Bregman iteration for solving the
ATV-H−1 model.
Initialization: u0 = F−1(f), and d0 = b0 = 0;
while ‖uk+1 − uk‖2/‖uk+1‖2 > tol

for n = 1 to N
uk+1

= F−1
( λ

γF(Δ−1) ◦ F(f)+F(D̂−
x ) ◦ F(bk

x − dk
x)

λ
γF(Δ−1)−F(α) ◦ F(Δ)

+
F(D̂−

y ) ◦ F(bk
y − dk

y)
λ
γF(Δ−1) −F(α) ◦ F(Δ)

)

dk+1 = max(‖α∇uk+1+bk‖1− 1
γ , 0) α∇uk+1+bk

‖α∇uk+1+bk‖1

end
bk+1 = bk + (α∇uk+1 − dk+1)

end

Similarly as in the work of Goldstein and Osher
(2009), the above alternating minimization algorithm with
larger N not only is unable to accelerate the convergence
evidently, but also deteriorates the accuracy of the inner
loop. As a result, we simply fix N = 1 in the above
algorithm throughout the experiments. As we shall see
below, an appropriate stopping criterion may inductively
generate a satisfactory recovered result by a few numbers
of outer iterations.

4. Convergence analysis

This section is devoted to proving the convergence of the
proposed split Bregman method.

Theorem 3. Let {uk, dk, bk}k∈N be the sequence gener-
ated by the iterative process (14)–(16). Then the accumu-
lation point of uk is a solution to (6).

Proof. Let us assume that u∗ is a solution to (6), and the
sequence {uk, dk, bk}k∈N is generated by the proposed
algorithm. Thanks to Cai et al. (2009) as well as Liu
and Huang (2010), the first order optimality conditions for
(14)–(16) can be characterized by

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

qk+1 + γ∇T (α∇uk+1 − dk + bk) = 0,

pk+1 + γ(dk+1 − α∇uk+1 − bk) = 0,

bk+1 = bk + (α∇uk+1 − dk+1),

(21)

where pk ∈ ∂‖dk‖1, and qk ∈ ∂H(uk) with H(u) =
λ
2 ‖∇Δ−1(f − u)‖2

2.
Meanwhile, the Karush–Kuhn–Tucker (KKT)

conditions for (6) lead to the following result:

− divp∗ + q∗ = 0, (22)

where q∗ ∈ ∂H(u∗), and p∗ ∈ ∂‖d∗‖1 with d∗ = α∇u∗.

Letting b∗ = 1
γ p∗ and substituting it into (21), we

obtain ⎧⎪⎪⎪⎨
⎪⎪⎪⎩

q∗ + γ∇T (α∇u∗ − d∗ + b∗) = 0,

p∗ + γ(d∗ − α∇u∗ − b∗) = 0,

b∗ = b∗ + (α∇u∗ − d∗),

(23)

which asserts that {u∗, d∗, b∗} is a fixed point of (21).
In what follows, we denote the errors by uk

e = uk −
u∗, dk

e = dk −d∗, and bk
e = bk − b∗. All equations of (21)

subtracted from those of (23) correspondingly show that
⎧⎪⎪⎪⎨
⎪⎪⎪⎩

qk+1
e + γ∇T (α∇uk+1

e − dk
e + bk

e) = 0,

pk+1
e + γ(dk+1

e − α∇uk+1
e − bk

e) = 0,

bk+1
e = bk

e + (α∇uk+1
e − dk+1

e ).

(24)

Pre- and post-multiplying the first two equations of
(24) by αuk+1

e and dk+1
e and squaring both the sides of

the last one, we have
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

〈qk+1 − q∗, αuk+1
e 〉 + γ〈∇T (α∇uk+1

e ), αuk+1
e 〉

+γ〈αuk+1
e ,∇T bk

e −∇T dk
e〉 = 0,

〈pk+1 − p∗, dk+1
e 〉 + γ‖dk+1

e ‖2
2

−γ〈dk+1
e , α∇uk+1

e + bk
e〉 = 0,

‖bk+1
e ‖2

2 = ‖bk
e‖2

2 + ‖α∇uk+1
e − dk+1

e ‖2
2

+2〈bk
e , α∇uk+1

e − dk+1
e 〉.

(25)
From (25), we have that

γ

2
[(‖bk

e‖2
2 − ‖bk+1

e ‖2
2) + (‖dk

e‖2
2 − ‖dk+1

e ‖2
2)]

= 〈qk+1 − q∗, αuk+1
e 〉 + 〈pk+1 − p∗, dk+1

e 〉

+
γ

2
‖α∇uk+1

e − dk
e‖2

2.

(26)

Summing (26) from k = 0 to k = K , we get

γ

2
[(‖b0

e‖2
2 − ‖bK+1

e ‖2
2) + (‖d0

e‖2
2 − ‖dK+1

e ‖2
2)]

=
K∑

k=0

〈qk+1 − q∗, αuk+1
e 〉 +

K∑
k=0

〈pk+1 − p∗, dk+1
e 〉

+
γ

2

K∑
k=0

‖α∇uk+1
e − dk

e‖2
2.

(27)

This means that the three items located on the
right-hand side of (27) are bounded. Subsequently, this
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yields the following fact

⎧⎨
⎩

lim
k→∞

〈qk − q∗, α(uk − u∗)〉 = 0,

lim
k→∞

〈pk − p∗, dk − d∗〉 = 0,
(28)

The definition of the Bregman distance, together with
d∗ = α∇u∗, gives

lim
k→∞

‖α∇uk − dk‖2
2 = 0.

Furthermore, we have

lim
k→∞

‖α∇uk‖1−‖α∇u∗‖1 −〈p∗, α(∇uk −∇u∗)〉 = 0.

(29)
Similarly, we obtain

lim
k→∞

H(uk) − H(u∗) − 〈α(uk − u∗), q∗〉 = 0. (30)

By (29) and (30), it follows that

lim
k→∞

(‖α∇uk‖1 + H(uk)) − (‖α∇u∗‖1 + H(u∗))

− 〈α(uk − u∗),∇T p∗ + q∗〉 = 0.

(31)

This, together with (22), implies

lim
k→∞

‖α∇uk‖1 + H(uk) = ‖α∇u∗‖1 + H(u∗), (32)

which indicates that uk → u∗ as k → ∞. This concludes
the proof. �

5. Numerical results

To illustrate the performance and superiority of our
new method for edge-preserving image decomposition
and restoration, four interrelated numerical experiments
are presented, and comparisons are also made with
the state-of-the-art OSV model and TV-Gabor model
in detail. Computationally, we efficiently solve the
TV-Gabor model by employing the classical projection
algorithm (Chambolle, 2004; Aujol and Gilboa, 2006),
while the OSV model and our addressed model via
the split Bregman algorithm, respectively. Moreover,
all experiments were implemented using MATLAB 7.8
(R2009a) for Windows 7, on a PC with an Intel(R)
Core(TM) i5 CPU and 4 GB of RAM.

Furthermore, the criterion for stopping the split
Bregman iteration relies on the difference between the
consecutive iterations of the restored results, which can
be summarized in the following formulation:

‖uk+1 − uk‖2

‖uk+1‖2
< 10−3. (33)

We evaluate the performance of different approaches,
by computing the Signal to Noise Ratio (SNR) and the
Peak Signal to Noise Ratio (PSNR) in the recovered
images characterized by

SNR = 10 · log10

(∑
Ω(ui,j − ūi,j)2∑
Ω(ni,j − n̄i,j)2

)
, (34)

PSNR = 10 · log10

⎛
⎜⎜⎜⎝

2552 × M × N
M∑
i=1

N∑
j=1

(ui,j − ũi,j)2

⎞
⎟⎟⎟⎠ , (35)

where ui,j and ũi,j denote the original image and the
restored one, ūi,j and n̄i,j indicate the expectations of the
image and the additive noise, respectively, and M × N
stands for the image size. Generally, the larger the SNR
(dB) and PSNR (dB) values, the better the performance.

Following Hajiaboli (2010) and Liu et al. (2011),
we also evaluate the edge-preserving ability of different
schemes by measuring Pratt’s Figure Of Merit (FOM) in
the recovered image, defined as

FOM =
1

max(Nd, Na)

Nd∑
i=1

1
1 + ηd2

i

, (36)

where Nd and Na stand for the numbers of detected and
actual edge points, respectively, η is a positive constant,
and di denotes the error distance or deviation of the i-th
detected edge pixel. Additionally, the algorithm for edge
detection is employed by the Sobel edge detector. An
important assertion is that, in the sequel, the parameter
η in (36) is set to 0.1 for three different models. And
the optimal parameter K tailored in α(x) is devoted
to balancing the noise removal and detail preservation
abilities.

Firstly, we display the performance of the proposed
new model in Figs. 1–3, compared with the classical
OSV model and TV-Gabor model, for structure-texture
image decomposition. More precisely, Fig. 1 corresponds
to the standard test images: Lenna and Barbara, both
sized by 256×256 pixels. The first rows of Figs. 2
and 3 show the structural part u decomposed by three
different models, respectively, while the second rows
present their corresponding textural component v. Here,
we remark that two original images displayed in Fig. 1
are processed by three models with the equivalent
regularization coefficient λ = 2.0. Complementally, the
results exhibited in the first columns of Figs. 2 and 3
are produced by the OSV model with γ = 0.05. The
images obtained via the TV-Gabor model are reported
with Δt = 0.001, while our results are implemented by
setting the parameters γ = 0.02,K = 0.005, and σ = 0.5.

As can be seen, Figs. 2 and 3 distinctly illuminate
that the images decomposed by our advanced novel
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algorithm possess less structure in the textural part v
(namely, more edges are kept in the u component) than
those of another two TV regularization schemes. Other
comparisons with another two methods, in terms of
fewer iterations and less CPU time, also demonstrate
the outstanding performance of the proposed approach.
These data illustrate that our novel strategy is capable
of producing highly accurate solutions, and maintaining
more sharp edges and structural features in texture image
decomposition.

Secondly, we take the Cameraman image (Fig. 4(a),
256×256 pixels) as an example, and show the
performance of different models for image denoising.
Figure 4(b) (SNR = 15.90 dB) stands for its degraded
image contaminated by Gaussian white noise with
standard deviation 10. Subsequently, Figs. 4(c), 4(d)
and 4(e) denote the recovered cartoon components by
employing the OSV model, the TV-Gabor model and our
new scheme, respectively. Their corresponding texture
and noise components are shown in Figs. 4(f), 4(g) and
4(h). Here we would like to point out that the results
presented in Figs. 4(c) and 4(f) are carried out via
the conventional TV regularization model, by setting the
parameters λ = 0.1 and γ = 0.05, while our results
displayed in Figs. 4(e) and 4(h) are reported to need 11
iterations with λ = 0.125, γ = 0.02,K = 0.001, and
σ = 0.5.

Complementally, numerical experiments confirmed
that the split Bregman method is much faster than the
projection method (Chambolle, 2004), illuminated by
Goldstein and Osher (2009, Fig. 5.1). What is more,
the same results recovered using our proposed model
by the steepest descent algorithm usually consumes 100
iterations (t = 1.621 s) and 7 times of CPU time more
than the employed numerical algorithm. Table 2, together
with these facts, definitely reveals the fast computational
speed of the split Bregman technique.

Table 1. Comparison of the recovered results by employing
three different models.

Image Model SNR PSNR FOM

Cameraman
OSV 19.11 31.27 0.9765

TV-Gabor 19.05 31.25 0.9783
Our 19.35 31.59 0.9848

Peppers
OSV 16.32 29.93 0.9497

TV-Gabor 16.21 29.82 0.9531
Our 16.92 30.56 0.9583

Lastly, in order to further evaluate the reconstruction
performance of the proposed strategy, we take the original
Peppers image, shown in Fig. 5(a) and sized by 256×256
pixels, as an illustration. Its degenerated version presented
in Fig. 5(b) (SNR = 10.97 dB) is corrupted by Gaussian
white noise with standard deviation 15. Comparing with

Table 2. Iteration counts and CPU time for three different meth-
ods.

Image Model Niter Time (sec.)

Cameraman
OSV 12 0.2186

TV-Gabor 15 0.4203
Our 11 0.2089

Peppers
OSV 13 0.2351

TV-Gabor 15 0.4432
Our 12 0.2242

the models (1) and (5), we also validate the efficiency of
our proposed new methodology. The related simulation
results are shown in Fig. 5. More precisely Figs. 5(c),
5(d) and 5(e) individually display the cartoon components
of the conventional TV minimization models and our new
strategy. The images listed in the third row of Fig. 5 are
their corresponding oscillatory components. Thereinto,
Figs. 5(c) and 5(f) are run by setting λ = 0.09 and
γ = 0.05, while Fig. 5(e) is obtained via our proposed
algorithm with λ = 0.1, γ = 0.02,K = 0.001, and σ = 1
for 12 iterations.

As might be expected, it follows from Figs. 4, 5
and Tables 1, 2 that the results recovered by applying the
proposed model possess higher SNR, PSNR and FOM
values than those of the OSV model and the TV-Gabor
model. In other words, our new model performs better in
the denoising case.

In conclusion, the provided numerical simulations
again indicate the unexampled performance of the
proposed scheme, in preserving important structure
features and sharp edges in comparison with other
variational models.

6. Conclusion

In the current article, based on traditional TV
regularization models, we propose an improved spatially
and scale adaptive version for edge-preserving image
decomposition and restoration. To quickly resolve the
advanced variational model, the fast split Bregman
method is developed and analyzed minutely. Compared
with the existing state-of-the-art OSV model and the
TV-Gabor model, related numerical results demonstrate
the competitive performance of the proposed strategy
in image decomposition and denoising, especially in
preserving the fine edge details, and achieving higher
image quality.
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