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Naive Bayes is among the simplest probabilistic classifiers. It often performs surprisingly well in many real world applica-
tions, despite the strong assumption that all features are conditionally independent given the class. In the learning process
of this classifier with the known structure, class probabilities and conditional probabilities are calculated using training
data, and then values of these probabilities are used to classify new observations. In this paper, we introduce three novel
optimization models for the naive Bayes classifier where both class probabilities and conditional probabilities are consid-
ered as variables. The values of these variables are found by solving the corresponding optimization problems. Numerical
experiments are conducted on several real world binary classification data sets, where continuous features are discretized
by applying three different methods. The performances of these models are compared with the naive Bayes classifier, tree
augmented naive Bayes, the SVM, C4.5 and the nearest neighbor classifier. The obtained results demonstrate that the pro-
posed models can significantly improve the performance of the naive Bayes classifier, yet at the same time maintain its
simple structure.
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1. Introduction

Bayesian Networks (BNs) introduced by Pearl (1988)
are high level representations of probability distributions
over a set of variables X = {X1, X2, . . . , Xn} that are
used for a learning process. The learning of BNs is
divided in two steps: structure learning and parameter
learning. The former is constructing a directed acyclic
graph from the set X. In the graph, each node corresponds
to the variable and each arc denotes a causal relationship
between two variables, while the direction of the arc
indicates the direction of the causality. When two nodes
are joined by an arc, the causal node is called the
parent of the other node, and another one is called the
child. We use Xi to denote both the variable (feature)
and its corresponding node, and Pa(Xi) to denote the
set of parents of the node Xi. Given a structure,
finding probability distributions, class probabilities and
conditional probabilities, associated with each variable is
called parameter learning (Campos et al., 2002; Polanska
et al., 2006; Zaidi et al., 2012).

In particular, the joint probability distribution for X
is given by

P (X) =
n∏

i=1

P (Xi|Pa(Xi)). (1)

However, accurate estimation of P (Xi|Pa(Xi)) requires
finding the structure which is non-trivial. It has been
proved that learning an optimal structure of a BN is an
NP-hard problem (Chickering, 1996; Heckerman et al.,
2004). In order to avoid the intractable complexity of
the structure learning in BNs, the naive Bayes classifier
(Langley et al., 1992; Taheri et al., 2011) with the
known structure has been used. In Naive Bayes (NB),
features are conditionally independent given the class.
This means that each feature has the class as an only
parent. The efficiency of NB has witnessed its widespread
development in real world applications including medical
diagnosis, recommender systems, email filtering, web
page perfecting and fraud detection (Crawford et al.,
2002; Kononenko, 2001; Miyahara and Pazzani, 2000;
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Zupan et al., 2001).
In this paper, our aim is to improve the performance

of NB by applying optimization techniques, yet at
the same time to maintain its simple structure. We
consider class probabilities and conditional probabilities
as unknown variables, whose optimal values can be
computed by applying optimization techniques. We
introduce three different optimization models for NB
using different definitions of unknown variables.

Most data sets in real world applications involve
continuous features. The most well-known attempt
at improving the performance of NB with continuous
features is the discretization of the features into intervals,
instead of using the default option to utilize the normal
distribution to calculate probabilities. The main reason
is that NB with discretization tends to achieve a lower
classification error than the original one (Dougherty et al.,
1995). It has been shown that the performance of
NB classifier significantly improves when features are
discretized using an entropy based method (Dougherty
et al., 1995). In this paper, therefore, we use the
Fayyad and Irani method (Fayyad and Irani, 1993) based
on a minimal entropy heuristic to discretize continuous
features. We also apply two other different discretization
methods. The first one, which is also the simplest
one, transforms the continuous features to discrete ones
using the median-based discretization method. The
second one is the discretization algorithm recently
introduced by Yatsko et al. (2011), using the Sub-Optimal
Agglomerative Clustering (SOAC) algorithm.

The structure of the paper is as follows. In the next
section, we provide a brief description of the NB classifier.
In Section 3 with the preliminaries, we briefly describe the
globally convergent optimization method, a Combination
of the Gradient and Newton (CGN) methods, and
discretization algorithms, respectively, which we required
for our discussion in the latter part of the paper. In Section
4, we introduce three different optimization models for the
NB classifier. The results of numerical experiments are
given in Section 5. Section 6 concludes the paper.

2. Naive Bayes classifier

The naive Bayes classifier (Domingos and Pazzani,
1997; Langley et al., 1992; Tóth et al., 2005; Taheri
and Mammadov, 2012) assumes that each feature only
depends on the class as depicted in Fig. 1. This means
that each feature has only the class as a parent. NB
is attractive as it has an explicit and sound theoretical
basis which guarantees optimal induction given a set of
explicit assumptions. There is a drawback in which the
independency assumptions of features with respect to the
class are violated in some real world problems. However,
it has been shown that NB is remarkably robust in the
face of such violations (Domingos and Pazzani, 1996;

Friedman et al., 1997). NB is fast, easy to implement with
the simple structure, and effective. It is also useful for
high dimensional data as the probability of each feature
is estimated independently. NB is one of the 10 top
algorithms in data mining as listed by Wu et al. (2008).

Let C denote the class of an observation X. To
predict the class of the observation X by using the Bayes
rule, the highest posterior probability of

P (C|X) =
P (C)P (X|C)

P (X)
(2)

should be found.
In the NB classifier, using the assumption that

featuresX1, X2, . . . , Xn are conditionally independent of
each other given the class, we get

P (C|X) =
P (C)

∏n
i=1 P (Xi|C)
P (X)

. (3)

In classification problems, Eqn. (3) is sufficient to
predict the most probable class given a test observation.

���1X 2X 3X nX

C

Fig. 1. Naive Bayes.

To estimate class probabilities P (C) and conditional
probabilities P (Xi|C), i = 1, . . . , n, in the formula (3),
in this paper we introduce three different optimization
models.

3. Preliminaries

In this section, we briefly review the optimization method,
CGN, and discretization algorithms, the Fayyad and Irani
method and the SOAC algorithm, which we use in the
latter part of the paper.

3.1. Combination of the gradient and Newton meth-
ods. In this section, we give a very brief introduction
to the optimization algorithm, a combination of the
gradient and the Newton methods (Taheri et al., 2012).
CGN is a new globally convergent optimization algorithm
for solving unconstrained optimization problems. The
idea is to combine two directions from different local
optimization methods. The first direction is the gradient
direction due to its global convergence property. The
second one is Newton’s direction to speed up the
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convergence rate. Two different combinations are
considered in this algorithm. The first one is a novel
combination in which the step length is determined only
along the gradient direction. In the second one, the step
length is considered along both directions. For more
details, see the work of Taheri et al. (2012).

3.2. Discretization methods. In order to apply the NB
classifier to data sets with continuous features, one should
first discretize those features. Discretization is a process
which transforms continuous numeric values into discrete
ones. In this paper, we apply three different methods
to discretize continuous features. The first one, which
is also the simplest, transforms the continues features to
discrete ones, {0,1} using the median-based discretization
method. We also apply two other methods, which
allows us to get more than two values for discretized
features. One is the Fayyad and Irani discretization
method (Fayyad and Irani, 1993), which is the most often
applied discretization method in the literature, and another
one is the discretization algorithm using sub-optimal
agglomerative clustering, which was recently introduced
by Yatsko et al. (2011).

In the next section, we introduce three optimization
models to improve the performance of the NB classifier.
In the proposed models, class probabilities and
conditional probabilities are considered to be unknown
variables, and the optimal values of these variables are
computed by applying optimization techniques.

4. Optimization models

Let D = {(X1, C1), (X2, C2), . . . , (XN , CN )} be a data
set, where N is the number of observations; Xi =
{Xi1, Xi2, . . . , Xin}, n is the number of features. We
assume binary classification, that is, Ci ∈ {−1, 1}, i =
1, . . . , N , and we use the notation C = −C.

From the Bayes rule, we know that

P (Ci|Xi) =
P (Xi|Ci)P (Ci)

P (Xi)
, (4)

where P (Xi) = P (Xi|Ci)P (Ci) + P (Xi|Ci)P (Ci).
Since Ci and Ci are complimentary to each other, and
P (Ci), P (Ci) are probabilities, we have

P (Ci) + P (Ci) = 1, 0 ≤ P (Ci), P (Ci) ≤ 1. (5)

In the NB classifier, it is assumed that all features are
independent of each other given the class. This means that

P (Xi|Ci) =
n∏

j=1

P (Xij |Ci). (6)

Therefore the formula (4) for NB can be rewritten as

P (Ci|Xi)

=

n∏
j=1

P (Xij |Ci)P (Ci)

n∏
j=1

P (Xij |Ci)P (Ci) +
n∏

j=1

P (Xij |Ci)P (Ci)
. (7)

Similarly,

P (Ci|Xi)

=

n∏
j=1

P (Xij |Ci)P (Ci)

n∏
j=1

P (Xij |Ci)P (Ci) +
n∏

j=1

P (Xij |Ci)P (Ci)
. (8)

Using the definition of the conditional probability,

P (Xij |Ci) =
P (Xij , Ci)
P (Ci)

, (9)

(7) and (8) can be represented as

P (Ci|Xi) =

n∏
j=1

P (Xij , Ci)

(
P (Ci)

)n−1

n∏
j=1

P (Xij , Ci)

(
P (Ci)

)n−1 +

n∏
j=1

P (Xij , Ci)

(
P (Ci)

)n−1

(10)

and

P (Ci|Xi) =

n∏
j=1

P (Xij , Ci)

(
P (Ci)

)n−1

n∏
j=1

P (Xij , Ci)

(
P (Ci)

)n−1 +

n∏
j=1

P (Xij , Ci)

(
P (Ci)

)n−1

. (11)

Considering thatCi is the class of the observation Xi,
the value ofP (Ci|Xi) is expected to be greater than that of
P (Ci|Xi) for the majority of observations, i = 1, . . . , N.

In the next three subsections, we will present
three different optimization models for the NB classifier
by considering class probabilities and conditional
probabilities as unknown variables.

4.1. Model 1: An optimization model based on
class probabilities. In this subsection, we consider class
probabilities as variables. We introduce the variable w for
the probability P (1), and since P (1) + P (−1) = 1, we
have 1 − w for the probability P (−1). Let us consider

ξ(w;C) =

⎧
⎨

⎩

w if C = 1,

1 − w if C = −1.
(12)
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Then the objective functions for (10) and (11) can be
written as

f1(w) =
N∑

i=1

n∏
j=1

P (Xij , Ci)

(
ξ(w;Ci)

)n−1

n∏
j=1

P (Xij , Ci)

(
ξ(w;Ci)

)n−1 +

n∏
j=1

P (Xij , Ci)

(
ξ(w;Ci)

)n−1

(13)

and

f2(w) =
N∑

i=1

n∏
j=1

P (Xij , Ci)

(
ξ(w;Ci)

)n−1

n∏
j=1

P (Xij , Ci)

(
ξ(w;Ci)

)n−1 +

n∏
j=1

P (Xij , Ci)

(
ξ(w;C i)

)n−1

. (14)

By consideringCi as the class of Xi, it is quite natural that
the value of f1(w) should be maximized while the value
of f2(w) minimized. Therefore, the NB classifier leads to
an optimization problem:

maximize: ψ(w) =
f1(w)
f2(w)

(15)

subject to 0 ≤ w ≤ 1.

4.2. Model 2: A simplified version of Model 1.
In this subsection, for simplicity we consider only the
variable w for the probability P (1), and 1 − w for the
probability P (−1) in the formulas (7) and (8). Therefore,
the second optimization model for the NB classifier under
these assumptions and using (12) can be described by the
objective functions (16) and (17). Then we can consider
an optimization problem in a similar way to (15):

maximize: φ(w) =
f̃1(w)

f̃2(w)
(18)

subject to 0 ≤ w ≤ 1.
Since problems in Models 1 and 2 are univariate

optimization ones, we partition the constraint 0 ≤ w ≤ 1
into 1000 intervals and we find the maximum value of the
objective function in each model.

4.3. Model 3: An optimization model based on
class probabilities and conditional probabilities. In
the third optimization model for the NB classifier, we
discretize the values of all features to binary values,
{0, 1}, by applying the median-based discretization
method. Since we have binary classification (1, or −1),

we consider not only P (1) and P (−1), but also the
conditional probabilities P (1|1), P (0|1), P (1| − 1) and
P (0| − 1) as variables. For each feature j, j = 1, . . . , n,
we introduce four variables:

v1j for P (j-th feature is 1|class is] 1),

v2j for P (j-th feature is 0|class is 1),

v3j for P (j-th feature is 1|class is − 1),

v4j for P (j-th feature is 0|class is − 1).

As a result, we have a matrix of 4n variables,

V =

⎛

⎜⎜⎝

v11 v12 . . . v1n

v21 v22 . . . v2n

v31 v32 . . . v3n

v41 v42 . . . v4n

⎞

⎟⎟⎠ . (19)

Since we have constraints v1j + v2j = 1 and v3j +
v4j = 1, j = 1, . . . , n, the matrix V can be rewritten as

W =
(
w11 w12 . . . w1n

w21 w22 . . . w2n

)
, (20)

where w1j = v1j and w2j = v3j , j = 1, . . . , n. Clearly,
v2j = 1 − w1j and v4j = 1 − w2j , j = 1, . . . , n.

Similarly as in (12), we introduce

ζ(α, β;X,C) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

α if X = 1, C = 1,

1 − α if X = 0, C = 1,

β if X = 1, C = −1,

1 − β if X = 0, C = −1.

(21)

Then, using (12) and (21), the formulas (16) and (17)
are given by (22) and (23) Therefore, the maximization
problem for this model is

maximize: ϕ(w,W ) =
f̂1(w,W )

f̂2(w,W )
(24)

subject to 0 ≤ w,w1j , w2j ≤ 1, j = 1, . . . , n.

The problem (24) is a constrained optimization one.
We apply the penalty method with a parameter μ = 104

to reduce this problem to an unconstrained one. The
unconstrained problem is as follows:

maximize

	(w,W, μ) = ϕ(w,W ) − μ
{
[max(0,−w,w − 1)]2

+
n∑

j=1

(
[max(0,−w1j, w1j − 1)]2

+ [max(0,−w2j , w2j − 1)]2
)}
.

(25)
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f̃1(w) =
N∑

i=1

n∏
j=1

P (Xij |Ci)ξ(w;Ci)

n∏
j=1

P (Xij |Ci)ξ(w;Ci) +
n∏

j=1

P (Xij |Ci)ξ(w;C i)
, (16)

f̃2(w) =
N∑

i=1

n∏
j=1

P (Xij |Ci)ξ(w;Ci)

n∏
j=1

P (Xij |Ci)ξ(w;Ci) +
n∏

j=1

P (Xij |Ci)ξ(w;C i)
. (17)

f̂1(w,W ) =
N∑

i=1

n∏
j=1

ζ(w1j , w2j ;Xij , Ci)ξ(w;Ci)

n∏
j=1

(
ζ(w1j , w2j ;Xij , Ci)ξ(w;Ci) + ζ(w1j , w2j ;Xij , Ci)ξ(w;Ci)

) , (22)

f̂2(w,W ) =
N∑

i=1

n∏
j=1

ζ(w1j , w2j ;Xij , Ci)ξ(w;C i)

n∏
j=1

(
ζ(w1j , w2j ;Xij , Ci)ξ(w;Ci) + ζ(w1j , w2j ;Xij , Ci)ξ(w;Ci)

) , (23)

For solving the nonlinear and nonconvex
unconstrained optimization problem (25), we use
the new globally convergent optimization method, CGN
(Taheri et al., 2012), which was briefly introduced in
Section 3. The reason for choosing this method is that
it has better performance than some well-known local
optimization methods such as the gradient method and
the Newton method. We demonstrate this fact in the
numerical section.

Model 3 can be generalized to any discrete features.
We have not considered such a model in this paper, which
could be a topic for a separate research paper.

5. Numerical experiments

To verify the effectiveness of the proposed models,
numerical experiments with a number of real world data
sets have been carried out on different methods of data
mining.

5.1. Data collections. This paper studies 14 binary
data sets taken from the literature. A brief description of
the data sets is given in Table 1. Their detailed description
can be found in the UCI machine learning repository
(Asuncion and Newman, 2007), and the tools page of the
LIBSVM (Chang and Lin, 2001). These data sets have
been analyzed quite frequently by the current data mining
approaches. Another reason for selecting these data sets
was the fact that conventional approaches have analyzed
them with variable success.

5.2. Results and discussion. We conduct empirical
comparison with naive Bayes, Tree Augmented Naive
(TAN) Bayes, the Support Vector Machine (SVM),
a specific algorithm of the decision-tree (C4.5) and
the nearest neighbor classifier (1-NN). The reason for
choosing these methods for comparison with the proposed
models is that they are on the list of top 10 algorithms in
data mining (Wu et al., 2008). For each method, we run
50 trials and then the average accuracy over the 50 runs
is calculated. The accuracy of the methods in each run
is calculated using 10-fold cross validation with random
orders of data records in partitioning training and test
data sets to have more reliable results. More precisely,
each fold contained 10% of the data set randomly selected
(without replacement). For consistent comparison, the
same folds, including the same training and test data sets,
are used in implementing the methods.

We discretize the values of features in data sets
using three different methods. In the first one which
is the simplest method, we apply the median-based
discretization method where the values of features have
been transferred to {0, 1}. In the second one, we apply
the well-known Fayyad and Irani discretization method
(Fayyad and Irani, 1993). The third one is the recently
introduced discretization method, the SOAC algorithm
(Yatsko et al., 2011). Model 3 is not suitable when
applying the Fayyad and Irani and SOAC discretization
methods as it needs binary values for features.

The efficiency of the CGN method when applied
to Model 3 has been tested on some data sets randomly
chosen from Table 1, such as credit approval, diabetes and
heart disease.
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Table 3. Average test set accuracy over 10 fold cross validation for 14 data sets using the median-based discretization method.
Data NB TAN SVM C4.5 1-NN M1 M2 M3

Breas 96.37 95.92 95.32 91.21 96.71 97.40 97.62 97.99
Cong 91.43 91.74 96.76 95.71 95.78 96.83 96.89 96.97
Credit 84.92 82.90 85.51 87.49 83.21 84.89 88.86 89.98
Diabet 75.93 76.51 76.72 76.12 74.94 76.92 77.35 78.65
Germa 75.32 74.02 76.15 72.14 72.23 75.65 75.91 78.36
Haber 75.22 73.98 73.54 71.79 70.14 75.93 77.98 78.65
Heart 81.67 84.72 80.54 81.73 80.03 86.86 87.67 88.87
Hepat 83.76 83.44 83.43 82.99 83.58 83.94 84.42 84.43
Ionos 82.95 84.57 85.98 86.35 88.97 84.61 85.93 88.68
Liver 61.84 61.87 60.05 60.17 62.85 63.01 65.64 65.72
Sonar 75.16 75.48 76.99 76.69 74.15 76.41 76.65 79.97
Spam 90.31 89.89 90.47 91.96 92.41 90.24 92.56 93.57
Svm1 92.72 92.16 93.31 93.72 95.89 93.75 94.83 96.89
Svm3 81.34 83.01 80.11 81.23 80.58 83.15 83.72 86.65
Ave 82.06 82.15 82.49 82.09 82.24 83.56 84.71 86.09

Table 4. Average test set accuracy over 10 fold cross validation for 14 data sets using the FaI discretization method.
Data NB TAN SVM C4.5 1-NN M1 M2

Breas 97.18 96.52 96.52 94.11 96.12 97.72 97.78
Cong 90.11 93.21 95.04 95.32 95.72 95.81 96.12
Credit 86.10 84.78 85.03 84.87 83.04 86.93 87.71
Diabet 74.56 75.14 75.51 73.83 73.95 76.42 75.84
Germa 74.50 73.13 76.41 71.92 72.03 75.95 76.81
Haber 75.09 74.41 73.20 71.24 69.93 77.14 76.87
Heart 82.93 81.23 81.67 82.85 78.14 83.56 85.62
Hepat 84.56 83.91 85.16 83.87 84.51 85.76 85.81
Ionos 88.62 89.77 89.67 89.98 89.99 88.96 89.57
Liver 63.26 63.18 62.03 62.15 62.89 64.83 65.72
Sonar 76.32 76.47 77.96 77.31 72.11 76.40 76.37
Spam 90.41 89.78 90.43 92.97 92.45 92.84 92.51
Svm1 92.39 91.61 94.31 95.99 96.07 94.88 93.98
Svm3 81.23 82.47 80.37 81.38 80.14 84.90 86.12
Ave 82.66 82.54 83.09 82.69 81.93 84.43 84.77

Table 5. Average test set accuracy over 10 fold cross validation for 14 data sets using the SOAC discretization algorithm.
Data NB TAN SVM C4.5 1-NN M1 M2

Breas 96.12 95.60 95.31 91.16 96.16 97.85 97.99
Cong 90.11 91.42 96.75 95.12 95.81 96.81 96.97
Credit 85.85 84.98 86.11 87.54 84.46 86.94 88.51
Diabet 75.78 75.90 76.68 75.63 74.97 76.17 78.12
German 74.61 74.01 76.35 72.21 72.22 76.08 76.19
Haber 74.66 76.08 73.36 72.15 71.85 75.61 75.32
Heart 78.62 77.37 77.96 79.17 78.67 79.44 84.11
Hepat 82.93 81.54 84.24 82.34 84.52 85.83 86.37
Ionos 85.92 86.18 86.15 86.71 88.75 86.98 88.23
Liver 65.82 65.73 63.69 64.98 63.79 66.51 66.94
Sonar 75.09 75.76 77.74 76.41 74.53 76.13 76.81
Spam 89.30 89.04 91.56 93.73 92.47 92.89 93.43
Svm1 95.81 94.91 95.94 96.91 96.97 97.38 97.75
Svm3 77.25 79.99 78.32 78.49 81.05 82.11 82.27
Ave 81.99 82.03 82.86 82.32 82.58 84.05 84.92
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The results are shown in Table 2. This table proves
that, in comparison with other commonly used local
methods such as the Gradient Method (GM) and the
Newton Method (NM), the choice of the optimization
method, CGN, is worthwhile and is a more robust and
efficient local optimization method to be applied in
Model 3. We scaled the values of the objective function
obtained by the CGN method to 1 and then the results
achieved by other methods were shown in relation to the
first method. For example, in this table, a cell containing
1/.7/f would denote that the first method (CGN) finds the
optimal solution, the second one (GM) shows that 70
percent of the optimal value was obtained, and the third
method (NM) failed to find the solution.

The results of the test set accuracy for different
methods using different discretization methods are shown
in Tables 3–5.

Table 3 demonstrates the test set accuracy obtained
by NB, TAN, the SVM, C4.5, 1-NN, Models 1–3 on 14
data sets using the median-based discretization method.
The results table demonstrate that the test set accuracy
of Models 2 and 3 in all data sets are better than those
obtained by NB. Model 1 has also higher accuracy than
NB in the majority of data sets. In 12 cases out of 14,
Model 1 shows better accuracy than NB. In data sets
Credit Approval and Spam Base, the accuracy of this
model almost ties with that obtained by NB. Table 3
also shows that the proposed models have much better
accuracy than TAN in all data sets. Observe in this
table/that Model 2 has better accuracy than the SVM in
11 cases out of 14, and Model 1 performs better than the
SVM in 9 cases out of 14. Model 2 has greater accuracy
than C4.5 in 12 data sets, and the accuracy obtained by
Model 1 is higher than C4.5 in 10 cases out of 14. The
results in this table also show that Model 3 outperforms
the SVM and C4.5 in all data sets. Models 1–3 have
greater accuracy than 1-NN in 11 data sets, 12 and 13

Table 1. Brief description of data sets.
Data sets # Observations # Features

Breast Cancer 699 10
Congres Vote 435 16
Credit Approval 690 15
Diabetes 768 8
German.numer 1000 24
Haberman 306 3
Heart Disease 303 14
Hepatitis 155 19
Ionosphere 351 34
Liver Disorders 345 6
Sonar 208 60
Spambase 4601 57
Svmguide1 7089 4
Svmguide3 1284 21

Table 2. Comparison results to show the efficiency of the chosen
optimization method, CGN, for Model 3 of NB.

Initial point Credit Approval Diabetes Heart Disease

(0.1, 0.9) 1/.8/1 1/f/1 1/.9/1
(0.2, 0.8) 1/.9/1 1/.6/f 1/.9/.9
(0.3, 0.7) 1/.9/f 1/.8/f 1/.9/1
(0.4, 0.6) 1/1/1 1/.8/1 1/.9/f
(0.5, 0.5) 1/1/1 1/.8/1 1/.9/1
(0.6, 0.4) 1/1/f 1/.8/f 1/.9/f
(0.7, 0.3) 1/.9/f 1/.9/1 1/.9/f
(0.8, 0.2) 1/.9/1 1/.6/f 1/.9/1
(0.9, 0.1) 1/.8/1 1/1/1 1/.9/1

cases out of 14, respectively.
Table 4 presents the test set accuracy obtained by

NB, TAN, the SVM, C4.5, 1-NN Models 1 and 2 on 14
data sets, where continuous features are discretized by
applying the Fayyad and Irani (FaI) method. The results
presented in this table demonstrate that the accuracy of
Models 1 and 2 is significantly better than that of NB
in all data sets. In 12 data sets out of 14, these models
perform better than TAN, whereas the latter has slightly
higher accuracy in the Ionosphere and Sonar data sets.
The results from Table 4 also indicate that Models 1 and
2 have the greater accuracy than the SVM in 11 data sets.
Compared to the C4.5, Table 4 shows higher accuracy for
Models 1 and 2 in 10 data sets. These two models also
have greater accuracy than 1-NN in 12 data sets.

The test set accuracy obtained by NB, TAN, the
SVM, C4.5, 1-NN, Models 1 and 2 on 14 data sets using
the discretization algorithm SOAC is summarized in Table
5. The results from this table show that the accuracy
obtained by Models 1 and 2 in all data sets are higher than
those obtained by NB. The accuracy of Models 1 and 2
is better than those of TAN on most of data sets. In 13
cases out of 14, Models 1 and 2 have greater accuracy
than TAN. The results from Table 5 also demonstrate that
Model 2 has greater accuracy than the SVM in 12 data
sets out of 14, and the latter method outperforms the
Model 1 in the diabetes, german.numer and sonar data
sets. Table 5 indicates higher accuracy for the Model 2
in 13 data sets, and 11 cases for Model 1 when compared
to C4.5. Models 1 and 2 also perform better than 1-NN in
13 data sets.

The numerical results generally demonstrate that
the proposed models can significantly improve the
performance of the naive Bayes classifier, yet at the same
time maintain its simple structure. The average accuracy
of 14 data sets obtained by each classifier shows that
Model 3 has a dramatic increase in the test set accuracy,
and it is reasonable due to considering more variables
replacing class probabilities and conditional probabilities
which allows to build more accurate model. However,
these models require more training time than the naive
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Bayes classifier due to applying optimization techniques.

6. Conclusion

In this paper, we introduced three different optimization
models for the naive Bayes classifier by considering class
probabilities and conditional probabilities as unknown
variables. Then we applied optimization techniques to
find the optimal values for these variables. We compared
the proposed models with NB, TAN, the SVM, C4.5 and
1-NN on 14 real world binary classification data sets. The
values of features in data sets are discretized by using
a median-based discretization method and applying two
different discretization algorithms, the Fayyad and Irani
method and the algorithm SOAC. We presented results of
numerical experiments. The results demonstrate that the
proposed models perform better than NB, TAN, the SVM,
C4.5, and 1-NN in terms of accuracy, yet at the same
time they maintain the simple structure of NB. Especially
Model 3 increased the test set accuracy of each data sets
and this is reasonable due to considering more variables
replacing class probabilities and conditional probabilities
which allows us to build a more accurate model.

In this work, we mainly focus on binary classification
data sets since they are the simplest among the main
classification categories. However, the applications of
the proposed models for other types of data sets, and
also generalizing Model 3 to any discrete features, remain
important questions for future work.
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