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In this paper, we consider the design of interconnected H∞ feedback control systems with quantized signals. We assume
that a decentralized dynamic output feedback has been designed for an interconnected continuous-time LTI system so
that the closed-loop system is stable and a desired H∞ disturbance attenuation level is achieved, and that the subsystem
measurement outputs are quantized before they are passed to the local controllers. We propose a local-output-dependent
strategy for updating the parameters of the quantizers, so that the overall closed-loop system is asymptotically stable and
achieves the same H∞ disturbance attenuation level. Both the pre-designed controllers and the parameters of the quantizers
are constructed in a decentralized manner, depending on local measurement outputs.
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1. Introduction

Since quantized signals always exist in any computer
based control systems (Bushnell, 2001; Ishii and Francis,
2002; Tatikonda and Mitter, 2004), many researchers have
begun to study the analysis and design problems for
control systems involving various quantization methods
in the last two decades. Delchamps (1990) addressed the
problem of stabilizing an unstable linear system by means
of quantized state feedback, i.e., state feedback where
the measurements of the system state are quantized. The
quantizer in the work of Delchamps (1990) takes values
in a countable set. Brockett and Liberzon (2000) defined
a quantizer taking values in a finite set and considered
quantized feedback stabilization for linear systems. While
the approach of Brockett and Liberzon (2000) relies on
the possibility of making discrete on-line adjustments of
quantizer parameters, Liberzon (2003) extended it to more
general nonlinear systems with general types of quantizers
involving the states, the measurement outputs, and the
control inputs of the system.

Later, Zhai et al. (2004) considered the stabilization
problem for a discrete-time LTI system via state feedback

involving both quantized states and control inputs. In that
context, a hybrid quantized state feedback strategy was
proposed, where the values of the quantizer parameters are
updated at discrete instants of time. Further, the authors
extended the results to H∞ feedback control systems
(Zhai et al., 2005), dealing with both state feedback and
dynamic output feedback. The key point is to propose
a state-dependent (or an output-dependent) strategy for
updating the quantizer’s parameters, so that the system
is asymptotically stable and achieves the same H∞
disturbance attenuation level.

It was also noted by Zhai et al. (2005) that the
control strategies of updating the quantizer’s parameter
are dependent on time in the existing works (Brockett and
Liberzon, 2000; Liberzon, 2003; Zhai et al., 2004), and
such control strategies cannot be applied for the case of
H∞ control since the value of the disturbance inputs is
not available and thus one cannot drive the state into an
invariant region, as done by Liberzon (2003) and Zhai
et al. (2004). In contrast, the control strategy of Zhai et al.
(2005) is state- or output-dependent, and as such is usually
regarded to have more robustness.
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Zhai et al. (2010) extended their previous discussion
(Zhai et al., 2005) to decentralized H∞ static output
feedback of interconnected systems. For illustration,
Fig. 1 gives an example of interconnected output feedback
systems composed of two subsystems with quantized
measurement outputs. It is well known that interconnected
systems appear in many real applications such as
large-scale power transfer systems, traffic networks, etc.,
and the typical control strategy is decentralized control.
The existence of interconnections among subsystems
leads to difficulties in decentralized control. Moreover,
due to physical communication constraints, the signals
among subsystems are generally quantized, which makes
the entire control system design much more challenging.

For this purpose, the situation assumed by Zhai et al.
(2010) is that, for each subsystem, a local static output
feedback has been designed such that the overall system is
stable and a certain H∞ disturbance attenuation level (in
the sense of l2 gain from disturbance input to controlled
output in the overall closed-loop system) is achieved.
However, although the data of the local controller go to
the subsystem without loss, the subsystems’ local outputs
are quantized before they are passed to the controller. Due
to the quantization effects, the desired system stability and
H∞ disturbance attenuation level cannot be guaranteed.

The quantizers are supposed to take a generalized
form where there is a zoom parameter that can be
adjusted. Then, Zhai et al. (2010) proposed to update the
quantizer parameters in a decentralized on-line manner,
i.e., to change the parameter’s value depending on each
subsystem’s measurement output, so that the overall
closed-loop system is asymptotically stable and the same
H∞ disturbance attenuation level is achieved. Recently,
the approach of Zhai et al. (2010) has been further
extended to dynamic output feedback by Chen et al.
(2011a), who also dealt with various uncertainties and
other quantized signals. However, the local dynamic
output feedbacks of Chen et al. (2011a) did not have a
general form, and the strategy of updating the quantizers’
parameters is expressed as an equation, which is not
desirable in real applications.

This paper aims to complement and improve the
discussion by Zhai et al. (2010) and Chen et al. (2011a).
The interconnected system under consideration is the
same as in the works of Zhai et al. (2010) and Chen
et al. (2011a), and its outline is depicted in Fig. 1,
but the number of subsystems does not have to be
two. Note that the local controller Ki in Fig. 1 is
a dynamic output feedback now. We assume that a
decentralized dynamic output feedback, composed of
Ki’s, has been designed for the interconnected system
so that the closed-loop system is stable and a desired
H∞ disturbance attenuation level is achieved, and that
the measurement outputs of the subsystems are quantized
before they are passed to the local controllers. We then

propose a local-output-dependent strategy for updating
the parameters of the quantizers, so that the overall
closed-loop system is asymptotically stable and achieves
the same H∞ disturbance attenuation level.

In contrast to the approach by Chen et al. (2011a),
the quantizer updating strategy is expressed by an
inequality, which has more robustness to small external
disturbances and rounding errors. As desired, both the
pre-designed controllers and the quantizer parameters are
constructed in a decentralized manner, depending on the
local measurement output.
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Fig. 1. Interconnected feedback systems with quantized measu-
rement outputs.

The rest of this paper is organized as follows.
Section 2 presents the definition and the property
of a generalized quantizer. Section 3 describes the
interconnected system, gives some comments on how
to pre-design the controller in the case of decentralized
dynamic output feedback, and formulates the control
problem. Section 4 proposes a local-output-dependent
strategy for updating the quantizer parameters, so that
the overall closed-loop system is asymptotically stable
and achieves the same H∞ disturbance attenuation level.
Section 5 provides a simulation example, and Section 6
concludes the paper.

2. Preliminaries

2.1. Quantizer description. We first give the
definition of a quantizer with general form as introduced
by Liberzon (2003). Let z ∈ R

l be the variable being
quantized. A quantizer is defined as a piecewise constant
function q : R

l → D, where D is a finite subset of R
l.
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This leads to a partition of R
l into a finite number of

quantization regions of the form {z ∈ R
l : q(z) = i},

i ∈ D. These quantization regions are not assumed to
have any particular shapes. We assume that there exist
positive real numbers M and Δ such that the following
conditions (properties) hold:

P1. If |z| ≤ M then |q(z) − z| ≤ Δ,

P2. If |z| > M then |q(z)| > M − Δ .
(1)

Condition P1 gives a bound on the quantization
error when the quantizer does not saturate. Condition P2
provides a way to detect the possibility of saturation. We
will refer to M and Δ as the range of q and the quanti-
zation error, respectively. We also assume that q(x) = 0
for x in some neighborhood of the origin. The example of
satisfying the above requirements is given by the quantizer
with rectangular quantization regions by Brockett and
Liberzon (2000) as well as Liberzon (2000).

In the control strategy to be developed below, we will
use quantized measurements of the form

qµ(z)
�
= μq

( z

μ

)
, (2)

where μ > 0 is the parameter. The extreme case of μ = 0
is regarded as setting the output of the quantizer as zero.
The range of this quantizer is Mμ and the quantization
error is Δμ. We can view μ as a “zoom” variable:
increasing μ corresponds to zooming out and essentially
obtaining a new quantizer with a larger range and a larger
quantization error, while decreasing μ corresponds to
zooming in and obtaining a quantizer with a smaller range
but also a smaller quantization error. We will update μ
later depending on the system local measurement outputs.
In this sense, it can be considered as another state of the
resultant closed-loop system.

2.2. Notation. Throughout this paper, the superscript
“�” represents the transpose of a matrix, while the
superscript “−1” represents the inverse of a matrix. W �
0 (resp.W ≺ 0) means W is symmetric and positive
(resp. negative) definite, and W1 � W2 means W1 −
W2 � 0. A matrix A is Hurwitz if all its eigenvalues have
negative real parts.

Denote by | · | the standard Euclidean norm in the
n-dimensional vector space R

n, and denote by ‖ · ‖
the corresponding induced matrix norm in R

n×n. λm(·)
and λM (·) denote the smallest and the largest eigenvalue
of a symmetric matrix, respectively. Then, for any
positive definite matrix W , the inequality λm(W ) |x|2 ≤
x�Wx ≤ λM (W ) |x|2 holds for any vector x.

2.3. Bounded real lemma. In the end of this section,
we state a preliminary lemma for the benefit of our

discussion later, which is the well-known bounded real
lemma (Iwasaki et al., 1998) concerning the H∞ analysis
of continuous-time linear time-invariant systems.

Lemma 1. The following three statements are equivalent:

1. A is Hurwitz and ‖D + C(sI − A)−1B‖∞ < γ .

2. There exists a positive definite matrix P satisfying

⎡
⎢⎣

A�P + PA PB C�

B�P −γ2I D�

C D −I

⎤
⎥⎦ ≺ 0 . (3)

3. There exists a positive definite matrix P satisfying

[
A�P + PA + C�C PB + C�D

B�P + D�C −γ2I + D�D

]
≺ 0 .

(4)

3. System description and problem
formulation

3.1. Interconnected systems with decentralized con-
trol. The interconnected system we deal with is an
input-output decentralized systems described by

ẋi = Aixi + B1iwi + B2iui +
N∑

j=1,j �=i

Aijxj ,

zi = C1ixi + Diwi,

yi = C2ixi , i = 1, 2, . . . , N,

(5)

where xi ∈ R
ni is the state, ui ∈ R

mi is the control
input, wi ∈ R

ri is the disturbance input, zi ∈ R
pi is the

controlled output, yi ∈ R
qi is the measurement output

of the i-th subsystem. N is the number of subsystems.
The matrices Ai, Aij , B1i, B2i, C1i, C2i and Di (i, j =
1, 2, . . . , N ) are constant and of appropriate dimensions. It
is obvious from (5) that the term

∑N
j=1,j �=i Aijxj denotes

the interconnection among the subsystems.
Suppose that, for the system (5), we have designed

a decentralized dynamic output feedback controller which
is composed of N local output feedbacks

˙̂xi = Âix̂i + B̂iyi

ui = Ĉix̂i + D̂iyi , i = 1, 2, . . . , N,
(6)

where x̂i ∈ R
n̂i is the state of the local controller and Âi,

B̂i, Ĉi, D̂i, i = 1, 2, . . . , N , are coefficient matrices.
The overall closed-loop system obtained by applying

the decentralized controller (6) to the interconnected
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system (5) is described as

˙̃xi =

[
Ai + B2iD̂iC2i B2iĈi

B̂iC2i Âi

]
x̃i

+

[
B1i

0

]
wi +

N∑
j=1,j �=i

[
Aij 0
0 0

]
x̃j

zi =
[

C1i 0
]
x̃i + Diwi , i = 1, 2, . . . , N,

(7)

where x̃i = [x�
i x̂�

i ]� is the state of the closed-loop
subsystem. We introduce the compact notation

Ãi =

[
Ai 0
0 0

]
, Ãij =

[
Aij 0
0 0

]
,

B̃1i =

[
B1i

0

]
, B̃2i =

[
B2i 0
0 I

]
,

C̃1i =
[

C1i 0
]

, C̃2i =

[
C2i 0
0 I

]
,

(8)

and write the controller parameters Âi, B̂i, Ĉi, and D̂i

into a single matrix as

Ki =

[
D̂i Ĉi

B̂i Âi

]
. (9)

Then, the closed-loop system (7) is rewritten as

˙̃xi = (Ãi + B̃2iKiC̃2i)x̃i + B̃1iwi +
N∑

j=1,j �=i

Ãij x̃j ,

zi = C̃1ix̃i + Diwi , i = 1, 2, . . . , N

(10)

and, equivalently, in a compact form as

˙̃x = Ãx̃ + B̃1dw,

z = C̃1dx̃ + Ddw,
(11)

where

x̃ =
[
x̃�

1 x̃�
2 · · · x̃�

N

]�
,

w =
[
w�

1 w�
2 · · · w�

N

]�
,

z =
[
z�1 z�2 · · · z�N

]�
,

Ã = Ãd + Ãc + B̃2dKdC̃2d,

Ãd = diag{Ã1, Ã2, . . . , ÃN},
Ãc =

[
Ãij

]
N×N

, Ãii
�
= 0,

B̃1d = diag{B̃11, B̃12, . . . , B̃1N},
B̃2d = diag{B̃21, B̃22, . . . , B̃2N},
C̃1d = diag{C̃11, C̃12, . . . , C̃1N},
C̃2d = diag{C̃21, C̃22, . . . , C̃2N},
Dd = diag{D1, D2, . . . , DN},
Kd = diag{K1, K2, . . . , KN} .

(12)

Notice that w and z are the disturbance input and
the controlled output of the overall system, respectively,
and the transfer function from w to z in the closed-loop
system (11) is Tzw(s) = Dd + C̃1d(sI − Ã)−1B̃1d.
Then, the hypothesis in this paper is that, without
taking quantization into consideration, the decentralized
controller (6) (or the feedback gain matrices Ki’s in
(9) and thus Kd in (12)), has been designed so that
Ã is Hurwitz stable, and the H∞ norm of the transfer
function Tzw(s) is less than a specified level γ. Therefore,
according to Lemma 1, there exists a positive definite
matrix P̃ satisfying the Linear Matrix Inequality (LMI)

⎡
⎢⎢⎣

Ã�P̃ + P̃ Ã P̃ B̃1d C̃�
1d

B̃�
1dP̃ −γ2I D�

d

C̃1d Dd −I

⎤
⎥⎥⎦ ≺ 0 . (13)

3.2. Controller design without involving quantiza-
tion. Corresponding to the decentralized structure of
the interconnected system, we assume that the positive
definite matrix P̃ takes a block-diagonal structure as

P̃ = diag{P̃1, P̃2, . . . , P̃N} . (14)

To say it in other words, since the feasibility of the LMI
(13) is equivalent to solvability of the decentralized H∞
control problem for (5), we can set the structure of P̃ as
in (14) with P̃i � 0 and then solve the matrix inequality
(13) with respect to P̃ and Kd, to obtain all the coefficient
matrices of the controllers.

However, since (13) is a Bilinear Matrix Inequality
(BMI) with respect to P̃ and Kd, and there is structure
limitation on the matrix variables, there is no globally
effective method for solving it in general. For integrity,
we here briefly review a practical method of solving the
matrix inequality (13) with respect to P̃i’s and Ki’s, which
is based on the approach using the idea of the homotopy
method (Ikeda et al., 1996; Zhai et al., 2001). Rewrite (13)
as

F0(Kd, P̃ ) + F1(P̃ ) ≺ 0 , (15)

where

F0(Kd, P̃ ) =

⎡
⎢⎢⎣

Ã�
d P̃ + P̃ Ãd P̃ B̃1d C̃�

1d

B̃�
1dP̃ −γ2I D�

d

C̃1d Dd −I

⎤
⎥⎥⎦

+

⎡
⎢⎣

P̃ B̃2d

0
0

⎤
⎥⎦Kd

[
C̃2d 0 0

]
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+

⎧
⎪⎨
⎪⎩

⎡
⎢⎣

P̃ B̃2d

0
0

⎤
⎥⎦Kd

[
C̃2d 0 0

]
⎫
⎪⎬
⎪⎭

�

,

(16)

F1(P̃ ) =

⎡
⎢⎣

Ã�
c P̃ + P̃ Ãc 0 0

0 0 0

0 0 0

⎤
⎥⎦ , (17)

and define the homotopy

H(Kd, P̃ , λ) = F0(Kd, P̃ ) + λF1(P̃ ), (18)

where λ takes values in the interval [0, 1]. By this
introduction, the problem of finding a solution to (13)
can be embedded in the parametrized family of problems
H(Kd, P̃ , λ) ≺ 0 with λ changing from 0 to 1.

The algorithm starts computing the solution to
H(Kd, P̃ , λ) ≺ 0 with λ = 0, i.e., F0(Kd, P̃ ) ≺ 0, which
is exactly the H∞ control problem for each separated
subsystem, and thus can be easily solved. Then, using the
idea of the homotopy method, we increase λ gradually
from 0 to 1 to solve H(Kd, P̃ , λ) ≺ 0 by fixing Kd or
P̃ at each step, until λ reaches 1, which means we have
found a solution to (15).

For the detailed algorithm and other possible
extensions (e.g., local controllers’ order reduction), refer
to the works of Ikeda et al. (1996) and Zhai et al. (2001).

Another practical method of solving (13) is proposed
by setting a specified structure of the matrix variable P̃
and making a similarity transformation for B̃2i or C̃2i, so
that (13) is reduced to an LMI. Refer to the work of Murao
et al. (2002) for a detailed discussion.

3.3. Problem formulation. Now, we are ready to
formulate our control problem. The above mentioned
decentralized controller design has been done in the case
where there is no quantization. Here, as depicted in Fig. 1,
we deal with the case where only quantized local output
is available. For this reason, we modify the decentralized
dynamic output feedback (6) by replacing yi with its
quantized value μiqi(yi/μi) as

˙̂xi = Âix̂i + B̂iyi + B̂iFi(μi, yi),

ui = Ĉix̂i + D̂iyi + D̂iFi(μi, yi),
(19)

where

Fi(μi, yi) = μi

(
qi

( yi

μi

)
− yi

μi

)
.

For fixed positive scalars μi, the closed-loop system
composed of the system (5) and the modified output

feedback (19) is given by

˙̃xi = (Ãi + B̃2iKiC̃2i)x̃i + B̃1iwi

+
N∑

j=1,j �=i

Ãij x̃j , +B̃2iKiF̃i(μi, yi)

zi = C̃1ix̃i + Diwi , i = 1, 2, . . . , N

(20)

and, equivalently, in a compact form as

˙̃x = Ãx̃ + B̃1dw + B̃2dKdF̃ (μ, y),

z = C̃1dx̃ + Ddw,
(21)

where

F̃ (μ, y) =
[
F̃�

1 (μ1, y1) · · · F̃�
N (μN , yN )

]�
,

F̃i(μi, yi) =

[
Fi(μi, yi)

0

]
.

(22)
Now, the control problem is very natural. Due to

the existence of the quantization error, the stability of
the closed-loop system and the desired H∞ disturbance
attenuation level γ are not guaranteed. Here, as defined
in many references, the H∞ disturbance attenuation level
γ means that the l2 gain of the controlled output z to
the disturbance input w is less than γ in the closed-loop
system.

With the above preparation, we formulate our control
problem as follows.

Decentralized H∞ control via quantized output feed-
back. Design a decentralized control strategy which ad-
justs the quantizer parameters μi, depending on the local
measurement outputs yi, so that the overall closed-loop
system (21) is asymptotically stable and the H∞ distur-
bance attenuation level γ is achieved.

The above control specification of requiring the
quantizer parameters μi adjusted by local measurement
outputs yi (i.e., a local-output-dependent strategy) is
desired in the framework of any decentralized control
systems. It is obvious from Fig. 1 and the system
description that one cannot obtain all the outputs so as to
adjust the local quantization parameters.

4. Decentralized quantizer design

Since (13) is a strict matrix inequality in the sense of
negative definite, we can always find a block diagonal
positive definite matrix R = diag{R1, R2, . . . , RN} with
Ri � 0, i = 1, 2, . . . , N , such that

⎡
⎢⎢⎣

Ã�P̃ + P̃ Ã + R P̃ B̃1d C̃�
1d

B̃�
1dP̃ −γ2I D�

d

C̃1d Dd −I

⎤
⎥⎥⎦ ≺ 0, (23)
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which is equivalent to

⎡
⎢⎣

(
Ã�P̃ + P̃ Ã + R

+C̃�
1dC̃1d

)
P̃ B̃1d + C̃�

1dDd

B̃�
1dP̃ + D�

d C̃1d −γ2I + D�
d Dd

⎤
⎥⎦ ≺ 0 .

(24)

We are in a position to state and prove the main result
in this paper.

Theorem 1. Assume that for each local quantizer, Mi is
chosen large enough compared to Δi so that

Mi > 2Δi
‖P̃iB̃2iKi‖ · ‖C2i‖

λm(Ri)
,

i = 1, 2, . . . , N. (25)

Then, there exists a decentralized control strategy for
updating μi, which is dependent on the local measurement
output yi, such that the closed-loop system (21) is asymp-
totically stable and the H∞ disturbance attenuation level
γ is achieved.

Proof. Since

yi

μi
=

C2ixi

μi
, i = 1, 2, . . . , N

is quantized before being passed to the controller, we
obtain by using the properties of general quantizers in (1)
that, whenever |yi| ≤ Miμi, the inequality

∣∣∣∣
yi

μi
− q

( yi

μi

)∣∣∣∣ ≤ Δi ⇐⇒ |Fi(μi, yi)| ≤ μiΔi (26)

is true. We consider the Lyapunov function candidate

V (x̃) = x̃�P̃ x̃ (27)

for the closed-loop system (21). By using the matrix
inequality (24), we obtain that, when |yi| ≤ Miμi, the
derivative of V (x) along the trajectories of (21) satisfies

V̇

=
(
Ãx̃ + B̃1dw + B̃2dKdF̃ (μ, y)

)�
P̃ x̃

+ x̃�P̃
(
Ãx̃ + B̃1dw + B̃2dKdF̃ (μ, y)

)

=
[

x̃
w

]� [
Ã�P̃ + P̃ Ã P̃ B̃1d

B̃�
1dP̃ 0

] [
x̃
w

]

+ F̃�(μ, y)K�
d B̃�

2dP̃ x̃ + x̃�P̃ B̃2dKdF̃ (μ, y)

≤
[

x̃
w

]� [
−R − C̃�

1dC̃1d −C̃�
1dDd

−D�
d C̃1d γ2I − D�

d Dd

]

×
[

x̃
w

]
+ 2x̃�P̃ B̃2dKdF̃ (μ, y)

= −z�z + γ2w�w

−
N∑

i=1

(
x̃�

i Rix̃i − 2x̃�
i P̃iB̃2iKiF̃i(μi, yi)

)

≤ −z�z + γ2w�w −
N∑

i=1

λm(Ri)|x̃i|

×
(
|x̃i| − 2μiΔi

‖P̃iB̃2iKi‖
λm(Ri)

)
. (28)

Since

|x̃i| =
∣∣∣∣
[

xi

x̂i

]∣∣∣∣ ≥ |xi|,

|yi| = |C2ixi| ≤ ‖C2i‖ · |xi|,
we obtain

|x̃i| ≥ |yi|
‖C2i‖ .

Using this fact in the final inequality of (28) leads to

V̇

≤ −z�z + γ2w�w

−
N∑

i=1

λm(Ri)|x̃i|
(

|yi|
‖C2i‖ − 2μiΔi

‖P̃iB̃2iKi‖
λm(Ri)

)

= −z�z + γ2w�w −
N∑

i=1

λm(Ri)
|x̃i|

‖C2i‖

×
(
|yi| − 2μiΔi

‖P̃iB̃2iKi‖ · ‖C2i‖
λm(Ri)

)
. (29)

According to (25), we can always find a scalar ε ∈
(0, 1) such that

Mi > 2Δi
‖P̃iB̃2iKi‖ · ‖C2i‖

λm(Ri)
1

1 − ε
, (30)

which is equivalent to

1
1 − ε

2μiΔi
‖P̃iB̃2iKi‖ · ‖C2i‖

λm(Ri)
< Miμi . (31)

Therefore, for any nonzero yi, we can choose a positive
scalar μi such that

1
1 − ε

2μiΔi
‖P̃iB̃2iKi‖ · ‖C2i‖

λm(Ri)
≤ |yi| ≤ Miμi . (32)
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This is also true in the case of yi = 0, where we set μ = 0
as an extreme case and consider the output of the quantizer
as zero.

In other words, since we can always choose μi’s so
that (32) is satisfied, (29) holds since |yi| ≤ Miμi. It is
further obtained from (32) and (29) that

V̇ ≤ −z�z + γ2w�w − ε
N∑

i=1

λm(Ri)
|x̃i||yi|
‖C2i‖ . (33)

First, by setting w = 0 in (33), we see clearly that the
system is asymptotically stable.

Next, we integrate both the sides of (33) from the
initial time t0 to any time instant t > t0 to obtain

V (t) − V (t0) ≤
∫ t

t0

(−z�(τ)z(τ) + γ2w�(τ)w(τ)) dτ .

(34)
Using V (t) ≥ 0, we obtain

∫ t

t0

z�(τ)z(τ)dτ ≤ V (t0) + γ2

∫ t

t0

w�(τ)w(τ) dτ ,

(35)
which implies that the H∞ disturbance attenuation level
γ is achieved. This completes the proof. �

Decentralized quantizer design. It is observed from the
proof of Theorem 1 that the decentralized control strategy
of updating the quantizers’ parameters is to choose μi’s
satisfying

1
Mi

|yi| ≤ μi <
1

2Δi

λm(Ri)
‖P̃iB̃2iKi‖ · ‖C2i‖

|yi| (36)

for any nonzero yi, i = 1, 2, . . . , N . Since this inequality
establishes an interval for choosing the value μi, it has
robustness to small external disturbances and rounding
errors.

Remark 1. It is seen that the condition (25) and the
quantizer updating strategy (32) (or (36)) take almost
the same form as that in the state feedback case (Zhai
et al., 2005) (when C2i = I) and the static output
feedback case (Zhai et al., 2010). In fact, by using some
routine calculation, it can be affirmed that (25) and (32)
(or (36)) include the corresponding ones given by Zhai
et al. (2005; 2010) as special cases. Thus, Theorem 1
is an extension to the discussion for decentralized and
quantized state feedback and static output feedback.

Remark 2. In the existing references (e.g., Liberzon,
2003; Zhai et al., 2004), the value of μ is updated in a
time-controlled manner, i.e., when to change the value
of μ is dependent only on time. This is not possible for
the present situation since we do not know the value
of x(t), w(t), and thus we cannot drive x(t) into a
specified invariant region, as done by Liberzon (2003)

and Zhai et al. (2004). To overcome this difficulty, we
have proposed an output-dependent strategy (32) or (36)
for adjusting the value of μi’s. As also pointed out in
many other references, such an output-dependent strategy
is usually more robust to modeling imperfection than a
time-dependent one.

Remark 3. There is an important observation concerning
the implementation of the quantizer proposed in this
paper. We assume that the function qi(·), which may be
very complicated, has been designed and we implement
μiqi(yi/μi) (not q(yi/μi) only) as a parameter-dependent
quantizer. Since the variable of the function qi(·) is yi/μi,
the quantizer can flexibly deal with large or small output
yi by adjusting the value of μi, so that the condition
(32) is satisfied. This is very important in H∞ control
problems since the measurement output yi may be very
large temporarily due to unexpected disturbance input. In
the case where only qi(yi/μi) is viewed as a quantizer, the
output of the quantizer has to be scaled by μi before it is
passed to the controller. The function qi(·) in this paper is
a general concept for signal quantization, and thus careful
consideration is required in real implementation.

Remark 4. Although the H∞ disturbance attenuation
level γ is fixed in this paper, the same discussion is
applicable for any positive γ > γopt, where γopt is the
optimal H∞ norm that the system of (5) can reach via
decentralized dynamic output feedback.

Remark 5. The condition (25) in Theorem 1 is flexible
in the sense that we can choose the matrices P̃i, Ri

and Ki so that the condition is satisfied. These matrices
are not independent and they must satisfy the matrix
inequality (24), but we still have much design freedom
since it is a strict inequality and we can incorporate some
optimization requirement when solving (23) or (24).

5. Design example

In this section, we present a simple example. The
interconnected system (5) we consider is composed of two
subsystems, whose matrices are

A1 =
[

0 1
0 0

]

B11 =
[

1 0
1 0

]
, B21 =

[
0
1

]
,

C11 =
[

0 0
1 1

]
, C21 =

[
1 2

]
,

D1 =
[

1
0

]

A2 =
[

0 1
−1 −1

]
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B12 =
[

0 1
0 1

]
, B22 =

[
0
1

]
,

C12 =
[

1 1
0 0

]
, C22 =

[ −1 1
]
,

D2 =
[

0
1

]
(37)

and whose interconnection matrices are

A12 =
[ −0.1 0.1

0.1 −0.2

]
,

A21 =
[

0.1 −0.1
0.2 0.2

]
. (38)

Set the disturbance attenuation level as γ = 1.5.
Using the existing H∞ decentralized controller design for
the system, we obtain the following controller coefficient
matrices:

K1 =

⎡
⎣

0 −1.15 −10.81
0.53 −2.14 −9.67
5.92 −5.96 −11.49

⎤
⎦ ,

K2 =

⎡
⎣

0 −2.67 −22.40
0.94 −4.14 −19.67

−11.51 15.51 −11.59

⎤
⎦ .

(39)

With the above decentralized controller, we solve the
linear matrix inequality (23) with respect to block
diagonal matrix variables P̃ and R to obtain

P̃1 =

⎡
⎢⎢⎣

2.87 3.08 −1.05 −3.10
3.08 7.89 −4.74 −5.50

−1.05 −4.74 3.71 2.92
−3.10 −5.50 2.92 7.33

⎤
⎥⎥⎦ ,

P̃2 =

⎡
⎢⎢⎣

17.81 −21.84 28.13 −4.55
−21.84 32.51 −39.56 2.28

28.13 −39.56 49.21 −4.14
−4.55 2.28 −4.14 8.06

⎤
⎥⎥⎦

(40)
and

R1 =

⎡
⎢⎢⎣

3.66 7.04 −3.97 −8.20
7.04 14.30 −8.06 −16.39

−3.97 −8.06 5.02 10.17
−8.20 −16.39 10.17 23.55

⎤
⎥⎥⎦ ,

R2 =

⎡
⎢⎢⎣

39.22 −44.97 55.87 −43.08
−44.97 53.46 −65.66 47.16

55.87 −65.66 81.37 −58.04
−43.08 47.16 −58.04 61.25

⎤
⎥⎥⎦ .

(41)
Using the above data, the condition in Theorem 1

turns out to be

M1 > 3470.6Δ1 , M2 > 7809.0Δ2 . (42)

Moreover, the decentralized control strategy (36) of
updating the quantizers’ parameters is given by

1
M1

|y1| ≤ μ1 < 1
3470.6Δ1

|y1|,
1

M2
|y2| ≤ μ2 < 1

7809.0Δ2
|y2| .

(43)

It is clear that once the ranges M1, M2 and the error
bounds Δ1, Δ2 are determined, the above strategy is very
easy to implement in any real application. As observed
in Remarks 4 and 5, the computation of P̃1, P̃2, R1, R2

can be dealt with in the framework of optimal control
problems, if necessary.

6. Conclusion

This paper has complemented and improved the
discussion of Zhai et al. (2010) and Chen et al. (2011a)
by extending the results to decentralized H∞ dynamic
output control for interconnected systems with quantized
measurement outputs. The situation is that a decentralized
H∞ dynamic output controller has been designed
without considering quantization, but due to physical
or environmental reasons the subsystem measurement
outputs are quantized before they are passed to the
local controllers. For this interconnected system, we have
proposed a local-output-dependent strategy for updating
the quantizer parameters, so that the overall closed-loop
system is asymptotically stable and achieves the same H∞
disturbance attenuation level. The main characteristics are
that the quantizer updating strategy is expressed by an
inequality which has more robustness to small external
disturbance and rounding error, and both the pre-designed
controllers and the quantizer parameters are constructed in
a decentralized manner, depending on local measurement
outputs.

There are many open issues in the analysis and
design of quantized and interconnected systems. The
local quantizers modeled in this paper are static ones
(only dependent on the present input). In order to deal
with higher control specifications for high speed sampled
systems, dynamical quantizers are desired and more
practical. Moreover, as also pointed out by Morawski
and Zajączkowski (2010) as well as Bushnell (2001), the
phenomena of packet dropouts, delays, etc., need to be
dealt with in a unified manner, together with the approach
proposed in this paper. Actually, the combination of
quantizations and dropouts has been dealt with in several
existing references (Ling and Lemmon, 2010), but the
proposed control strategy there is not applicable directly
to the problem formulated in this paper. Furthermore, fault
detection (diagnosis) of interconnected systems (Chen et
al., 2011b) is another important problem in our future
work.
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