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This paper presents an identification method of dynamic systems based on a group method of data handling approach.
In particular, a new structure of the dynamic multi-input multi-output neuron in a state-space representation is proposed.
Moreover, a new training algorithm of the neural network based on the unscented Kalman filter is presented. The final part
of the work contains an illustrative example regarding the application of the proposed approach to robust fault detection of
a tunnel furnace.

Keywords: robust fault detection, non-linear system identification, dynamic GMDH neural network, unscented Kalman
filter.

1. Introduction

The effectiveness of contemporary Fault Detection and
Isolation (FDI) systems (Ding, 2008; Korbicz et al.,
2004; Korbicz and Kościelny, 2010; Palade et al.,
2006; Witczak, 2007) and Fault Tolerant Control (FTC)
schemes (Ichalal et al., 2012; Isermann, 2005; Niemann,
2012; Noura et al., 2009; Montes de Oca et al.,
2012) mostly depends on the quality of the models
obtained in the process of system identification. Ar-
tificial Neural Networks (ANNs) are often applied in
the process of dynamic non-linear industrial system
identification (Gupta et al., 2003; Haykin, 2009;
Mrugalski et al., 2008). Their attractiveness follows from
the fact that in the case of many industrial systems
their models created on the basis of the physical laws
describing the system behavior (Isermann, 2005; Korbicz
et al., 2004; Patton et al., 2000) are too complex or
often unavailable. Additional advantages of ANNs are
properties such as generalization abilities, the ability to
learn and good approximation of non-linear systems.

Unfortunately, ANNs have also some important
disadvantages, which limit the effectiveness of the
developed FDI and FTC systems. The most important
disadvantages are inefficient quality of the neural model,
immature approaches allowing the modeling of dynamics,
and usually an unavailable description of the neural model
in a state-space representation. Also only few approaches

ensure the stability of neural models during the process
of dynamic system identification. Moreover, there is a
limited number of approaches that allow a mathematical
description of neural model uncertainty and this factor
has major impact on the effectiveness of FDI and FTC
systems (Witczak, 2007; Patan et al., 2008).

One of the most important problems of neural
modeling is the appropriate selection of the neural model
structure. The errors following from an inappropriate
selection of the neural network architecture and those
related to inaccurate estimation of the parameters have
deciding impact on the quality of the neural model
resulting in the occurrence of model uncertainty (Korbicz
and Mrugalski, 2008; Mrugalski and Korbicz, 2007;
Patan et al., 2008). To tackle this problem, the Gro-
up Method of Data Handling (GMDH) approach can be
employed (Ivakhnenko and Mueller, 1995; Korbicz and
Mrugalski, 2008; Mrugalski and Witczak, 2012). The
concept of the GMDH approach relies on replacing the
complex neural model by a set of hierarchically connected
partial models, which can be chosen with appropriate
selection methods. The proposed approach also allows
developing the formula of the GMDH model due to the
inclusion of additional procedures, which can be used to
extend the scope of the application. The GMDH model
can be used in the identification of static and dynamic
systems, both Single-Input Single-Output (SISO) and
Multi-Input Multi-Output ones (MIMO) (Mrugalski and
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Korbicz, 2011; Korbicz and Mrugalski, 2008; Mrugalski
et al., 2003).

Another important problem of neural modeling is
concerned with the identification of dynamic systems. In
the case of the classical neural network, for example, the
Multi-Layer Perceptron (MLP), the modelling problem of
the dynamics is tried to be solved by the introduction
of additional, suitably delayed global output feedback
lines. Moreover, several fully or partially recurrent
neural networks were developed, i.e., the Real Time
Recurrent Network (RTRN) network (Williams and
Zipser, 1989), Elman’s network (Elman, 1990) or Jordan’s
network (Jordan and Bishop, 1997). Unfortunately,
the process of training these networks and ensuring
their stability is quite difficult. On the other hand,
locally recurrent but globally feed-forward networks with
dynamic neurons can be applied to the identification
of the dynamic systems. Due to the introduction of
diverse local feedback to the classical neuron model, it
is possible to achieve a few types of dynamic neurons,
e.g., with local activation feedback (Fasconi et al.,
1992), local synapse feedback (Back and Tsoi, 1991)
and output feedback (Gori et al., 1989). The main
advantage of networks constructed with the application
of dynamic neurons is that their stability can be proved
relatively easily. As a matter of the fact, the stability
of the network only depends on that of neurons. The
feed-forward structure of such networks seems to make
the training process easier. On the other hand, the
introduction of dynamic neurons increases the parameter
space significantly. This drawback, together with the
non-linear and multi-modal properties of dynamic
neurons, implies that parameter estimation becomes
relatively complex. Moreover, all the above mentioned
dynamic neural models have no state-space description.
In fact, approaches trying to solve such a challenging
problem can be rarely found in the literature (Pan et al.,
2001; Zamarreño and Vega, 1998). Unfortunately, these
approaches do not allow calculating the uncertainty of
these models, which is necessary to apply them in robust
fault detection schemes.

To tackle all the above mentioned problems, the
GMDH neural network can be applied. The behaviour
of each partial model in the GMDH neural network
should reflect that of the identified system. It follows
from the rule of the GMDH algorithm that the parameters
of each partial model are estimated in such a way that
their output is the best approximation of the real system
output. In this situation, the partial model should have
an ability to represent the dynamics. To solve such a
problem, in this paper a new structure of the multi-input
and multi-output dynamic neuron in the state-space
representation is proposed.

The description of the dynamic neuron in the
suitable state-space representation enables to obtain
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Fig. 1. Scheme of the residual-based fault detection system.

constraints of parameter estimates which ensure the
stability of each dynamic neuron and, as a consequence,
the stability of the whole GMDH network as well.
The description of dynamic neurons in the state-space
representation, together with the fact that in the GMDH
model the parameters of each neuron are estimated
separately, easily allows applying advanced parameters
estimation algorithms, e.g., the Unscented Kalman Filter
(UKF) (Haykin, 2001; Teixeira et al., 2010; Witczak and
Prętki, 2007). Thus, UKF-based constrained parameter
estimation ensures asymptotically stable neurons of
the GMDH model. Another advantage of the UKF is
that it allows obtaining a description of neural model
uncertainty, which can then be applied to robust fault
detection (Ding, 2008; Witczak, 2007).

In this work, the structure of the multi-input
multi-output GMDH neural network is portrayed. For
such a network, dynamic neurons in the state-space
representation are used to represent the dynamics of the
system. Subsequently, the application of the UKF to
parameter estimation of dynamic neurons is presented.
Moreover, the concept of the application of the UKF to
robust fault detection is shown. As an example, which
confirms the effectiveness of the proposed approach,
identification and robust fault detection of a tunnel furnace
is considered.

2. Robust fault diagnosis

Model-based fault diagnosis can be defined as the
detection, isolation and identification of faults in
the system based on a comparison of the available
system measurements with information represented by a
mathematical model (Fig. 1) (Patton et al., 2000; Korbicz
et al., 2004). The model of the diagnosed system is
developed before its application in the fault diagnosis
system.

The comparison of the system yk and the model
response ŷk leads to the generation of the residual

εk = yk − ŷk. (1)

In the model-based fault detection approach, it is
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ŷM
k

ŷm
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k detection
Fault

Fig. 3. Scheme of the robust fault detection system.

assumed that the residual εk should be close to zero in the
fault-free case, and it should be distinguishably different
from zero in the faulty case. Under such an assumption,
faults are detected by the application of a fixed threshold
on the residual signal (cf. Fig. 2).

In this case, the fault is signaled when the absolute
value of the residual |εk| is larger then an arbitrarily
assumed threshold δy:

|εk| ≤ δy. (2)

The difficulty with such a kind of symptom evaluation
approach is the corruption of yk by noise and
disturbances. Another difficulty follows from the fact that
the model obtained during system identification is usually
uncertain (Witczak et al., 2006). Model uncertainty can
appear during both stages of system identification, i.e.,
model structure selection and parameter estimation. To
tackle this problem, the adaptive time-variant threshold,
which is adapted according to the system behaviour, can
be applied. The concept of the proposed approach is
illustrated in Fig. 3.

The main idea of this approach relies on the
calculation of the system output adaptive threshold
according the following equations (Witczak, 2007):

ŷm
i,k = ŷi,k − t

α/2
nt−np

σ̂i

(
1 + ui,kPuT

i,k

)1/2
, (3)

ŷM
i,k = ŷi,k + t

α/2
nt−np

σ̂i

(
1 + ui,kPuT

i,k

)1/2
, (4)

where ui,k is the regressor vector while P denotes the
covariance matrix of the parameters being estimated, i =
1, . . . , ny is the number of the model outputs, t

α/2
nt−np

is
the corresponding t-Student distribution quantile, nt is
the number of data points in the training data set, np is
the number of parameters of the neural model and σ̂i is
the standard deviation of the i-th fault-free residual. The
output interval (Fig. 4) should contain the real system
response in the fault-free mode.
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Fig. 4. Application of the system output adaptive threshold to
robust fault detection.

3. Synthesis of GMDH neural models

The concept of the GMDH approach relies on replacing
the complex neural model by the set of hierarchically
connected partial models (neurons). It should be pointed
out that the parameters of each newly created neuron
are estimated separately. The neurons are evaluated,
selected and included in the newly created neuron layers.
During network synthesis, new layers of neurons are
successively created and added to the GMDH network.
The process of network synthesis leads to the evolution
of the resulting model structure to obtain the best
quality approximation of real system output signals.
The process is completed when an optimal degree of
network complexity is achieved (Ivakhnenko and Mueller,
1995). An outline of the GMDH algorithm is presented
in Fig. 5.

The above assumptions of GMDH networks offer
a lot of freedom in defining particular elements of the
algorithm. The possibilities relate to, for example, the
structure of the partial model, the definition of the
transition function, evaluation criteria of the processing
accuracy or selection methods.

Let us assume that in a general case each neuron in
the GMDH network has the following form:

ŝ
(l)
i,j,k = F

(
r

(l)
i,k,p

(l)
i,j

)
, (5)



160 M. Mrugalski

Fig. 5. Synthesis process of the GMDH neural network.

where r
(l)
i,k ∈ R

nr for i = 1, . . . , nR are the neuron
input vectors formed as combinations of the neural model
inputs r

(l)
i,k = [u(l)

i,k, . . . , u
(l)
j,k]

T , ŝ
(l)
i,j,k ∈ R

ns for
j = 1, . . . , nN are the neuron output vectors formed
as combinations of the network outputs [ŷ(l)

i,k, . . . , ŷ
(l)
j,k]

T ,

p
(l)
i,j ∈ R

nr×ns denotes the parameter estimate matrix,
F(·) is an activation function, and l is the number of layers
of the GMDH network.

The process of the synthesis of the first layer of
the GMDH neural network begins with the creation of
a set of nR vectors of neuron inputs r

(l)
i,k based on the

combinations of the model inputs uk ∈ R
nu belonging

to the training data set T . The number of the vectors r(l)
i,k

depends on that of model inputs nu and neuron inputs
nr. Each i-th vector r(l)

i,k constitutes a neuron stimulation
which results in the formation of j-th neurons and their
outputs ŝ

(l)
i,j,k, which are the estimates of the modeled

system outputs. The number nN of these neurons, for each
subsequent i-th vector r(l)

i,k, depends on the number of the
modeled output signals ny and an assumed number of the
neurons inputs nr:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ŝ
(1)
1,1,k = F(r(1)

1,k),
...

ŝ
(1)
1,nN ,k = F(r(1)

1,k),
...

ŝ
(1)
nR,1,k = F(r(1)

nR,k),
...

ŝ
(1)
nR,nN ,k = F(r(1)

nR,k).

(6)

The structure of layer of the GMDH network is presented
in Fig. 6.

As can be observed in the literature, most industrial
systems are dynamic (Korbicz et al., 2004; Patton et al.,
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ŷ3,k
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Fig. 6. Design of the first layer of neurons in the GMDH neural
network.

2000). Therefore, during system identification, it is natural
to employ models which can represent the dynamics of
the system. In the case of the GMDH neural network,
the behaviour of each partial model should reflect that of
the system being identified. It follows from the rule of
the GMDH algorithm that the parameters of each partial
model are estimated in such a way that its output is the best
approximation of the real system output. In this situation,
the partial model should have the ability to represent the
dynamics. To tackle this problem, in this paper a dynamic
neuron in the state-space representation is defined. The
proposed dynamic neuron consists of two submodules:
the linear state-space module and the activation module
(Fig. 7).
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Fig. 7. Dynamic neuron model.

The behavior of the linear state-space part of a
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dynamic neuron is described by the following equation:

zk+1 = Azk +Bri,k, (7)

s̃i,j,k = Czk +Dri,k, (8)

where ri,k ∈ R
nr and s̃i,j,k ∈ R

ns are the inputs
and outputs of the linear state-space submodule of the
dynamic neuron. A ∈ R

nz×nz , B ∈ R
nz×nr , C ∈

R
ns×nz , D ∈ R

ns×nr , zk ∈ R
nz , where nz represents

the order of the dynamics (Ljung, 1999). Additionally, the
matrix A has an upper-triangular form, i.e.,

A =

⎡

⎢
⎢
⎢
⎣

a11 a12 · · · a1,nz

0 a22 · · · a2,nz

...
. . .

...
0 0 · · · anz ,nz

⎤

⎥
⎥
⎥
⎦

. (9)

This means that the dynamic neuron is
asymptotically stable iff

|ai,i| < 1, i = 1, . . . , nz. (10)

Moreover,

C = diag(c1, . . . , cns , 0, . . . , 0︸ ︷︷ ︸
nz−ns

). (11)

The linear state-space submodule output is used as the
input for the activation module:

ŝi,j,k = F(s̃i,j,k), (12)

with F(·) = [f1(·), . . . , fns(·)]T , where fi(·) denotes a
non-linear activation function (e.g., a hyperbolic tangent).

In order to estimate the unknown parameters of the
dynamic neurons, the UKF (Teixeira et al., 2010) can be
applied. In the subsequent part of the paper, it will be
shown that UKF-based constrained parameter estimation
ensures asymptotically stable neurons of the GMDH
model. Moreover, the application of this algorithm to
the parameter estimation enables process to obtain the
uncertainty of the partial models simultaneously. After
the estimation, the parameters of the neurons are not
modified during the further network synthesis. The
obtained parameter estimates and their uncertainty enable
calculation of the neuron responses and the adaptive
threshold, which can be applied in the robust fault
detection scheme. The details of such an algorithm will
be presented in Section 4.

At the next stage of GMDH network synthesis, a
validation data set V is used to calculate the processing
error of each partial model in the current l-th network
layer. The processing error Q(ŝ(l)

i,j) is usually calculated
with the application of the evaluation criterion such as
the Final Prediction Error (FPE), the Akaike Information
Criterion (AIC) or the F-test (Ivakhnenko and Mueller,

1995). The evaluation of the processing errors Q for each
neuron output is performed after the generation of the
corresponding layer of neurons,

Q =

⎡

⎢
⎢
⎢
⎣

Q(ŝ
(l)
1,1,k) . . . Q(ŝ

(l)
1,j,k) . . . Q(ŝ

(l)
1,nN ,k)

. . . . . . . . . . . . . . .

Q(ŝ
(l)
i,1,k) . . . Q(ŝ

(l)
i,j,k) . . . Q(ŝ

(l)
i,nN ,k)

. . . . . . . . . . . . . . .

Q(ŝ
(l)
nR,1,k) . . . Q(ŝ

(l)
nR,j,k) . . . Q(ŝ

(l)
nR,nN ,k)

⎤

⎥
⎥
⎥
⎦

,

(13)
Based on the defined evaluation criterion, it is

possible to select the best-fitted neurons in the layer.
Selection methods in GMDH neural networks play the
role of a mechanism of structural optimization at the
stage of constructing a new layer of neurons. According
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ŷ3,k
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to the chosen selection method, elements that introduce
excessive processing error are removed (Fig. 8). One of
the most interesting ways of performing the selection
procedure is the application of the method based on the
soft selection approach:

Input : Q—the matrix of the quality indexes of all
dynamic neurons in the l-th layer, no—the number of
opponent neurons, nw—the number of winnings required
for the i-th neuron selection.
Output : The set of neurons after selection.

(i) Select j = 1 column of matrix Q representing the
quality indexes of all nR neurons modeling the j-th
vector of system outputs si,j,k created on the basis of
all i = 1, . . . , nR vectors of system inputs ri,k.

(ii) Conduct series of ny competitions between each
i-th neuron in the j-th column and no randomly
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selected neurons (the so-called opponent) from the
same column. The i-th neuron is the so-called win-
ner neuron when

Q(ŝ(l)
i,1,k) ≤ Qo(ŝ

(l)
i,1,k), (14)

where o = 1, . . . , no and Qo denotes a quality index
of the opponent neuron;

(iii) Select the neurons for the (l + 1)-th layer with the
number of winnings bigger than nw (the remaining
neurons are removed);

(iv) Repeat the steps (1)–(3) for j = 2, . . . , nN column
of matrix Q representing the quality indexes of all
neurons modeling the remaining j = 2, . . . , nN

vectors of system outputs ŝ(l)
i,1,k.

The main advantage of such an approach is the
possibility to use potentially unfitted neurons which in the
next layers may improve the quality of the model. One of
the most important parameters which should be chosen in
the selection process is the number of no opponents. A
bigger value of no makes the probability of the selection
of a neuron with a small quality index lower. In this way,
in an extreme situation, when no � ny , the soft selection
method will only select the best fitted neurons.

After the selection procedure, the outputs of the
selected neurons become the inputs to the neurons in the
subsequent layer:

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

u
(l+1)
1,k = ŷ

(l)
1,k,

u
(l+1)
2,k = ŷ

(l)
2,k,

...

u
(l+1)
nu,k

(k) = ŷ
(l)
ny,k

.

(15)

During the synthesis of the GMDH neural network, the
number of layers suitably increases. Each time a new layer
is added, new neurons are successively introduced to the
network (Fig. 9).

In the next stage of GMDH network synthesis the
termination condition testing is performed. The synthesis
of the GMDH network is completed when the network
fits the data with a desired accuracy or the introduction of
new neurons does not cause a significant increase in the
approximation abilities of the neural network.

For this reason the quality indexes Q(ŝ(l)
i,j) for all

neurons included in the l layer are calculated. The quality
index Q

(l)
j,min represents the processing error for the best

neuron in this layer which approximates the j-th vector of
system outputs:

Q
(l)
j,min = min

i=1,...,nR

Q(ŝ(l)
i,j) for j = 1, . . . , nN . (16)

The values Q(ŝ(l)
i,j) can be determined with the application

of the defined evaluation criterion, which was used in
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ŷ3,k
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ŝ
(nl)
nR,1,k

ŝ
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Fig. 9. Synthesis of the GMDH neural network.

the selection process. The synthesis of the network is
completed when each of the calculated quality indexes
reaches the minimum:

Q
(lopt)
j,min = min

l=1,...,nl

Q
(l)
j,min for j = 1, . . . , nN . (17)

Q
(l)
j,min

Q
(lopt)
2,min

Q
(lopt)
1,min

Q
(lopt)
nN ,min

(l)1 2 3 4 5 6 7

Fig. 10. Termination of the synthesis of the multi-output
GMDH network network.

The termination of the synthesis occurs
independently for each vector of system outputs ŝ(l)

i,j and
as a result a set of quality indexes, corresponding to each
vector of system outputs, is obtained: Q1, Q2, . . . , QnN

(Fig. 10). A particular minimum can occur at different
stages of network synthesis. This is why, in the
multi-output network, outputs of the resulting structure
are usually in different layers (Fig. 11).
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ŷny,k

ŝ
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As a result of the process of GMDH network
synthesis, the set of vectors of potential system outputs
will be obtained. It may happen that in these vectors
there will be a few outputs modeling the particular system
output. In this case, the neuron output which characterizes
the best modeling quality should be chosen.

4. Parameter estimation of dynamic
neurons with the application of the
unscented Kalman filter

In Section 3, it was mentioned that the parameters of
each neuron in the GMDH neural network are estimated
separately. This property allows applying the UKF in the
process of synthesis of the GMDH neural network. It
will be shown that the main advantage of application of
the UKF to parameter estimation of the dynamic neurons
with constraints ensures an asymptotically stable GMDH
model. Moreover, the application of the UKF allows to
calculate the model uncertainty, which then can be applied
to the robust fault detection.

Let us define a state vector (in order to simplify the
notation, the indexes (l)

i in the r
(l)
i,k and (l)

i,j in ŝ
(l)
i,j,k are

omitted):

xk =
[
zk

pk

]
, (18)

which is composed of the parameter vector of the neuron
pk as well as of the state of the neuron, which is described
as

zk+1 = A(pk)zk +B(pk)rk, (19)

s̃k = C(pk)zk +D(pk)rk, (20)

ŝk = F(s̃k). (21)

The vector pk is composed of the diagonal elements of the
matrix A, i.e.,

pk = [a11, . . . , an,n, . . . ]T , (22)

while the remaining elements of pk are composed of the
rest of the parameters of A, as well as all elements of B,
C and D. Thus, the dimension of pk is

dim(pk) =
(nz × nz) + nz

2
+ nz × nr + ns + ns × nr.

(23)

It should also be pointed out that instead of A
(B,C,D) the notation A(pk) (B(pk),C(pk),D(pk))
is introduced which clearly denotes the dependence on pk.
Finally, the state-space model is

xk+1 =
[
A(pk)zk +B(pk)rk

pk

]
+�k =

G(xk, rk) +�k,

(24)

sk =F(C(pk)zk +D(pk)rk) + υk

=H(xk, rk) + υk,
(25)

where G : R
n × R

nr → R
n and H : R

n × R
nr →

R
ns are the process and observation models, respectively.

rk ∈ R
nr and sk ∈ R

ns are the input and output data,
ρ(x0), ρ(�k−1), ρ(υk) denote the Probability Density
Functions (PDFs) of normal distributions, where x0 ∈ R

n

is the initial state vector, �k−1 ∈ R
n is the process

noise, and υ0 ∈ R
n is the measurement noise. It is

assumed that the process noise and the measurement noise
are uncorrelated. Moreover, the means and covariance
matrices of ρ(�k−1) and ρ(υk) are known and equal to
zero and Q, R, respectively.

The profit function which is the value of the
conditional PDF of the state vector xk ∈ R

n given the
past and present measured data s1, . . . , sk is defined as
follows:

J(xk) � ρ(xk|(s1, . . . , sk)). (26)

The parameter and state estimation problem can
be defined as the maximization of (26). In order
to solve the following problem, the UKF can be
applied (Julier and Uhlmann, 2004). It employs the
unscented transform (Julier and Uhlmann, 2004), which
approximates the mean ŝk ∈ R

ns and covariance P ss
k ∈

R
ns×ns of the random vector sk obtained from the

non-linear transformation sk = H(xk), where xk is a
random vector, whose mean x̂k ∈ R

n and covariance
P xx

k ∈ R
n×n are assumed to be known.

The unscented transform is based on a set of
deterministically chosen vectors Xj,k ∈ R

n, j =
0, . . . , 2n, known as sigma points:

x̂k =
2n∑

j=0

wjXj,k, (27)

P xx
k =

2n∑

j=0

wj [Xj,k − x̂k][Xj,k − x̂k]T , (28)
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with weights w � [w0, w1 . . . , w2n] ∈ R
2n+1 satisfying∑2n

j=0 wj = 1, where

w0 � λ

n + λ
, wj � 1

2(n + λ)
, j = 1, . . . , 2n, (29)

and the sigma-point matrix Xk � [X0,k,X1,k, . . . ,
X2n,k] ∈ R

n×(2n+1) is chosen as

Xk =x̂k11×(2n+1) +
√

n + λ
[
0n×1 (P xx

k )1/2 − (P xx
k )1/2

]
,

(30)

where (·)1/2 is the Cholesky square root and λ > −n.
Propagating each sigma point through H yields

Sj,k = H(Xj,k, rk), j = 0, . . . , 2n, (31)

where

ŝk =
2n∑

j=0

wjSj,k, (32)

P ss
k =

2n∑

j=0

wj [Sj,k − ŝk][Sj,k − ŝk]T . (33)

The unscented Kalman filter is a two-step estimator,
where the first forecast step is performed according to the
following equations:

Xj,k|k−1 = G(Xj,k−1|k−1, rk−1,k−1),
j = 0, . . . , 2n, (34)

where G is defined by the right-hand side of Eqn. (24).

x̂k,k−1 =
2n∑

j=0

wjXj,k|k−1, (35)

P xx
k,k−1 =

2n∑

j=0

wj [Xj,k|k−1 − x̂k,k−1]

× [Xj,k|k−1 − x̂k,k−1]T +Q,

(36)

Sj,k|k−1 = H(Xj,k|k−1, k), j = 0, . . . , 2n, (37)

ŝk|k−1 =
2n∑

j=0

wjSj,k|k−1, (38)

P ss
k|k−1 =

2n∑

j=0

wj [Sj,k|k−1 − ŝk|k−1]

× [Sj,k|k−1 − ŝk,k−1]T +R,

(39)

P xs
k|k−1 =

2n∑

j=0

wj [Xj,k|k−1 − x̂k|k−1]

× [Sj,k|k−1 − ŝk,k−1]T ,

(40)

where P xx
k|k−1 is the forecast error covariance, P ss

k|k−1 is
the innovation covariance,P xs

k|k−1 is the cross covariance,
and P ss

k|k is the data-assimilation error-covariance.
The second step of the UKF is called the

data-assimilation step and it is described by the following
classical Kalman filter update equations:

Kk = P xs
k|k−1(P

ss
k|k−1)

−1, (41)

x̂k = x̂k|k−1 +Kk(sk − ŝk|k−1), (42)

P xx
k|k = P xx

k|k−1 −KkP
ss
k|k−1K

T
k , (43)

where Kk ∈ R
n×ns is the Kalman gain matrix.

The task of training a dynamic neuron relies on the
estimation of parameter vector xk which satisfies the
following interval constraint:

− 1 + δ ≤ eTi xk ≤ 1− δ, i = 1, . . . , n, (44)

where ei ∈ R
np+n, whereas e1 = [1, 0, . . . , 0]T , e2 =

[0, 1, . . . , 0]T , . . . , enp+n = [0, 0, . . . , 1]T , and δ is a
small positive value. These constraints follow directly
from the asymptotic stability condition (10), while δ is
introduced in order to make the above mentioned problem
tractable.

The neural model has a cascade structure, which
follows from the fact that the neuron outputs constitute
the neuron inputs in the subsequent layers. The neural
model which is a result of the cascade connection of
dynamic neurons is asymptotically stable when each of
the neurons is asymptotically stable (Lee and Jiang, 2006).
Thus, the fulfilment of (10) (being a result of (44)) for
each neuron allows obtaining an asymptotically stable
dynamic GMDH neural model. Thus, the objective of
the interval-constrained parameter-estimation problem is
to maximize (26) subject to (44). In order to perform
the neuron training process, it is necessary to truncate
the probability density function at the n constraint edges
given by the rows of the state interval constraint (44)
such that the pseudomean x̂t

k,k of the truncated PDF is an
interval-constrained state estimate with the truncated error
covariance P xx

k,k. According to Teixeira et al. (2010), the
normal distribution for the PDF truncation procedure is
assumed.

The procedure of PDF truncation (Teixeira et al.,
2010) can be performed in i steps, where i = 1, . . . , n. Let
x̂t
k|k,i and P xxt

k|k,i denote, respectively, the state estimate
and the error covariance after enforcing the first i = 1
rows of the state interval constraint (44).

At the beginning, at i = 1 the initialization of
x̂t
k|k,i = x̂k|k and P xxt

k|k,i = P xx
k|k according to (42) and

(43) is performed. Next, for i = 1, . . . , n, perform the
following procedure:

Step 1. Find the orthogonal matrix S ∈ R
n×n and

the diagonal matrix D ∈ R
n×n from the Schur
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decomposition (Bernstein, 2005) of P xxt
k|k,i given by

SDST = P xxt
k|k , where P xxt

k|k,i is symmetric.

Step 2. Perform Gram–Schmidt orthogonalization to find
the orthogonal matrix Θ ∈ R

n×n satisfying

ΘD1/2coli(ST ) =
[√

P xxt
(i,i),k|k,i 01×(n−1)

]T

, (45)

which for l = 1 is given by

rowl(Θ) =
1

√
P xxt

(i,i),k|k,i
rowi(S)D1/2, (46)

and for l = 2, . . . , n by

rowl(Θ) = (el −
l−1∑

q=1

(eTl colq(ΘT ))colq(ΘT ))T , (47)

where el
Δ= coll(In×n); if rowl(Θ) = 01×n, then reset

rowl(Θ) = (e1 −
l−1∑

q=1

(eT1 colq(ΘT ))colq(ΘT ))T . (48)

Also, normalize for l = 1, . . . , n

rowl(Θ) =
1

‖rowl(Θ)‖ 2

rowl(Θ). (49)

Step 3. Find the parameters of the interval constraint
ak,i ≤ ςi,k,i ≤ bk,i, where ak,i < bk,i ∈ R are given
by the following expressions:

ak,i =
1

√
P xxt

(i,i),k|k,i
(di,k − xt

i,k|k,i), (50)

bk,i =
1

√
P xxt

(i,i),k|k,i
(ei,k − xt

i,k|k,i), (51)

and ςi,k
Δ= ΘD−1/2ST (xk − x̂t

k|k,i) ∈ R
n with mean

ς̂k,i = [μi 01×(n−1)]T , (52)

and covariance

P ςς
k,i = diag(σ2

i ,11×(n−1)), (53)

where

αi =
√
2

√
π[erf( bk,i√

2
)− erf(ak,i√

2
)]

, (54)

erf(·) being the error function defined as

erf(t) Δ=
2√
π

∫ t

0

exp(−τ2)dτ, (55)

and

μi = αi

[
exp

(−a2
k,i

2
)
− exp

(−b2
k,i

2
)]

, (56)

σ2
i =αi

[
exp

(−a2
k,i

2
)(

ak,i − 2μi

)

− exp
(−b2

k,i

2
)
(bk,i − 2μi))

]
+ μ2

i + 1.

(57)

Step 4. Perform the inverse transformation

x̂t
k|k,i+1 = SD1/2ΘT ς̂k,i + x̂t

k|k,i, (58)

P xx,t
k|k,i+1 = SD1/2ΘTP ςς

k,iΘD1/2ST , (59)

and write i instead of n, obtaining x̂t
k|k = x̂t

k|k,n+1 and

P xxt
k|k = P xxt

k|k,n+1.
The probability density function truncation

procedure allows avoiding the explicit on-line solution
of a constrained optimization problem at each time
step. Moreover, it assimilates the interval-constraint
information in the state estimate x̂t

k|k and the error

covariance P xxt
k|k .

The application of the UKF allows obtaining the state
estimates as well as the uncertainty of the GMDH model
in the form of a matrix P sst, which can then be applied
to the calculation of the system output adaptive threshold
(Fig. 12) and permits to perform robust fault detection:

ŷm
i,k = Fi

(
cix̂k − t

α/2
nt−np

σ̂i

√
ciP

xxtcTi

)
, (60)

ŷM
i,k = Fi

(
cix̂k + t

α/2
nt−np

σ̂i

√
ciP

xxtcTi

)
, (61)

where ci stands for the i-th row (i = 1, . . . , ns) of the
matrix C of the output neuron, σ̂i is the standard deviation
of the i-th fault-free residual and t

α/2
nt−np

is the t-Student
distribution quantile.
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Fig. 12. Application of the adaptive threshold to robust fault de-
tection.
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5. Experimental results

The objective of this section is to design a dynamic
GMDH model according to the approaches described in
the previous sections and apply it robust fault detection of
a tunnel furnace (Fig. 13). The tunnel furnace considered

Fig. 13. Tunnel furnace.

is designed to mimic, in laboratory conditions, real
industrial tunnel furnaces, which can be applied in the
food industry or production of ceramics, among others.
The furnace is equipped with three electric heaters and
four temperature sensors. The required temperature of
the furnace can be kept by controlling the heaters’
behaviour. This task can be achieved by group regulation
of the voltage with the application of the PACSystems
RX3i controller manufactured by GE Fanuc Intelligent
Platforms and RP6 semiconductor relays produced by
LUMEL. The temperature of the furnace is measured via
the IC695ALG600 module with Pt100 Resistive Thermal
Devices (RTDs). The visualisation of the behaviour of
the tunnel furnace is made by the Quickpanel CE device
from GE Fanuc Intelligent Platforms. The tunnel furnace
can be considered a three-input and four-output system
(t1, t2, t3, t4) = f(u1, u2, u3), where t1, . . . , t4 represent
measurements of the temperatures from four subsequent
sensors and u1, . . . , u3 denote the input voltages allowing
to control the heaters.

The input and output data used for the identification
and validation were collected in two data sets consisting of
2600 samples. It should also be pointed out that these data
sets were scaled for the purpose of neural network design.
The output data signals should be transformed taking into
consideration the response range of the output neurons.
For the hyperbolic tangent neurons this range is [−1, 1].
To perform such a kind of transformation, linear scaling
can be used. Moreover, the data sets used for identification
and validation were filtered with the application of second
order Butterworth filters. Furthermore, the offset levels
from data sets were removed.

The parameters of dynamic neurons (proposed in
Section 3) were estimated with the application of the
training algorithm, which is based on the UKF approach
presented in Section 4. The selection of the best
performing neurons in terms of their processing accuracy
was realized with the application of the soft selection

method based on the sum squared error evaluation
criterion. Table 1 presents the values of the evolution
criterion for the subsequent layers, i.e., these values are
obtained for the best performing neurons in a particular
layer of the GMDH neural network. The results show that

Table 1. Values of the evaluation criterion QV(t̂1) − QV(t̂4)
for the best neurons in the subsequent layers for the
validation data set.

Layer QV(t̂1) QV(t̂2) QV(t̂3) QV(t̂4)

1 0.0174 0.0154 0.0401 0.0212
2 0.0321 0.0136 0.0329 0.0188
3 0.0007 0.0006 0.0091 0.0012
4 0.0005 0.0003 0.0007 0.0009
5 0.0071 0.0010 0.0141 0.0054

gradual decrease of the value of the evaluation criterion
occurs when a new layer of the GMDH network is
introduced. It follows from the increase of the model
complexity as well as its modelling abilities. However,
when the model is too complex, the quality index QV
increases. This situation occurs when the 5-th layer of the
network is added. This means that the model should have
only four layers.

Additionally, for comparison, the results obtained
with the application of the linear state-space model are
presented (cf. Table 2). In particular, as a result of using
models within the range from 1 up to 10, the 5-th
order state-space model was applied. Figure 14 shows

Table 2. Values of the evaluation criterion QV(t̂1)−QV(t̂4) for
the non-linear dynamic GMDH and linear state-space
models for the validation data set.

Model QV(t̂1) QV(t̂2) QV(t̂3) QV(t̂4)

Linear 0.0060 0.0037 0.0040 0.0027
GMDH 0.0005 0.0003 0.0007 0.0009

residual signals calculated as the difference between
temperature t1 of the tunnel furnace and the linear
state-space model and the non-linear dynamic GMDH
model, respectively. The results show that the quality of
the non-linear dynamic GMDH model is better than that of
the linear state-space model. It follows from the non-linear
nature of the identified tunnel furnace. Figures 15–18
show the temperatures t1 − t4 of the furnace and the
adaptive thresholds obtained with Eqns. (60)–(61) for the
validation data set (no fault case).

After the synthesis of the GMDH model, it is
possible to employ it for robust fault detection of the
tunnel furnace. Figure 19 presents the measurements of
the temperature t1 from the faulty sensor (simulated
during 10 seconds) and the adaptive threshold obtained
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Fig. 14. Residual signals for the temperature t1 of the tunnel
furnace and the linear state-space model and the non-
linear dynamic GMDH model.
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Fig. 15. Temperature t1 of the furnace and the corresponding
adaptive threshold obtained with the GMDH model.
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Fig. 16. Temperature t2 of the furnace and the corresponding
adaptive threshold obtained with the GMDH model.

with the application of the GMDH neural network. As can
be seen a fault is detected for k = 400 when the value of
the temperature t1 crosses the adaptive threshold.

Figure 20 presents the detection of fault (starting
from k = 400 to k = 800 seconds) simulated in
the first electric heater of the tunnel furnace. As can be
seen, the fault is detected when the measurements of
the temperature t1 drop rapidly and cross the adaptive
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Fig. 17. Temperature t3 of the furnace and the corresponding
adaptive threshold obtained with the GMDH model.
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Fig. 18. Temperature t4 of the furnace and the corresponding
adaptive threshold obtained with the GMDH model.
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Fig. 19. Detection of the faulty temperature sensor with the ap-
plication of the adaptive threshold.

threshold obtained with the application of the GMDH
neural model.

6. Conclusions

The objective of this paper was the design of a robust fault
detection system based on the dynamic neural model. To
tackle this problem, a GMDH neural network consisting



168 M. Mrugalski

100 200 300 400 500 600 700 800
100

120

140

160

180

200

220

240

260

280

300

 

 

System output
Adaptive threshold

Fault

(k)

T
em

pe
ra
tu
re

t 1
an

d
ad

ap
ti
ve

th
re
sh
ol
d
(◦
C
)

Fig. 20. Detection of the faulty electric heater with the applica-
tion of the adaptive threshold.

of dynamic multi-input multi-output neurons in the
state-space representation was developed. The state-space
representation allows defining the stability conditions for
each dynamic neuron and the whole GMDH network.
Taking into account these conditions during parameter
estimation with the application of the unscented Kalman
filter algorithm a stable dynamic non-linear GMDH neural
model can be obtained. Moreover, the application of the
unscented Kalman filter allows obtaining the uncertainty
of the GMDH neural model. This knowledge enables us to
calculate the adaptive threshold of the GMDH model and
apply it to robust fault detection of dynamic systems.

In the experimental part of the paper the results of
application of the proposed approach to identification and
robust fault detection of a tunnel furnace were presented.
From the obtained results it can be noticed that the
proposed dynamic non-linear GMDH neural model can
be effectively applied to the identification of the tunnel
furnace. Moreover, the comparison of the results obtained
with the application of the proposed approach and the
linear state-space model shows that the GMDH neural
model can be successfully applied in the identification
of dynamic non-linear system tasks. Finally, the resulting
neural model was successfully used to design a robust
fault detection scheme.
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