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The dynamical investigation of two-component poroelastic media is important for practical applications. Analytic solution
methods are often not available since they are too complicated for the complex governing sets of equations. For this reason,
often some existing numerical methods are used. In this work results obtained with the finite element method are opposed
to those obtained by Schanz using the boundary element method. Not only the influence of the number of elements and time
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1. Introduction

The initiative for the present comparison of results of
the Finite Element Method (FEM) and the Boundary
Element Method (BEM) is a project in which both
the methods are used and, finally, FEM and BEM
subdomains will be coupled iteratively (for information
about iterative coupling, see the work of von Estorff
and Hagen (2006)). The propagation of sound and
vibrations due to bankside shipping traffic is the topic
of this project. Two paths of sound and vibrations
are of interest: the propagation from the ship through
water and air to the immission place (this path is
investigated using the Fast Multipole Boundary Element
Method (Fischer, 2004)), and the propagation through the
subsoil to the construction (this path is examined using a
two-component poroelastic model which is implemented
into a finite element program (Savidis et al., 2011)).
This FEM model is used in the present paper for the
comparison with the BEM results obtained by Schanz
(2001). In both approaches the displacements in a column
consisting of a porous material are considered.

1.1. Theories for saturated porous media. In
soil mechanics the ground is often considered a
one-component elastic solid. However, this is not
sufficient to investigate the flow of a fluid through the
soil particles. If the latter is accounted for, the soil
needs to be considered a two- or even three-component,
so-called porous or granular medium. Such a medium
consists of the skeleton and at least one pore fluid. If
the solid particles are held together by compression or
cementing material, one speaks of porous media, if they
are loose, one denotes them as a granular material. The
investigation of such materials looks back on a tradition
of approximately 70 years.

The first, and probably most often applied model is
the Biot model. It was first introduced in 1941 by Maurice
A. Biot for the investigation of consolidation problems
and later for the description of the wave propagation in
porous media (Biot, 1956). During the ensuing period,
after applying his model to wave propagation himself, the
model was used and modified by various authors for the
investigation of several applications. Moreover, further
models were developed in order to describe various
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processes (also of nonlinear type) in porous and granular
media, e.g., the Goodman and Cowin theory (Goodman
and Cowin, 1972), TPM (Theory of Porous Media)
(de Boer and Ehlers, 1986) or the Wilmanski model
(Wilmanski, 1996). Initially, these models were analyzed
analytically or half analytically (numerical interpretation
of an analytical solution).

Since the 1950s/1960s numerical methods have
rapidly developed, first the finite element method, then
the boundary element method and, finally, also further
progresses. In order to use such methods also for porous
media and to minimize the computing time, it became
necessary to simplify the complex systems of equations
for porous media (various partial balance equations for
several components). For this purpose, another form
of the Biot model arose, developed by Zienkiewicz and
Shiomi (1984). Such a modification of the Biot model
will be used for the investigations in this work. Therein,
the principle of effective stresses (von Terzaghi, 1936) is
used and the fluid velocity is described by the Darcy law.
Then, the relative velocity between the two components,
fluid and solid, is identified by the filter velocity. Thereby,
one kinematic becomes lost, which means that the second
(slower) longitudinal wave which has been predicted
in the saturated porous medium by both the Biot and
Wilmanski models cannot be observed. However, for
practical applications this does not play an important role
since this wave is so strongly attenuated that it is hard to
provide its evidence in real media. Theoretically, this has
been shown by Albers (2010), while information about
the experimental verification can be found in the works of
Kelder and Smeulders (1997), as well as Plona (1980).

Several authors were engaged in the numerical
solution of problems in porous media by the use of
the FEM. Panneton and Atalla (1997) used the FEM
to solve the three-dimensional poroelasticity problem in
acoustics based on the Biot theory modified by Allard
(1993). They derived a displacement-based FE model
using a Lagrangian approach and set up an analogy
with solid elements. The efficient algorithm allows the
use of classical FEM codes (Hild, 2011) for poroela-
stic media. Earlier, Göransson (1995) introduced also a
simplified approach. He neglected the elastic coupling
between fluid and solid in order to reduce the model
to two variables, i.e., solid displacement and pore fluid
pressure. However, the focus was not on the efficiency
of the numerical implementation. The improvement in
the accuracy and effectiveness of such a model was
faced by Atalla et al. (1998), who showed the mixed
displacement-pressure formulation involving the dynamic
equations of the skeleton in vacuo and the equivalent
fluid in the rigid skeleton limit together with their weak
integral form and discussed the implementation in an FE
code. This work was enhanced concerning the weak
formulation by Atalla et al. (2001). The approach of

Zienkiewicz et al. (1999), which is also used in the present
manuscript, is extended by Lewis and Schrefler (1998) as
well as Schrefler and Scotta (2001), e.g., for problems in
unsaturated porous media. Korsawe and Starke (2005),
as well as Korsawe et al. (2006), made progress in
the FE approach of the Biot consolidation problem in
mixed formulation, especially in the development of a
least-squares FE method.

In the following, first the original form of the Biot
model will be introduced. Then it is shown which
simplifications yield the modified form of the Biot model
used in this work. Afterwards it will be shown how the
equations have to be prepared for the use of the FEM and
the BEM. The FEM is applied to a simple example which
has been investigated before by Schanz (2001) using the
BEM. Results are compared with respect to the number of
elements, the number of time steps, and the influence of
the permeability of the porous material.

1.2. Original form of the Biot model. The Biot
model is used to model the subsoil. It consists of two
components: the solid grains which build a skeleton S and
the pore fluid F . The model is presented here first in the
version of the original article by Biot (1956).

Most important are the momentum balances given by

N∇2u+∇ [(A + N) e + Qε]

=
∂2

∂t2
(ρ11u+ρ12U) + b

∂

∂t
(u − U) , (1)

∇ [Qe + Rε]

=
∂2

∂t2
(ρ12u+ρ22U) − b

∂

∂t
(u − U) .

In these equations u and U are the displacements of
the solid and the fluid, respectively. The volume changes
in the solid and in the fluid are denoted by e and ε,
respectively. They are related to the displacements by

e = ∇ · u, ε = ∇ ·U. (2)

This means that the equations can be expressed also by
using only the displacements as variables, which results
in

N∇2u+(A + N)∇ (∇ · u) + Q∇ (∇ · U)

=
∂2

∂t2
(ρ11u+ρ12U) + b

∂

∂t
(u− U) , (3)

Q∇ (∇ · u) + R∇ (∇ · U)

=
∂2

∂t2
(ρ12u+ρ22U) − b

∂

∂t
(u− U) .

A, N and Q are material parameters associated with
elasticity constants and static coupling. R is connected
with the compressibility and the mass density of the
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fluid. Here ρ11, ρ22 and ρ12 are mass coefficients which
are associated with the solid, the fluid and a coupling
between the components, respectively. The coefficient b is
related to Darcy’s coefficient of permeability k. The latter
has the unit

[
m3s/kg

]
, not as usual in soil mechanics

[kf ] = [m/s] (permeability coefficient). However, the
two quantities are related by k = kf/ (ρfg), where ρf

and g are the fluid mass density and the earth acceleration,
respectively.

1.3. Modified form of the Biot model. For practical
applications, it is more reasonable to use, instead of
the displacement of the fluid (which is a rather fictive
quantity but nevertheless often used) variables which are
customary in soil mechanics, e.g., displacements of the
solid and the pore water pressure. Moreover, instead of the
custom description of stresses in continuum mechanics by
partial stresses, i.e., separately for each component, the
formulation by means of total stresses is often preferred.
Zienkiewicz et al. (1999) introduced such a description
and compared different possibilities of simplification. In
the following this modified form of the Biot model is
presented.

The stresses enter the model not as partial stresses,
but as a total stress. By the principle of effective stresses,
the stress is split into a part which is taken over by the
skeleton and the fluid pressure. It is assumed that the
deformation of the skeleton is an intrinsic property which
is not influenced by the fluid pressure.

In the framework of the FEM it became common to
use a vector description of the stress tensor, the so-called
Voigt notation, which reduces the components to six
instead of nine, i.e.,

σ =
[

σx σy σz τxy τyz τzx

]T
. (4)

The stress in the skeleton is defined as the effective
stress σ′, i.e., it is transferred from soil particle to
soil particle. Simultaneously, the hydrostatic stress is
determined by the pore pressure p: It is −αmp, where

m =
[

1 1 1 0 0 0
]T

. The parameter α takes
into account the deformation of the skeleton. Holler
(2006) refers to it as the Biot or the Bishop constant.
It is determined by the fraction of the compressibility
moduli of the skeleton K, and of the single particle Ks:
α = 1 − K/Ks. For Berea sandstone, for instance,
which is used in the numerical example in Section 4,
K = 8 · 109 N/m2 and Ks = 3.6 · 1010 N/m2 (Schanz
and Cheng, 2000), thus α = 0.7.

Following the common convention, tensile forces
yield positive stresses. Thus, the part which concerns the
pore pressure has a negative sign. Thereby, the following
relation follows between total and effective stresses:

σ = σ′ − αmp. (5)

If the compressibility modulus of a single particle is much
larger than the one of the whole material, then α → 1, and
one obtains the classical form of the effective stress which
has been introduced by von Terzaghi (1936).

The kinematic compatibility describes the relation
between displacements u and strains ε which (in matrix
notation) is given by

ε = dSu, (6)

where the displacements u =
[

ux uy uz

]T
and the

matrix of derivatives

dS=

⎡

⎢
⎢⎢
⎢
⎢
⎢
⎣

∂

∂x
0 0

∂

∂y
0

∂

∂z

0
∂

∂y
0

∂

∂x

∂

∂z
0

0 0
∂

∂z
0

∂

∂y

∂

∂x

⎤

⎥
⎥⎥
⎥
⎥
⎥
⎦

T

are used. Due to the vectorial description, i.e., Voigt’s
notation, engineering strains are used.

If now the relative velocity between solid and fluid,
w = vf − vs, is identified by the Darcy velocity, a
momentum balance for the soil-fluid-mixture can be
formulated,

dT
S σ−ρü−ρf

[
ẇ + w ∇T w

]
+ ρb =0,

with

ẇ =
dw
dt

. (7)

Here, ρf is the mass density of the fluid, b is the vector of
the body force per unit mass (commonly the gravitation)
and ρ is the mass density of the total body, defined as

ρ = nρf + (1 − n) ρs, (8)

where the soil particles have the mass density ρs and n
is the porosity, i.e., the volume of the voids over the total
volume.

The term ρf [ẇ + w ∇w] reflects the fluid
acceleration relative to the solid and its convective
parts. However, in general it is small and therefore will
be neglected further on. Thus, one ends up with

dT
Sσ−ρü + ρb =0. (9)

Another balance law is stated for the fluid, again,
assuming that the fluid moves together with the solid.
This means that the relative velocity of the components
is identified with the filter velocity. The balance law reads

−∇p − R−ρf ü−
ρf

[
ẇ + w ∇Tw

]

n
+ ρfb =0, (10)

where R denotes viscous drag forces which, by use of
Darcy’s law, can be expressed by kR = w.
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The convective part in Eqn. (10), again, is small
and also the contribution of the solid acceleration can be
neglected. Its inclusion would cause the final equation
to be non-symmetric (see Zienkiewicz et al., 1999). For
these reasons, (10) is converted to

w = k (−∇p + ρfb) , (11)

with the permeability parameter k with dimensions
[length]3[time]/[mass].

The third and last equation is the mass balance of the
flow. It has the form

∇Tw+αmε̇+
ṗ

Q
+ n

ρ̇f

ρf︸︷︷︸
small

+ ṡ0︸︷︷︸
not relevant

= 0, (12)

where
1
Q

=
n

Kf
+

α − n

Ks
,

with Ks being the compressibility modulus of the solid,
Kf the compressibility modulus of the fluid and n the
initial porosity. Their values for Berea sandstone are
given in Table 1. The last two parts n

ρ̇f

ρf
and ṡ0 of

Eqn. (12) represent the change in the mass density and
the volumetric expansion of the solid in the case of
thermal changes. Since these are not considered in
this manuscript, the latter contribution can be omitted.
Referring to Zienkiewicz et al. (1999), who provide
estimates of the contributions to Eqn. (12), also the former
is left out since it is small in comparison with the other
terms of (12).

Equations (9), (11) and (12) build the simplified set
of equations for the unknown variables p ≡ pf , w, and
u, which are the fluid pressure, the fluid velocity and the
displacements of the solid, respectively.

1.4. u-p formulation of the model. For numerical
calculations, it has become common to further simplify
the system (see Zienkiewicz et al., 1999). On the
one hand, the above-mentioned negligible quantities are
omitted, on the other, the variable w is eliminated so that
only two variables are left. This form of the equations is
called u-p formulation. It consists of Eqn. (9) and the
combination of (11) and (12),

∇T k (−∇p + ρfb) + αmdSu̇ =0. (13)

Zienkiewicz et al. (1999) state that this reduced
system suffers from a loss of accuracy only for problems
containing high frequency oscillations.

2. Preparation for the use of finite elements

The system of equations derived above has been
investigated in different versions for several applications.

Table 1. Material parameters of Berea sandstone (after Schanz
and Cheng, 2000).

Initial porosity n = 0.19

Compressibility modulus of solid Ks = 3.6 · 1010 N/m2

Compressibility modulus of fluid Kf = 3.3 · 109 N/m2

Bulk compressibility modulus K = 8 · 109 N/m2

Naumann (2004) and Savvidis (2009) derived the model
in its two-dimensional form from basic equations and
implemented it in the finite element package ANSYS.
In the work of Rackwitz et al. (2005), the element
for coupled fluid-structure calculations was used to
investigate quasi-static processes. In particular, the
transient behavior and the development of the pore water
pressure were examined. A further development of the
model is shown by Taşan et al. (2010) and Taşan (2012),
who show the three-dimensional version used for the
dynamic investigation of monopile offshore foundations.
In these works also a hypoplastic behavior of the soil has
been taken into account. Plans exist to use the two-phase
element also for rail track subsoil systems (cf. Kogut and
Ciurej, 2010).

The system (9), (13) is now used to implement a
two-phase element into ANSYS. For this purpose, first
the weak formulation of these equations is built. This
is performed by the weighted residual method, i.e., a
solution statement is sought, which satisfies a differential
equation df(x) = 0 at each point of the system. However,
an exact analytic solution can only be found for simple
systems. For more complicated systems one has to rely
on approximate solutions. Since these solutions do not
satisfy the differential equation in each point, a residuum
r remains, i.e., df(x) = r. The weighted residual
method is a procedure to minimize this remainder. It is
required that the integral of the residuum, which includes
a weighting function g̃, over the investigated domain G,∫

G

g̃ df(x) dG, vanish. After integration, a spatial and a

temporal discretization of the equations are carried out.

2.1. Weak formulation and discretization of the solid.
The weak formulation of the equation for the solid (9) is

∫

V

g̃T
(
dT

S σ′ − αdT
Smp

)
dV

−
∫

V

g̃T ρü dV +
∫

V

g̃T ρbdV =0. (14)

Trial functions N and Np are chosen to approximate the
displacement, the velocity, the acceleration, and the pore
water pressure, which leads to

u = Nuk, u̇ = Nu̇k, ü = Nük, p = Nppk.
(15)
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Moreover, the weighting function is chosen as a variation
of the displacement u. According to the Galerkin method,
for the weighting function g̃T the same trial function is
used as for the displacement,

g̃T = δuT = δ (Nuk)T = δuT
k NT . (16)

A surface term (surface R) enters the equation due
to application of the Gauss theorem to the first term of
Eqn. (14). By substituting (15) into (14) the governing
equation

∫

R

δuT
k NT σRn dR −

∫

V

δuT
k NTdT

Sσ′ dV

+
∫

V

δuT
k NTdT

SmNppk dV (17)

−
∫

V

δuT
k NT ρNük dV +

∫

V

δuT
k NT ρbdV =0,

is obtained, where the total stress on the surface σR

consists of two parts σ′
R and αmpR corresponding to the

effective stress and the pore pressure on the surface.
Since the nodal values of the displacements uk,

the velocities u̇k, the accelerations ük as well as the
variations in the nodal values δuk are constant, they can
be extracted from the integral. Furthermore, the matrix of
the derivatives of trial functions B = dSN and the matrix
of trial functions for the pore water pressure Np = mNT

p

are introduced and

M : =
∫

V

NT ρN dV,

the mass matrix,

Q : =
∫

V

BTNp dV,

the coupling matrix,

fs
R :=

∫

R

NT σR dR,

the load vector of the the surface forces from outside, and

fs
g :=

∫

V

NT ρbdV , the load vector of the net weight, are

defined. The sum fs
R + fs

g forms the load vector fs of the
solid. After exclusion of the variations δuk and insertion
of the linear elastic constitutive law, one obtains

Mük + Ks
Euk − Qpk = fs, (18)

where

Ks
E :=

∫

V

BT EBdV

denotes the structural stiffness matrix in the case of linear
elasticity. This means that the effective stress is σ′ =
Eε = EdSNu = EBu with the elasticity matrix

E =
E

1 + ν

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

1−ν
1−2ν

ν
1−2ν

ν
1−2ν 0 0 0

ν
1−2ν

1−ν
1−2ν

ν
1−2ν 0 0 0

ν
1−2ν

ν
1−2ν

1−ν
1−2ν 0 0 0

0 0 0 1
2 0 0

0 0 0 0 1
2 0

0 0 0 0 0 1
2

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

containing the Poisson number ν.

2.2. Weak formulation and discretization of the fluid.
The water pressure has no direction, therefore in the case
of the fluid the weighting function g̃ is a scalar. After
weighting and integrating Eqn. (13), the weak formulation

1
ρfg

∫

V

g̃∇k (−∇p + ρfb) dV

+ α

∫

V

g̃mT ∂

∂t
(dSu) dV = 0. (19)

is obtained.
The weighting function g̃ is chosen to be a variation

in the pore water pressure p, i.e., g̃ = δp. Insertion into the
weak formulation, transformation by partial integration,
and application of the Gauss theorem yields

1
ρfg

∫

R

nT δpk (−∇p + ρfb) dR

+
1

ρfg

∫

V

δp∇k (∇p − ρfb) dV (20)

+ α

∫

V

δpmT ∂

∂t
(dSu) dV = 0,

where n is the unit vector of the surface.
The use of

vf =
1

ρfg
k (−∇p + ρfb) ,

the definition of the flow of the pore water perpendicular
to the surface q = nTvf , and the trial functions for
displacement as well as pore water pressure (Eqn. 15)
results in

∫

R

δpT
k Npq dR

+
1

ρfg

∫

V

δpT
k Np∇k

(∇NT
p pk − ρfb

)
dV (21)

+ α

∫

V

δpT
k NpmTdSNu̇k dV = 0.



888 B. Albers et al.

The term

fp
R := −

∫

R

NpqdR

describes the flow of the pore water at the surface of the
element and distributes the surface flow on the surface
nodes via the form function vector of the pore water
pressure Np. The negative sign shows that the positive
direction of the pore water flow q is directed outwards.
In the second term of (21) the matrix of derivatives of
trial functions concerning the pore water pressure Bp =
∇NT

p , the permeability matrix

H =
1

ρfg

∫

V

BT
p kBp dV,

and the volume load vector of the fluid

fp
g =

1
g

∫

V

BT
p kb dV

are introduced. The permeability of the soil is taken into
account by H. It distributes the permeability properties
on the nodes via matrix Bp. The vector containing the
degrees of freedom of the pore water pressure pk and also
its variations δpk can be excluded from the integral. With
the definition of the load vector for the fluid, fp = fp

R+fp
g ,

the equation for the fluid is obtained,

QT u̇k + Hpk = fp. (22)

2.3. Governing equations. Summarizing the last two
subsections, the complete set of equations for the finite
element, which can be used for linear elastic coupled
fluid-structure calculations, is given by

[
M 0
0 0

] (
ük

p̈k

)
+

[
0 0

QT 0

] (
u̇k

ṗk

)

+
[

Ks
E −Q

0 H

](
uk

pk

)
=

(
fs

fp

)
. (23)

Here, M is the mass matrix, H is the permeability
matrix, Q is the coupling matrix, Ks

E is the stiffness
matrix of the structure, and fs and fp are the load vectors
of the solid and the fluid, respectively.

2.4. Temporal discretization. To solve the set of
equations (23), a time step procedure—the Newmark
method is used (see, e.g. Taşan, 2012). It is an implicit
integration procedure for the solution of differential
equations of second order and has at time tn+1 the
following form:

Mün+1 + Cu̇n+1 + Kun+1 = f . (24)

Using the known initial conditions for the
displacements un, velocities u̇n and accelerations
ün at time tn, the quantities at time tn+1 are calculated:

u̇n+1 = u̇n [(1 − δ) ün + δün+1] Δt, (25)

un+1 = un + u̇nΔt +
[(

1
2 − α

)
ün + αün+1

]
Δt2,

where Δt = tn+1 − tn is the time step and α, δ are
integration constants. Depending on the initial values and
the displacement un+1, the acceleration and the velocity
at the new point in time can be given as follows:

ün+1 = a0 (un+1 − un) − a2u̇n − a3ün,

u̇n+1 = u̇n + a6ün + a7ün+1. (26)

Insertion of these expressions into (24) results in

(a0M+a1C + K)un+1

= f + M (a0un + a2u̇n + a3ün) (27)

+ C (a1un + a4u̇n + a5ün) ,

containing the Newmark constants:

a0 =
1

αΔt2
, a1 =

δ

αΔt
,

a2 =
1

αΔt
, a3 =

1
2α

− 1,

a4 =
δ

α
− 1, a5 =

Δt

2

(
δ

α
− 2

)
,

a6 = Δt (1 − δ)
1
α

a7 = δΔt.

In (27), only un+1 is unknown and can be
determined by the equilibrium of inner and outer forces.
Therewith one obtains the actual velocity u̇n+1 and the
acceleration ün+1.

3. Preparation for the use of boundary
elements

In order to compare results obtained by the use of the FEM
and the BEM in this section, the basics of a paper Schanz
(2001) are summarized briefly.

As described above, in the original form of
the momentum balances of Biot’s model (1), partial
constitutive laws for the two constituents are used. This
form of equations is mostly used in continuum mechanical
applications, especially if a clear distinction between
microscopic and macroscopic quantities is desired (for a
comparison of different representations, see the work of
Albers (2010)). But another possible representation has
already been shown, namely, the use of total stresses, σ =
σs + σf1, and the pore pressure, p, as variables. Again
using Biot’s effective stress coefficient α (Biot, 1941)
and the solid strain ε, the constitutive equation, which is
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equivalent to the above shown effective stress introduced
by von Terzaghi modified by the coefficient α, is

σ = 2Gε +
(
K − 2

3G
)
(tr ε)1− αp1, (28)

where G and K are the shear modulus and the
compressibility modulus of the solid frame, respectively.
Here, linear elasticity and small deformations are already
accounted for. As explained above, in the case of
incompressible constituents, the parameter α is equal to
one. Thus, one is left with the classical effective stress
concept by von Terzaghi.

A second constitutive law concerns the variation of
the fluid volume per unit reference, denoted by ς ,

ς = α tr ε +
n2

R
p, (29)

where R is a material constant (see (3)). Here ς is a kind
of strain describing the motion of the fluid relative to the
solid. While in Section 1 the deformations are described
by the volume changes, e and ε, here instead the solid
strain and the variation of fluid volume per unit reference
volume, ε = e and ς, are used.

Three equations describe the problem. First, there
is a mass balance over a reference volume, i.e., the
continuity equation

∂ς

∂t
+ ∇ · q = a, (30)

in which

q = n
∂ω

∂t

is the specific flux depending on the relative displacement
ω of the constituents fluid and solid. The quantity on the
right hand side, a (t) , is a source term. Even if this source
is zero in the present problem, the equations are quoted
as they appear in the work of Schanz (2001). The second
equation is the momentum balance of the bulk material:

∇ · σ + F = ρ
∂2u
∂t2

+ nρf
∂2ω

∂t2
, (31)

where F denotes the bulk body force per unit volume and
u the solid displacement. The mass densities are already
known (see Eqn. (8)). Here, for the solid strain, the
following commonly used form in mechanics is applied:

ε = 1
2

(∇u + ∇T u
)
, (32)

which implies small deformations. Third, as shown above,
the fluid transport is expressed by a generalized Darcy law.
Thus,

q = −κ

(
∇p + ρf

∂2u
∂t2

+
ρa + nρf

n

∂2ω

∂t2

)
, (33)

in which κ denotes the permeability. The apparent mass
density, ρa = Cρf , was introduced by Biot (1956) to

describe the interaction between fluid and skeleton. The
parameter C depends on the pore geometry and on the
excitation frequency and is chosen by Schanz (2001) to
be 0.66.

By combination of these equations and elimination
of some variables, again a u-p-formulation is obtained.
A further confirmation that this type of formulation is
sufficient for the present approach can be found in the
work of Bonnet (1987). It is found in the Laplace domain,
denoted by L{f (t)} = f̂ (s) with the complex Laplace
variable s. In this way, from Eqn. (33) Schanz obtains

ω̂ =
κρfn2s2

n2s + s2κ (ρa + nρf )
︸ ︷︷ ︸

β

1
s2nρf

(∇p̂ + s2ρf û
)
,

(34)
and the final set of differential equations is

G (∇ · ∇) û +
(
K + 1

3G
)∇ (∇ · û)

− (α − β)∇p̂ − s2 (ρ − βρf û) = −F̂, (35)

β

sρf
(∇ · ∇) p̂ − n2s

R
p̂

− (α − β) s∇ · û = −â. (36)

Details of the boundary element formulation can
be found in the work of Schanz (2001). Here, the
approach is presented rather generally: Eqns. (35) and
(36) have to be transformed into a boundary integral
equation for dynamic poroelasticity. This can be done
either using the corresponding reciprocal work theorem
(Cheng et al., 1991) or the weighted residual formulation
(Dominguez, 1992). These methods need different
fundamental solutions, but they both result finally in
the same integral equation. Then, a boundary element
formulation is achieved by discretizing the boundary
surface by iso-parametric elements with polynomial shape
functions, by a definition of ansatz functions and by
inserting them in the time dependent integral. Next,
a temporal discretization has to be carried out. The
convolution quadrature method according to Schanz
(2001) is the most effective method to achieve this.
Thus, a quadrature formula is applied to the integral
form of the equation set which results in a boundary
element time-stepping formulation. After calculation of
integration weights, a system of algebraic relations is
obtained to which a direct equation solver is applied.

4. Comparison of results obtained by the
finite and boundary element methods for
displacements in a column

A simple example is investigated using the two numerical
methods introduced above. In earlier works it has already
been shown that the two-phase model correctly describes
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quasi-static processes like consolidation (Savidis et al.,
2011; Rackwitz et al., 2005; Savvidis, 2009). In the
present study a dynamic problem is considered which in a
similar manner has been investigated by Schanz (2001)
using the boundary element method. His results are
compared with the current ones obtained using the 3D two
phase element developed on the basis of the FEM.

4.1. System. The system considered is built of a
column consisting of water saturated Berea sandstone.
The width of the column is b = 1 m, the height h = 3 m.
The system is shown in Fig. 1. For the FE calculations the
height is divided into 10 elements. For Berea sandstone
in the work of Schanz (2001) the compressibility modulus
K = 8 · 109 N/m2 and the shear modulus G = 6 · 109

N/m2 are given. From these values there follows Young’s
modulus to ES = E = K + 4

3G = 1.6 · 1010 N/m2,
the permeability parameter is kf = 2 · 10−6 m/s, the
mass density of the particles is ρs = 2458 kg/m3, the
mass density of the water is ρw = 1000 kg/m3, and the
porosity is n = 0.19. By assuming Poisson’s ratio to
be ν = 0 and by an adequate choice of the boundary
conditions the system is investigated as one-dimensional:
the soil layer is loaded at the top surface by a distributed
load. At this surface the system is permeable while the
other boundaries are assumed to be impermeable.

4.2. BEM results. Schanz (2001) investigated the
above described column loaded by a Heaviside function
with the boundary element method. Further on the
problem was calculated analytically by Schanz and Cheng
(2000), hints to find an analytical solution were also

Fig. 1. System for the investigation of the consolidation and the
dynamical behavior of a soil layer.

given by Eringen and Suhubi (1975). Since this is only
possible for simplified cases, the practically impossible
case without damping (i.e., no permeability) has been
investigated. This means that no relative velocity between
the components and no friction between fluid and solid
does appear. This unrealistic case is, first, also studied
here in order to compare results of the finite element
method and of the boundary element method. Afterwards,
damping is accounted for. In Fig. 2 the results of
the vertical displacements of the upper boundary of the
column presented in Fig. 1 are reproduced (after Schanz,
2001). They have been achieved using the boundary
element method. The column is loaded from top by a
Heaviside function of the force amplitude 1 N/m2. The
authors are aware of the fact that this load is extremely
small and unrealistic. However, in order to compare
the results of the BEM and the FEM, the value chosen
by Schanz (2001) has been retained also for the FEM
calculations.

Both panels of Fig. 2 show the progress of the
vertical displacements as a function of time. Caused
by the load, a wave vertically runs through the column.
Already in the short time of 0.01 s this wave is reflected at
the upper and lower boundaries several times. Thereby
a zig-zag pattern in the vertical displacement occurs.
The amplitude of this displacement is driven by the soil
properties and by the size of the load. Schanz (2001)
investigated the influence of both, the refinement of the
mesh and of the time steps. In the upper panel of
Fig. 2 the displacements are given for the meshes of
different refinements. Additionally, the analytic solution
is presented. It is obvious that the finest mesh (324 linear
triangles on 164 nodes) yields the results which fit those of
the analytic solution best. Calculations using the coarsest
mesh (56 linear triangles on 30 nodes) reveal less accurate
results. The coarsening of the mesh yields a numerical
damping, i.e., the reflections are expressed less precisely.
A similar effect is produced by an enlargement of the time
steps. In the bottom panel of Fig. 2 the displacement is
illustrated for three time steps of different duration. While
for Δt = 0.000007 s (approximately 1428 time steps), the
results are nearly in agreement with the analytical solution
and also for Δt = 0.00001 s (1000 time steps) only small
deviations appear, for Δt = 0.0001 s (100 time steps) the
numerical damping becomes clearly evident, which leads
to an increasing imprecision of the results.

4.3. FEM results.

4.3.1. Number of elements. Calculations of the same
type have been carried out for 1000 time steps using
the three-dimensional two-phase-model suggested in this
contribution. Damping has been neglected by setting the
permeability coefficient equal to zero or infinity, kf = 0
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(a) (b)
Fig. 2. Time dependence of the displacements in y-direction calculated by the BEM (after Schanz, 2001): influence of the number of

elements (a), influence of the number of time steps (b).

or kf → ∞. Both the limits of the permeability coefficient
are unrealistic assumptions for a two-component system
and lead to degenerated systems of equations. In both
cases, indeed only a one-component system remains.
Thus, it is not necessary to use a two-component model.
The left panel of Fig. 3 reflects that for kf = 0, i.e., a
completely impermeable material, relatively unstable
results are obtained.

Irrespective of the number of elements and for a time
step distance (1000 time steps), which later in the paper
will be shown to be very well chosen, the results are not
satisfying. The fact that the disregard of the diffusion term
in calculations of multiphase systems has a destabilizing
effect is known in the literature. However, it has been
already said that an unrealistic case was investigated and
therefore the rather unstable results are not important.
The right panel of Fig. 3 shows analogous results using
the other limit of the permeability coefficient, kf → ∞,
for which the material is completely permeable. For this
value the results are stable and coincide with those for an
elastic solid (cf. Fig. 4). In the following it is shown that
for realistic cases where diffusion is taken into account the
two-phase-element yields physically reasonable results.

It has already been mentioned that for a
two-component system without damping, in principle, a
solid is present. Therefore, first the column is investigated
using a one-component element. As in the work of
Schanz (2001), the influence of the number of elements
and also of the number of time steps is investigated.
The total time of 0.01 s also used by Schanz (2001) is
kept. First, for two different numbers of elements ((a) 4
elements in the x-direction, 1 element in the y-direction,
10 elements in the z-direction, (b) 8 elements in the
x-direction, 1 element in the y-direction, 20 elements in
the z-direction) the influence of different time steps is
investigated. The results are presented in Fig. 4 (left hand
side: the coarser mesh, right hand side: the finer mesh).

It is obvious that already the first choice, i.e., the small
number of 10×1×4 elements, is sufficient to describe the
problem accurately.

A comparison of the results on the left and right-hand
sides of Fig. 4 shows that nearly identical results appear
for the two choices of numbers of elements. This shows a
contrast of the results which have been obtained by the use
of the finite element method with those of Schanz (2001),
which have been achieved with the boundary element
method.

4.3.2. Time step size. Now the influence of the
time step size is investigated. Displacements have been
calculated for time steps of 0.001 s, 0.0002 s, 0.0001 s,
0.00002 s and 0.00001 s, which is the same as the number
of 10, 50, 100, 500 and 1000 time steps in the total
time. Results for 10 time steps are rather disputable.
Obviously, this value is too small. For 1000 time steps
a result is achieved which is equivalent to the analytic
solution (see Fig. 2). The more time steps are used, the
better the accordance. For a medium number of time
steps, again, the numerical damping appears, i.e., the
curves are smoother and the amplitude does not reach the
maximum value. The number of elements, in contrast to
the number of time steps, is almost irrelevant. In Fig. 5
for the dense time mesh of 1000 time steps, the vertical
displacements for five different numbers of elements are
shown (30 elements in the x-direction, 1 element in the
y-direction, 12 elements in the z-direction; 20×1×8;
15×1×6; 10×1×4 and 6×1×2). Already the coarse
number of 6x1x2 elements yields an acceptable result (see
the left panel of Fig. 5). This is confirmed by inspection of
the details of the diagram on the right hand side in Fig. 5.
Indeed, the results for 6×1×2 and 10×1×4 elements
slightly deviate from those of the finer mesh, but it is
immediately clear that the number of elements is not as
important as the discretization in time.
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(a) (b)
Fig. 3. Time dependence of the vertical displacements in the column calculated using the two-phase-element for different numbers of

elements: permeability coefficient kf = 0, (a), kf → ∞ (b).

(a) (b)
Fig. 4. Vertical displacements depending on time calculated using a one-phase-element (without damping): 10×1×4 elements (a),

20×1×8 elements (b)).

4.3.3. Permeability coefficient. Let us come back to
the use of the two-phase-element As mentioned above,
its use makes only sense if both the diffusion term, i.e.,
the relative velocity between solid and fluid, and the
permeability parameter are taken into account. If the
two components appear, in general, they will not have
the same velocity such that a diffusion process takes
place. Due to friction between the two components,
an attenuation appears (not to compare with the above
mentioned numerical damping which arises because of
an inadequate number of elements or time steps). This
means that a wave which is generated by a Heaviside load
is further reflected on the upper and lower boundaries of
the column. However, its amplitude is decreasing in time.
This is illustrated in Fig. 6.

The left hand side shows the result of equivalent

calculations as they were needed to obtain the results
of the left hand side of Fig. 5 but instead of the
one-phase-element here the two-phase-element with the
permeability coefficient kf = 10−2 m/s is used. It is
obvious that, with this element, results of the same quality
are obtained as with the one-phase-element. This is,
again, confirmed by the detail on the right-hand side of
Fig. 6. Also here, only the calculations using 6×1×2
and 10×1×4 elements are slightly deviating from the
exact solution. Thus, also for the two-phase-element the
number of elements is not of the same importance as for
the boundary element method.

The influence of the attenuation (friction between the
two components, solid and fluid), and thus of the value
of the permeability coefficient kf on the quality of the
results, is presented in Fig. 7. The vertical displacements
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(a) (b)
Fig. 5. Vertical displacements in dependence on time calculated using the two-phase-element (kf → ∞). 1000 time steps, a different

number of elements ((b) is a detail of (a)).

(a) (b)
Fig. 6. Vertical displacements depending on time calculated using the two-phase-element (kf = 10−2 m/s). 1000 time steps, different

numbers of elements ((b) is a detail of (a)).

are much smaller if the diffusion is not taken into account.
The incorporation of the diffusion yields more stable
numerical results.

4.3.4. Pore pressure. Even though for the current
project the displacements are of main interest, for the
sake of completeness, also a qualitative comparison of the
second important quantity appearing in porous media, the
pore pressure, is shown.

From Fig. 8 it is obvious that the results for the pore
pressure for FEM and BEM calculations are qualitatively
the same. For a high number of elements in the case of
the FEM or a fine mesh for the BEM and a high number
of time steps, the results are stable and sufficiently close
to the analytical solution (see Schanz and Cheng, 2000)
which is presented on the right hand side of Fig. 8. While

Schanz (2001) reports on only slight dependence on the
time step size for the BEM, for the FEM it is obvious that
the reduction of the time step size yields bigger deviations
from the stable solution than a reduction of the number
of elements. The deflections from the stable solution of
the dotted curve on the left-hand side of Fig. 8, standing
for a small number of elements, are significantly weaker
than those of the dash-dotted line representing the lowest
number of time steps (100 time steps in 0.01 s).

5. Final remarks

In this work the displacements occurring in a column
consisting of porous material which is vertically loaded
from the upper boundary by a Heaviside area load have
been investigated. Results, on the one hand obtained by



894 B. Albers et al.

(a) (b)
Fig. 8. Pore pressure at the lower part of the porous column: FEM results for different numbers of time steps for a fine spatial

discretization, the dotted line represents very few elements for a high number of time steps (a), BEM results by Schanz (2001)
for a fine mesh and the same number of time steps as presented in the left panel (Δt = 0.00001 s → 1000 time steps,
Δt = 0.000025 s → 400 time steps, Δt = 0.0001 s → 100 time steps) (b).

the use of the finite element method and on the other
with the boundary element method, are compared. The
influence of the number of elements and the time step
size, as well as the impact of different values of the
permeability coefficient, have been studied, leading to the
following conclusions:

• The choice of a higher number of elements is, at
least for this example, more important for the BEM
than for the FEM in order to obtain accurate results.
For the FEM calculations, already a relatively coarse
mesh yielded smooth results, while for the BEM
calculations a rather fine mesh was necessary.

Fig. 7. Vertical displacements depending on time calculated us-
ing the two-phase-element for different values of the per-
meability parameter kf [m/s]; 1000 time steps.

• In the case of both approaches, the number of time
steps in a given total time is, with respect to the
accuracy of the results, of significant importance.
The more time steps are used, the closer the result
to the analytical solution. For a smaller number of
elements in both the approaches numerical damping
becomes evident, i.e., imprecise results are obtained
and the amplitude does not reach the maximum value
of the analytical solution.

• The amplitude of the vertical displacements is much
larger if the permeability parameter is taken into
account. For higher values of this parameter the
numerical results are more stable.

These results show that the sound propagation
through porous soils can be studied more or less
equivalently with the use of both numerical methods,
namely, the FEM and the BEM. The reason for the choice
of either of the methods, thus, will not be the accuracy of
the results but the advantages of one or the other method
concerning the keeping of boundary conditions or the
reduction of calculation time. In fact, the BEM has the
advantage to fulfil the Sommerfeld radiation condition
automatically while it has the disadvantage of possessing
fully occupied, non-symmetric, complex matrices leading
to longer computation times.
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Appendix

Index notation of some equations

In Sections 1.3 and 1.4 we have taken over the formulation
used by Zienkiewicz et al. (1999). Since this notation in
absolute notation is at some places unclear we add the
index notation of some equations in this appendix.

(5) → σij = σ′
ij − αδijp,

(6) → engineering strains

dεi = dui,i (with the repeated index not summed),

(7) → σij,j − ρüi − ρf [ẇi + wjwi,j ] + ρbi = 0,

(10) → −p,i − Ri − ρf üi − ρf [ẇi + wjwi,j ] /n

+ ρbi = 0, wi = kijRj ,

(11) → wi = k (−p,i + ρbi) ,

(12) → wi,i + αε̇ii +
ṗ

Q
+ n

ρ̇f

ρf
+ ṡ0,

(13) → (kij (−p,j + ρbj)),i + αε̇ii.
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