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In the paper we present some guidelines for the application of nonparametric statistical tests and post-hoc procedures de-
vised to perform multiple comparisons of machine learning algorithms. We emphasize that it is necessary to distinguish
between pairwise and multiple comparison tests. We show that the pairwise Wilcoxon test, when employed to multiple
comparisons, will lead to overoptimistic conclusions. We carry out intensive normality examination employing ten dif-
ferent tests showing that the output of machine learning algorithms for regression problems does not satisfy normality
requirements. We conduct experiments on nonparametric statistical tests and post-hoc procedures designed for multiple
1×N and N ×N comparisons with six different neural regression algorithms over 29 benchmark regression data sets. Our
investigation proves the usefulness and strength of multiple comparison statistical procedures to analyse and select machine
learning algorithms.
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1. Introduction

The field of machine learning has been intensively
developed recently. Many novel approaches and
techniques to solve classification and regression problems
have been proposed and the issue of assessing and
comparing with competitive and classical methods has
arisen. Dems̆ar (2006) surveyed over 120 papers
presented in a series of conferences in the field. He
stated that only about half of the papers contained
some statistical procedure either for determining an
optimal method or for comparing the performances
among themselves, and pairwise t-tests were the
prevailing method for assessing statistical significance
of differences. His work initiated a series of studies
aimed to establish systematic procedures for comparing
the performance of a number of classifiers over multiple
data sets (Dems̆ar, 2006; Derrac et al., 2011; Garcia
and Herrera, 2008; Garcia et al., 2009; 2010; Luengo
et al., 2009). Their authors argue that the commonly
used paired tests, i.e., the parametric t-test and its

nonparametric alternative Wilcoxon signed rank tests,
are not adequate when conducting multiple comparisons
due to the so-called multiplicity effect (Salzberg, 1997).
They recommend to employ rank-based nonparametric
Friedman or Iman and Davenport tests followed by proper
post-hoc procedures for identifying pairs of algorithms
which differ significantly.

The most frequently used statistical tests to
determine significant differences between two machine
learning algorithms are the t-test and the Wilcoxon
signed-ranks test (Wilcoxon, 1945). However, the former
is a parametric one and requires that the necessary
conditions for a safe usage of parametric tests should be
fulfilled, i.e., independence, normality, heteroscedasticity
(Sheskin, 2011; Zar, 2009). It is not the case in majority
of experiments in a machine learning (García and Herrera,
2008; Luengo et al., 2009). Thus, the nonparametric
Wilcoxon matched pairs test, which is less powerful
than the t-test, should be employed. But, when the
researcher wants to confront a newly developed technique
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with a number of known algorithms or choose the best
one out of a set of several algorithms, the pairwise
comparisons are not proper. In such situations he/she
loses control over the so-called familywise error rate due
to an accumulated error coming from the combination of
pairwise comparisons. Therefore, he/she should perform
tests adequate to multiple comparisons together with a set
of post-hoc procedures to compare a control algorithm
with other algorithms (1 × N comparisons) or to perform
all possible pairwise comparisons (N × N comparisons).

First of all, the Friedman test (Friedman, 1937) or
its more powerful derivative, the Iman and Davenport
test (Iman and Davenport, 1980), should be performed.
A usable characteristic of these tests is that they rank
the algorithms from the best performing one to the
poorest one. However, both tests can only inform the
researcher about the presence of differences among all
samples of results compared. Two more alternatives can
be also applied, the Friedman aligned ranks (Hodges
and Lehmann, 1962) and the Quade (Quade, 1979) test,
which differ in the way of computing the rankings and
may lead to better results depending on the features
of the experimental study considered. After the null
hypotheses have been rejected, you may proceed with
the post-hoc procedures in order to find the particular
pairs of algorithms which produce differences. The
latter comprise Bonferroni–Dunn’s, Holm’s, Hochberg’s,
Hommel’s, Holland’s, Rom’s, Finner and Li’s procedures
in the case of 1 × N comparisons, and Nemenyi’s,
Shaffer’s, and Bergmann–Hommel’s procedures in the
case of N × N comparisons.

The Bonferroni–Dunn scheme (Dunn, 1961) leads
to the statement that the performance of two algorithms
is significantly different if the corresponding average of
rankings is at least as great as its critical difference.
More powerful is Holm’s routine (Holm, 1979), which
checks sequentially hypotheses ordered according to their
p-values from the lowest to the highest. All hypotheses
for which p-value is less than the significance level α
divided by the number of algorithms minus the number of
a successive step are rejected. All hypotheses with greater
p-values are supported. Holland’s and Finner’s procedures
(Holland and Copenhaver, 1987; Finner, 1993) also adjust
the value of α in a step-down manner as Holm’s method
does. Hochberg’s procedure (Hochberg, 1988) operates in
the opposite direction to the former, comparing the largest
p-value with α, the next largest with α/2, and so forth
until it encounters a hypothesis it can reject. Rom (1990)
devised a modification to Hochberg’s step-up procedure to
increase its power. In turn, Li (2008) proposed a two-step
rejection procedure.

When all possible pairwise comparisons need to be
performed, the easiest is Nemenyi’s procedure (Nemenyi,
1963). It assumes that the value of the significance level
α is adjusted in a single step by dividing it merely by the

number of comparisons performed. It is a very simple
way but has little power. Shaffer’s static routine (Shaffer,
1986), in turn, follows Holm’s step down method. At a
given stage, it rejects a hypothesis if the p-value is less
than α divided by the maximum number of hypotheses
which can be true given that all previous hypotheses are
false. Bergmann–Hommel’s scheme is characterized by
the best performance, but it is also most sophisticated
and therefore difficult to understand and computationally
expensive. It consists in finding all the possible exhaustive
sets of hypotheses for a certain comparison and all
elementary hypotheses which cannot be rejected. The
details of the procedure are described by Bergmann and
Hommel (1988) as well as García and Herrera (2008), and
the rapid algorithm for conducting this test is presented by
Hommel (1994).

All the above mentioned procedures were described
in detail by Demšar (2006), Derrac et al. (2011),
García and Herrera (2008), Garcia et al. (2009;
2010) as well as Luengo et al. (2009), and used to
a series of experiments on neural network algorithms
(Luengo et al., 2009), genetics-based machine learning
algorithms (García et al., 2009), decision trees and
other classification algorithms (García and Herrera, 2008;
García et al., 2010), evolutionary and swarm intelligence
algorithms (Derrac et al., 2011). These experiments
were conducted using machine learning algorithms and
benchmark data sets devoted to classification problems
and function approximation. In this paper we focus on
regression algorithms and employ benchmark data sets for
regression problems in statistical tests.

So far, the authors of the present paper have
investigated several methods to construct regression
models: evolutionary fuzzy systems, neural networks,
decision trees, and statistical algorithms using MATLAB,
KEEL, and WEKA data mining systems (Graczyk et al.,
2009; Krzystanek et al., 2009; Król et al., 2008; Lasota
et al., 2010), on the basis of a real-world case of real estate
appraisals.

In our investigations we have employed
nonparametric Friedman and Wilcoxon paired
comparison tests (Lasota et al., 2010; Smętek and
Trawiński, 2011) as well as post-hoc procedures devoted
to multiple comparisons (Lasota et al., 2011; Lughofer
et al., 2011). The Wilcoxon sign rank test was applied also
by Zaman and Hirose (2011) to pairwise comparisons in
their research into ensemble methods with small training
sets.

The main goal of the study presented in this paper
is to review the methodology and investigate the potential
of multiple comparison statistical procedures to analyse
and select machine learning regression algorithms and
provide the machine learning community, especially
non-statisticians, with guidelines for using advanced
nonparametric tests in the case there is a need to evaluate
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a newly devised algorithm by comparing it with a number
of classic and benchmark techniques. In the comparison
with the recent works we focus on the assessment of
regression algorithms using multiple data sets. Evaluating
the performance of multiple regressors, in terms of their
accuracy over multiple data sets, is safe because the
researcher does not need to assume anything about the
sampling scheme and consider the variance of the results
obtained.

It is only required that the output ensures reliable
estimates of the algorithms’ accuracy on individual
data sets. Moreover, such an approach provides the
independence of the measurements made. The second
goal was to survey and carry out the tests for the normality
of the result produced by regression algorithms over
multiple data sets. This is an important issue because
researchers often face a dilemma about whether the output
of their experiments has a Gaussian distribution and they
are legitimized in applying a parametric test, such as
the t-test, or it is safer to use a nonparametric one.
Another question may be if the number of measurements
performed is sufficient to assume that the values obtained
come from a normal distribution. The tests for normality
may help with a proper decision. In our case study we
applied 6 regression neural algorithms to 29 benchmark
data sets and performed a statistical analysis of the
results obtained using nonparametric tests and post-hoc
procedures designed especially for multiple comparisons.
Our preliminary work was presented at the KES2010
conference (Graczyk et al., 2010).

The paper is organized as follows. Section 2
describes the statistical approach to analyze the results
of experiments including testing normality, nonparametric
tests for pairwise and multiple comparisons and post-hoc
procedures adequate for multiple comparisons. Section 3
describes the design of experiments we conducted
comprising regression neural algorithms and benchmark
data sets we employed. Section 4 presents the results we
obtained as well as a thorough analysis of the statistical
significance of the output. Finally, in Section 5, we point
out the conclusions of the paper.

2. Tests for normality, paired and multiple
comparisons

2.1. Testing normality. Very often data sets which
are used in validation and verification experiments are
not normal in their nature. The non-normality may occur
because of their inherent random structure or the presence
of outliers. Tens of normality tests have been proposed
by statisticians and their performance depends greatly on
the distribution type and sample size. A comprehensive
review of tests for normality presented by Thode (2002),
describing their design, theory, and application. In our
case study we applied ten different tests chosen from

among the most popular tests of normality.
Pearson’s chi-square goodness of fit test checks if an

observed frequency distribution differs from the normal
distribution (Plackett, 1983). However, it is characterized
by less power compared with other tests. The Lilliefors
corrected Kolmogorov–Smirnov (K–S) test compares
the cumulative distribution of data with the expected
cumulative normal distribution (Lilliefors, 1967). This
test is different from the K–S test because unknown
parameters of the population are estimated, while the
statistic remains the same. The Anderson–Darling test
is based on the Cumulative Distribution Function (CDF)
approach and performs well for small sample sizes
(Anderson and Darling, 1954). It is a modification of
the Kolmogorov–Smirnov test and gives more weight
to the tails than the K–S test. It is one of the most
powerful statistical tools for detecting most departures
from normality.

The Shapiro–Wilk test calculates the W statistic
defined as the ratio of the square linear combination of the
ordered sample to the usual sum of squares of deviations
from the mean (Shapiro and Wilk, 1965). It is the most
preferred test of normality because of its good power
properties compared with a wide range of alternative
tests. The test statistic of the Shapiro–Francia test is the
squared correlation between the ordered sample values
and the expected ordered quantiles of the standard normal
distribution (Royston, 1993) and is assessed to perform
well.

Other types of normality test are called moment
tests. They are derived from the recognition that
the departure from normality may be detected based
on sample moments, namely, skewness and kurtosis.
Skewness is the third moment of a distribution and
describes its asymmetry. A symmetric distribution has
zero skewness, an asymmetric distribution with the largest
tail to the right has positive skewness, and a distribution
with a longer left tail has negative skewness. D’Agostino
test for skewness in normally distributed data has a
null hypothesis that data are symmetrical, i.e., skewness
is equal to zero (D’Agostino, 1970). This test is
useful for significant skewness in normally distributed
data. Kurtosis is the fourth moment of distribution
and measures both peakedness and tail heaviness of a
distribution relative to that of the normal distribution. The
Anscombe–Glynn test of kurtosis for normal samples has
a null hypothesis that data have kurtosis equal to 3 and is
detecting a significant difference of kurtosis in normally
distributed data (Anscombe and Glynn, 1983). The two
most widely known goodness-of-fit measures of departure
from normality are the tests proposed by Jarque and Bera
(1987) as well as D’Agostino et al. (1990). The former is
based on sample kurtosis and skewness, whereas the latter
on transformations of these moments. Their statistics have
approximately a chi-square distribution with 2 degrees of
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freedom when the population is normally distributed.

Not long ago, Szekély and Rizzo (2005) proposed
the Energy test (E-test), a rotation invariant and consistent
goodness-of-fit test for multivariate and univariate
distributions based on the Euclidean distance between
statistical observations. It is practical to be applied
for arbitrary dimension and sample size. The inventors
proved it is a powerful competitor to existing tests, and is
very sensitive against heavy tailed alternatives.

Several comparative analyses of different normality
tests have been published recently. Results of Keskin’s
study showed that the Shaphiro–Wilk test was the
most powerful from among the Kolmogorov–Simirnov,
chi-square, Shaphiro–Wilk, D’Agostino–Pearson,
skewness and kurtosis normality tests (Keskin, 2006).
Yazici and Yolacan (2007) studied 12 different normality
tests and compared their powers. They concluded that
the best results of the simulation study were achieved
for the Kuiper, Vasicek, and Jarque–Bera tests. They
also stated that the Shapiro–Wilk statistic provides a
superior omnibus indicator of non-normality, although
from the practical point of view it should be used for
sample sizes between 20 and 50. Romão et al. (2010)
compared the performance of 33 normality tests, for
various sample sizes, considering several significance
levels and for a number of symmetric, asymmetric and
modified normal distributions. One of their conclusions
was that when the nature of the non-normality is
unknown, the Shapiro–Chen, Shapiro–Wilk as well as
Barrio–Cuesta-Albertos–Matrán–Rodríguez-Rodríguez
quantile correlation (BCMR) tests should be applied.
Tanveer-ul-Islam (2011) showed the overall superiority of
the Anderson–Darling test to the Jarque–Bera one, which
belongs to the most popular and widely used tests in the
field of economics, as well as to the Shapiro–Francia,
D’Agostino–Pearson and Lilliefors tests.

2.2. Wilcoxon’s test for pairwise comparisons.
The Wilcoxon signed-ranks test (Wilcoxon, 1945) is a
nonparametric counterpart of the paired t-test, which
ranks the differences in performances of two algorithms
over each data set. It omits the signs, and compares the
ranks for the positive and the negative differences. The
differences are ranked based on their absolute values; in
case of ties average ranks are computed. Let di be the
difference between the performance scores of the two
algorithms on the i-th out of n data sets. Let R+ be
the sum of ranks for the data sets on which the second
algorithm outperformed the first, and R− the sum of ranks
for the opposite,

R+ =
∑

di>0

rank(di) +
1
2

∑

di=0

rank(di)

R− =
∑

di<0

rank(di) +
1
2

∑

di=0

rank(di) (1)

Ranks of di= 0 are divided in half and added to the
sums (see Eqn. (1)). If T denotes the smaller sum, i.e.,
T =min(R+, R−), the statistic

z =
T − n(n + 1)/4√

n(n + 1)(2n + 1)/24
. (2)

for a larger number of data sets, for example, greater than
25, will be approximately normally distributed. For n up
to 25, exact critical values for T can be found in tables
published in numerous statistical textbooks.

If the requirements for the paired t-test are met, then
the Wilcoxon test has less statistical power than the t-test.
However, it is safer because it does not assume normal
distributions and is more sensible than the t-test when the
number of observations is small, e.g., less than 30.

Wilcoxon’s test is fit to be used for pairwise
comparisons between two algorithms. If we wanted to
draw a conclusion comprising more than one pairwise
comparison, we would obtain an accumulated error
resulting from the combination of pairwise comparisons.
Thus, we lose control on the so-called Family Wise
Error Rate (FWER), which is defined as the probability
of drawing false conclusions when conducting multiple
pairwise tests. In consequence, it is not recommended to
use pairwise comparison tests, such as Wilcoxon’s test, to
perform comparisons involving a number of algorithms,
since the FWER is not controlled. In order to conduct
comparisons which comprise more than two algorithms,
tests adequate for multiple comparisons should be used.

2.3. Friedman’s and Iman–Davenport’s tests for
multiple comparisons. In Figs. 1 and 2, multiple
comparison nonparametric tests as well as post-hoc
procedures for 1 × N and N × N comparisons, which
were considered for classification tasks and function
approximation by García et al. (2010) and Derrac
et al. (2011), are summarized. They were applied in
the study reported in the present paper for regression
problems. It illustrates that first the Friedman test
and/or its two alternatives, the Friedman aligned ranks
and the Quade test, should be conducted in order to
detect whether statistically significant differences occur
among the examined algorithms. Moreover, these tests
rank the algorithms from the best performing one to
the poorest one. If statistical significance is revealed,
then the researcher may proceed to accomplish post-hoc
procedures to point out which pair of algorithms differ
significantly.

The Friedman test (Friedman, 1937) is a
nonparametric counterpart of the parametric two-way
analysis of variance. The goal of this test is to determine
whether there are significant differences among the
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Fig. 1. Nonparametric tests and post-hoc procedures for 1 × N
comparisons.

Fig. 2. Nonparametric tests and post-hoc procedures for N ×N
comparisons.

algorithms considered over given sets of data. The test
determines the ranks of the algorithms for each individual
data set, i.e., the best performing algorithm receives the
rank of 1, the second best rank 2, etc.; in the case of
ties average ranks are assigned. Let rj

i be the rank of
the j-th of k algorithms on the i-th of n data sets. The
Friedman test compares the average ranks of algorithms,
Rj = 1/n

∑
i rj

i . The null hypothesis states that all the
algorithms perform equivalently and therefore their ranks
Rj should be equal. Under this hypothesis the Friedman
statistic

χ2
F =

12n

k(k + 1)

⎡

⎣
∑

j

R2
j +

k(k + 1)2

4

⎤

⎦ (3)

is χ2
F distributed with k − 1 degrees of freedom, when n

and k are large enough, i.e., n > 10 and k > 5 (García
et al., 2010).

Iman and Davenport (1980) proved that Friedman’s

χ2
F is too conservative and devised a better statistic

FF =
(n − 1)χ2

F

n(k − 1)χ2
F

, (4)

which is distributed according to the F-distribution with
k − 1 and (k − 1)(n − 1) degrees of freedom.

Due to a limited space we do not present in this paper
an analysis for aligned Friedman’s and Quade’s tests, but
the results obtained were similar to the output produced
with the Friedman’s one. The formulas for Friedman
aligned ranks and Quade test statistics, the examples of
computing the ranks for the Friedman, Friedman aligned,
and Quade tests as well as p-values are shown by Derrac
et al. (2011).

2.4. Post-hoc procedures for 1 × N and N × N
comparisons. The Friedman, Iman–Davenport,
Friedman aligned, and Quade tests can only detect
significant differences over the whole multiple
comparison, although they are not in a position to
establish interrelations between the algorithms under
consideration. If the null hypothesis of equivalence of
rankings is rejected by these tests, the researcher may
proceed with post-hoc procedures. In Tables 1 and 2 a set
of post-hoc procedures is presented for 1×N and N ×N
comparisons, respectively. For each procedure a brief
outline of its scheme and the formula for computation of
the Adjusted P-Value (APV) are given. The notation used
in Tables 1 and 2 is as follows:

• indexes i and j apply to a given comparison or
hypothesis in the family of hypotheses. Index i
always concerns the hypothesis whose APV is being
determined and index j refers to another hypothesis
in the family;

• pj is the p-value calculated for the j-th hypothesis;

• k is the number of predictors being compared.

3. Experimental setup

3.1. Tools and algorithms used in experiments.
All experiments were conducted using KEEL (Knowl-
edge Extraction based on Evolutionary Learning), a tool
for creating, learning, optimizing and evaluating various
models ranging from soft computing ones to support
vector machines, decision trees for regression, and linear
regression. KEEL contains several dozen of algorithms
for data pre-processing, designing and conducting the
experiments, data post-processing and evaluating and
visualizing the results obtained, which have been bound
into one flexible and user friendly system. KEEL has
been developed in the Java environment by a group
of Spanish research centres and is available for free
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Table 1. Post-hoc procedures for 1 × N comparisons.

Procedure Description APVi

Bonf (Dunn, 1961) Calculates the adjusted value of a in a single step by dividing it by
the number of comparisons, i.e., (k − 1).

min{v; 1}, where v = (k − 1)pi.

Li (Li, 2008) It is a two-step rejection procedure: Step 1: reject all Hi for pk−1 ≤
α. Otherwise, accept the hypothesis associated with pk−1 and go to
Step 2. Step 2: reject any remaining Hi with pi ≤ (1−pk−1)/(1−
α)α.

pi/(pi + 1 − pk−1).

Holm (Holm, 1979) Rejects H1 to Hi−1 if i is the smallest integer such that pi >
α/(k − i).

min{v; 1}, where v = max{(k −
1)pj : 1 ≤ j ≤ i}.

Holl (Holland and
Copenhaver, 1987)

Rejects H1 to Hi−1 if i is the smallest integer so that pi > 1−(1−
α)k−i.

min{v; 1}, where v = max{1−(1−
pj)

k−j : 1 ≤ j ≤ i}.
Finn (Finner, 1993) Rejects H1 to Hi−1 if i is the smallest integer so that pi > 1−(1−

α)(k−1)/i.
min{v; 1}, where v = max{1−(1−
pj)

(k−1)/j : 1 ≤ j ≤ i}
Hoch
(Hochberg, 1988)

This step-up procedure works in the opposite direction that step-
down ones do, comparing the largest p-value with α, the next
largest with α/2, the next with α/3, and so forth until it encounters
a hypothesis it can reject. All hypotheses with smaller p-values are
then rejected as well.

max{(k − j)pj : k − 1 ≥ j ≥ i}.

Rom (Rom, 1990) It modifies Hochberg’s procedure to increase its power. It operates
almost in the same way as the Hochberg one, except that the α
values are calculated through the expression

ak−1 =
1

i

[
i−1∑

j=1

αj −
i−2∑

j=1

(
i

k

)
αi−j

k−1−j

]
(5)

where ak−1 = α and ak−2 = α/2.

{max{(rk−j)pj : k − 1 ≥ j ≥
i}, where rk−j can be obtained from
Eqn. (5), r = {1, 2, 3, 3.814, 4.755,
5.705, 6.655 . . .}.

Homm
(Hommel, 1988)

First, the largest j for which pn−j+k > kα/j for all k = 1, . . . , j
should be found. If no such j exists, all hypotheses can be rejected,
otherwise all hypotheses for which pi ≤ α/j are rejected.

The algorithm to compute APVi for
Hommel’s procedure can be found in
the work of García et al. (2010).

Table 2. Post-hoc procedures for N × N comparisons.

Procedure Description APVi

Nem
(Nemenyi, 1963)

Calculates the adjusted value of α in a single step by dividing it by
the number of comparisons accomplished, i.e., k(k − 1)/2.

min{v; 1}, where v = k(k − 1)pi/2.

Holm (Holm, 1979) Step-down method, it rejects H1 to Hi−1 if i is the smallest integer
such that pi > α/(k(k − 1)/2 − i + 1).

min{v; 1}, where v = max{(k(k −
1)/2 − j + 1)pj : 1 ≤ j ≤ i}

Shaf (Shaffer, 1986) Following Holm’s step-down method, at stage j, instead of discard-
ing Hi if pi ≤ α/(k(k − 1)/2 − i + 1), discards Hi if pi ≤ α/ti,
where ti is the maximum number of hypotheses which can be true
given that any (i, . . . , 1) hypotheses are false.

min{v; 1}, where v = max{tjpj :
1 ≤ j ≤ i}.

Berg (Bergmann and
Hommel, 1988)

Under the definition: “An index set of hypotheses I ⊆ {1, . . . , m}
is called exhaustive if exactly all Hj , j ∈ I , could be
true”, Bergman and Hommel’s procedure rejects all Hj with
j �∈ A, where the acceptance set A, given as A =

⋃{I :
I exhaustive, min{Pi : i ∈ I} > α/ ‖ I ‖}, is the index set
of null hypotheses which are retained.

min{v; 1}, where v = max{‖ I ‖
min{pj , j ∈ I} : I exhaustive; i ∈
I}

for non-commercial purposes (Alcalá-Fdez et al., 2009;
2011).

KEEL is designed for different users with different
expectations and provides three main functionalities:
Data Management, which is used for new data set up,
data import and export, data edition and visualization,
data transformations and partitioning, etc.; Experiments,

which is used to design and evaluate experiments with
the use of selected data and provided parameters; Edu-
cation, which is used to run experiments step-by-step in
order to display the learning process. KEEL algorithms
employed to carry out the experiments are listed in Table
3, where references to source papers are shown. Details
of the algorithms can also be found on the KEEL web site
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Table 3. Neural machine learning algorithms used in the study.
Code KEEL name Description

MLP Regr-MLPerceptron Conj-Grad Multilayer perceptron for modeling (Moller, 1990)
RBF Regr-RBFN Radial basis function neural network (Broomhead and Lowe, 1998)
RBI Regr-Incremental-RBFN Incremental radial basis function neural network (Plat, 1991)
RBD Regr-Decremental-RBFN Decremental radial basis function neural network (Broomhead and Lowe, 1998)
IRP Regr-iRProp+ Multilayer perceptrons trained with the iRProp+ algorithm (Igel and Hüsken, 2003)
SON Regr-SONN Self organizing modular neural network (Smotroff et al., 1991)

at www.keel.es.

3.2. Benchmark data sets used in experiments.
Twenty nine benchmark data sets for regression were
used in experiments. They were downloaded from four
web sites:
http://archive.ics.uci.edu/ml/datasets,
http://www.liaad.up.pt/~ltorgo/
Regression/Datasets.html,
http://sci2s.ugr.es/keel/datasets.php,
http://funapp.cs.bilkent.edu.tr
/datasets.

In order to reduce the size of data sets, feature and
instance selection was accomplished. Since different
feature selection methods often produce different results,
we combined the output of three methods available in the
Statistica Data Miner package (Hill and Lewicki, 2007).
We computed the average ranking of feature importance
provided by variable screening (VSC) as well as variable
importance measures for the gradient boosting machine
(VIB) and random forests (VIF) and chose the best
features for each data set. In turn, instance selection was
carried out by randomly drawing a subset of samples.
Moreover, outliers were removed by means of the three
sigma method. Then the data were normalized using
the min-max approach. Table 4 presents information
about the data sets: code, name, number of instances and
features, number of the link to site they come from (see
the list above). Six machine learning algorithms were
run in KEEL individually for 29 data sets using 10-fold
cross validation (10cv) and the prediction accuracy was
measured with the Root Mean Square Error (RMSE).

4. Statistical analysis of the results of
experiments

RMSE values obtained for 6 neural algorithms over 29
data sets are shown in Table 5. The lowest median
and InterQuartile Range (IQR) were obtained with MLP
and RBF algorithms, whereas the biggest values were
produced by RBD and SON algorithms. In turn, the
highest values of skewness and kurtosis were MLP, RBI,
and RBD, which indicates their output has the distribution
more widely different form the normal one than the results

Table 4. Data sets used in the experiments.
Code Name Inst. Feat. Link

01 Abalone 4027 8 1,2
02 Ailerons 7154 8 2,3
03 Delta ailerons 6873 5 2
04 Stock 950 5 2,3
05 Bank8FM 4318 8 2
06 California Housing 7921 8 2,3
07 2Dplanes 6560 7 2
08 House (8L) 7358 8 2
09 House (16H) 5626 8 2
10 Delta Elevators 4691 5 3
11 Elevators 7560 7 2
12 Friedman Example 8217 5 1,2
13 Kinematics 8190 8 2,4
14 Computer Activity (1) 6570 8 2
15 Computer Activity (2) 6953 6 2
16 Boston Housing 461 4 1,2
17 Diabetes 43 2 2,4
18 Machine-CPU 188 6 1,4
19 Wisconsin Breast Cancer 152 6 1,2
20 Pumadyn (puma8NH) 2984 8 2
21 Pumadyn (puma32H) 1245 5 2
22 Baseball 337 6 4
23 Plastic 1650 2 3,4
24 Ele2-4 — Electrical-Length 1056 4 3
25 Ele1-2 — Electrical-Length 495 2 3
26 Weather-Izmir 1461 7 3,4
27 Weather-Ankara 1609 8 3,4
28 Mortgage 1049 6 3,4
29 Concrete Strength 72 5 1

provided by other algorithms. Both skewness and kurtosis
are equal to zero for normal distribution in the Statistica
package.

4.1. Tests of normality. The results of ten normality
tests conducted for the output produced by individual
neural algorithms over all 29 data sets are shown in
Table 6. In all normality tests the null hypothesis
stated that data were sampled from a normal distribution
whereas the alternative hypothesis stated the opposite. If
the p-value for an individual null hypothesis is less than
the significance level α (in our study α = 0.05), then
this hypothesis is rejected. In Table 6, p-values less than
0.05 leading to the rejection of normality hypotheses were

www.keel.es.
http://archive.ics.uci.edu/ml/data sets
http://www.liaad.up.pt/~ltorgo/
Regression/Data sets.html
http://sci2s.ugr.es/keel/data sets.php
http://funapp.cs.bilkent.edu.tr
/data sets
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Table 6. Results of normality tests in terms of p-values.
Normality test MLP RBF RBI RBD IRP SON

Pearson’s chi-square 0.0069 0.0961 0.0961 0.0005 0.2533 0.4962
Lilliefors 0.0045 0.0638 0.0471 0.0076 0.1721 0.4262
Anderson–Darling 0.0001 0.0746 0.0025 0.0001 0.1631 0.3767
Shapiro–Wilk 0.0000 0.0370 0.0005 0.0001 0.1200 0.4282
Shapiro–Francia 0.0000 0.0359 0.0008 0.0002 0.0842 0.3007
D’Agostino skewness 0.0019 0.1280 0.0260 0.0177 0.1888 0.4837
Anscombe-Glynn kurtosis 0.0000 0.1624 0.0094 0.0087 0.1376 0.2827
Jarque–Bera 0.0000 0.0350 0.0020 0.0020 0.0490 0.4070
D’Agostino–Pearson 0.0000 0.0260 0.0001 0.0001 0.0453 0.3166
E-statistic (Energy) 0.0000 0.0781 0.0060 0.0000 0.1682 0.3764

distinguished in the italic font. It can be easily seen that
all tests but one indicated the non-normality of MLP, RBI,
and RBD output, whereas the results provided by IRP and
RBF, had the normal distribution in the majority of tests.
It is only in the case of SON that no null hypothesis could

Table 5. Comparison of accuracy in terms of RMSE values for
models built over 29 data sets.

Set MLP RBF RBI RBD IRP SON

01 0.121 0.125 0.143 0.147 0.124 0.126
02 0.073 0.076 0.079 0.471 0.077 0.096
03 0.085 0.091 0.094 0.169 0.088 0.090
04 0.049 0.045 0.072 0.076 0.081 0.155
05 0.049 0.053 0.092 0.110 0.085 0.152
06 0.125 0.134 0.144 0.235 0.148 0.149
07 0.043 0.044 0.051 0.117 0.066 0.175
08 0.103 0.106 0.121 0.147 0.113 0.141
09 0.084 0.087 0.096 0.098 0.092 0.098
10 0.107 0.107 0.119 0.203 0.111 0.131
11 0.090 0.089 0.105 0.110 0.108 0.103
12 0.036 0.040 0.051 0.095 0.075 0.136
13 0.073 0.087 0.138 0.127 0.145 0.156
14 0.061 0.061 0.075 0.369 0.078 0.078
15 0.064 0.063 0.074 0.547 0.065 0.099
16 0.088 0.093 0.110 0.111 0.095 0.123
17 0.200 0.208 0.174 0.227 0.199 0.189
18 0.089 0.088 0.099 0.131 0.099 0.133
19 0.426 0.265 0.270 0.296 0.268 0.269
20 0.136 0.174 0.318 0.190 0.186 0.204
21 0.046 0.057 0.084 0.102 0.158 0.158
22 0.168 0.169 0.169 0.183 0.158 0.162
23 0.152 0.167 0.177 0.183 0.158 0.174
24 0.019 0.019 0.046 0.195 0.027 0.046
25 0.080 0.089 0.085 0.099 0.084 0.129
26 0.021 0.021 0.046 0.057 0.027 0.061
27 0.020 0.019 0.052 0.058 0.038 0.151
28 0.012 0.014 0.042 0.047 0.019 0.035
29 0.092 0.118 0.122 0.125 0.104 0.255
Skew 2.864 1.045 1.708 1.872 0.879 0.444
Kurt 11.20 1.218 3.503 3.578 1.340 0.812
Med 0.084 0.088 0.096 0.131 0.095 0.136
IQR 0.058 0.065 0.0640 0.093 0.068 0.058

be rejected.
Supplementary to the statistical normality tests

are graphical methods which include among others,
histograms and Quantile-Quantile (Q-Q) plots. The
former are useful devices for exploring the shape of the
underlying frequency distribution of a set of continuous
data, for screening the outliers, skewness, peakedness,
tails, etc. The latter technique, in turn, plots the quantiles
of the first data set against those of the second data
set. If the two data sets come from a population with
the same distribution, the points fall approximately along
the 45-degree reference line. The greater the departure
from the reference line, the greater the evidence that the
two data sets have come from populations with different
distributions. The histograms with an ideal Gaussian
distribution and normal Q-Q plots for the results provided
by individual algorithms are presented in Figs. 3–8.

A general observation is that none of the algorithms
produces perfect Gaussian output. Taking into account the
scale of the Y-axes of histogram charts, the distribution
of points on Q-Q plots, and the values of skewness and
kurtosis in Table 5, it can be concluded that MLP, RBI,
and RBD accuracies deviate from a Gaussian distribution
more than others. However, the graphical approach
is not too accurate and requires that the researcher be
experienced in such analyses.

In our case study we acquired about 30 measurement
points for each algorithm, which was a moderate number,
i.e., not too small and not too big. Therefore it was
reasonable to conduct normality tests. The normality
tests try to find the answer to the question how far a
given distribution deviates from the ideal Gaussian one.
Because the tests estimate deviations from Gaussian using
different methods, they produce different results. This
explains our output for IRP and RBF neural algorithms,
where some tests indicated the normality of distribution
and some did not.

Our general conclusion was that we were justified
to employ nonparametric tests discarding parametric
ones, which reveal greater power provided the normality
requirements are satisfied. However, it is argued, e.g.,
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Fig. 3. Histogram (left) and normal Q-Q plot (right) of MLP results.

Fig. 4. Histogram (left) and normal Q-Q plot (right) of RBF results.

Fig. 5. Histogram (left) and normal Q-Q plot (right) of RBI results.

Fig. 6. Histogram (left) and normal Q-Q plot (right) of RBD results.

(Motulsky, 2010; Sheskin, 2011; Zar, 2009) that the
decision whether to use a parametric or a nonparametric
test is more sophisticated and the researcher should not
automatically rely only on normality tests. If data deviate
significantly from a Gaussian distribution, maybe the

problem can be solved by transforming all the values
to their logarithms or reciprocals, rather than using a
nonparametric test. Eliminating outliers may also lead
to the desired results. Moreover, in the case of small
samples, normality tests do not have enough power
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Fig. 7. Histogram (left) and normal Q-Q plot (right) of IRP results.

Fig. 8. Histogram (left) and normal Q-Q plot (right) of SON results.

to discriminate between Gaussian and non-Gaussian
populations. With large samples, on the other hand,
the parametric t-tests and ANOVA are fairly resistant to
violations of this requirement and it is not much critical
whether data are non-Gaussian or not.

4.2. Nonprametric significance tests. Statistical
analysis of the results of experiments was performed
using software available on the web page of the
Research Group Soft Computing and Intelligent
Information Systems at the University of Granada
(http://sci2s.ugr.es/sicidm). This open
source JAVA program calculates multiple comparison
procedures: the Friedman, Iman–Davenport,
Bonferroni–Dunn, Holm, Hochberg, Holland, Rom,
Finner, Li, Shaffer, and Bergamnn-Hommel tests as
well as adjusted p-values. An adjusted p-value can be
directly taken as the p-value of a hypothesis belonging
to a comparison of multiple algorithms. If the adjusted
p-value for an individual null hypothesis is less than
the significance level, in our study α = 0.05, then
this hypothesis is rejected (Wright, 1992). For paired
comparisons, nonparametric Wilcoxon signed ranks tests
were made using the Statistica package.

The Friedman and Iman–Davenport tests were
performed in respect of average ranks, which use χ2

and F statistics, respectively. The calculated values
of these statistics were 88.17 and 43.44, respectively,
whereas the critical values at α = 0.05 are χ2(5) =
12.83 and F (5, 140) = 2.28, so the null hypotheses
were rejected. Thus, we were justified in proceeding

to post-hoc procedures. Average rankings of neural
algorithms over 29 data sets for produced by the Friedman
test are shown in Table 7.

Table 7. Average rank positions of neural algorithms deter-
mined during the Friedman test.

1-st 2-nd 3-rd 4-th 5-th 6-th

MLP
(1.55)

RBF
(2.21)

IRP
(3.24)

RBI
(3.90)

SON
(4.79)

RBD
(5.31)

Unadjusted and adjusted p-values for the
Bonferroni–Dunn, Holm, Hochberg, Hommel, Holland,
Rom, Finner, and Li post-hoc procedures for 1 × N
comparisons, where MLP was the control algorithm, are
displayed in Table 8. In all tests the Bonferroni–Dunn
procedure provided the highest adjusted p-values,
whereas the Finner and Li procedures yielded the lowest
adjusted p-values. In turn, the Holm, Hochberg, Hommel
post-hoc procedures gave the same results for all tests;
slightly lower p-values were produced by the Holland
and Rom procedures. Thus, our study confirmed some
observations made for classification algorithms. The
Bonferroni–Dunn procedure is the simplest one but also
the least powerful. The Li and Finner procedures seem
to be multiple comparison tests with the highest power.
As for machine learning algorithms, MLP revealed
significantly better performance than other algorithms
except for RBF.

In Table 9, p-values for the Wilcoxon test, unadjusted
values and adjusted p-values for the Nemenyi, Holm,
Shaffer and Bergmann–Hommel tests for N × N

http://sci2s.ugr.es/sicidm
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Table 8. Adjusted p-values for 1 × N comparisons of neural algorithms over 29 data sets for the Friedman test (MLP is the control
algorithm).

p-values RBD SON RBI IRP RBF

pUnadjust 2.01E-14 4.18E-11 1.82E-06 0.000584 0.182355
pBonf 1.00E-13 2.09E-10 9.09E-06 0.002918 0.911776
pHolm 1.00E-13 1.67E-10 5.45E-06 0.001167 0.182355
pHoch 1.00E-13 1.67E-10 5.45E-06 0.001167 0.182355
pHomm 1.00E-13 1.67E-10 5.45E-06 0.001167 0.182355
pHoll 1.00E-13 1.67E-10 5.45E-06 0.001167 0.182355
pRom 9.53E-14 1.59E-10 5.45E-06 0.001167 0.182355
pFinn 1.00E-13 1.05E-10 3.03E-06 0.000729 0.182355
pLi 2.45E-14 5.11E-11 2.22E-06 0.000713 0.182355

Table 9. Adjusted p-values for N × N comparisons of neural algorithms over 29 data sets.
Alg vs Alg pWilcox pUnadj pNeme pHolm pShaf pBerg

MLP vs RBD 0.000031 2.01E-14 3.01E-13 3.01E-13 3.01E-13 3.01E-13
MLP vs SON 0.000079 4.18E-11 6.27E-10 5.85E-10 4.18E-10 4.18E-10
RBF vs RBD 0.000003 2.67E-10 4.01E-09 3.47E-09 2.67E-09 2.67E-09
RBF vs SON 0.000013 1.41E-07 2.11E-06 1.69E-06 1.41E-06 8.46E-07
MLP vs RBI 0.000247 1.82E-06 0.000027 0.000020 0.000018 0.000013
RBD vs IRP 0.000060 0.000025 0.000381 0.000254 0.000254 0.000178
MLP vs IRP 0.000192 0.000584 0.008754 0.005252 0.004085 0.003502
RBF vs RBI 0.000055 0.000584 0.008754 0.005252 0.004085 0.003502
IRP vs SON 0.000021 0.001586 0.023797 0.011105 0.011105 0.006346
RBI vs RBD 0.000095 0.004007 0.060100 0.024040 0.024040 0.016027
RBF vs IRP 0.002746 0.035240 0.528603 0.176201 0.140961 0.070480
RBI vs SON 0.002947 0.068025 1.000000 0.272099 0.272099 0.136050
MLP vs RBF 0.001654 0.182355 1.000000 0.547065 0.547065 0.547065
RBI vs IRP 0.116956 0.182355 1.000000 0.547065 0.547065 0.547065
RBD vs SON 0.537723 0.292436 1.000000 0.547065 0.547065 0.547065

comparisons for all possible 15 pairs of algorithms are
placed. The p-values below 0.05 indicate that the
respective algorithms differ significantly in prediction
errors; they were marked with the italic font. It should
be noted that with 15 hypotheses the differences between
pairwise and multiple comparisons become apparent. The
Wilcoxon test allows rejecting 13 hypotheses whereas
the Holm, Shaffer and Bergmann–Hommel ones discard
only 10 while Nemenyi’s method just 9. MLP revealed
significantly better performance than any other algorithm
but RBF.

Moreover, we compared the behaviour of four
methods: the Wilcoxon test, Nemenyi’s, Schaffer’s and
Bergmann–Hommel’s procedures for N×N comparisons
depending on the decreasing number of data sets. In
Figs. 9 and 10 the number of rejected null hypotheses
out of 15 possible pairs of algorithms over a different
number of data sets is shown. The decreasing number
of data sets was obtained by stepwise elimination of
the data sets providing the maximal average prediction
error (Fig. 9) and the minimal average RMSE for all
algorithms (Fig. 10). In both charts it can be observed
that employing only the pairwise Wilcoxon test would
lead to overoptimistic conclusions because the number of

null hypotheses rejected by this test was from 2 to 7 times
greater than the one obtained when following Shaffer’s
or Bergmann–Hommel’s schemes. In a majority of
instances, the Shaffer and Bergmann–Hommel procedures
turned out to be more powerful than that by Nemeneyi.
For multiple comparison procedures the percentage of
discarded null hypotheses was larger for a bigger number
of benchmark data sets left.

5. Conclusions

In the paper we studied the application of nonparametric
statistical tests and post-hoc procedures devised to
perform multiple comparisons of regression algorithms
over benchmark regression data sets. We conducted
experiments on statistical procedures designed especially
for multiple 1 × N and N × N comparisons with six
neural regression algorithms implemented in the KEEL
data mining system.

We carried out intensive normality investigation
employing ten different tests chosen from among the most
popular tests of normality. The results were unequivocal
only for half of the neural algorithms employed. This
means that several tests should be conducted and
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Fig. 9. Number of rejected null hypotheses for the Wilcoxon, Nemenyi and Shaffer tests over a different number of data sets (stepwise
eliminating data sets providing the maximal accuracy error).

Fig. 10. Number of rejected null hypotheses for the Wilcoxon, Nemenyi and Shaffer tests over a different number of data sets (stepwise
eliminating data sets providing the minimal accuracy error).

supplementary analysis is needed using graphical methods
such us histograms and quantile-quantile plots.

It is necessary to distinguish between pairwise and
multiple comparison tests. The former procedures should
be used to examine two algorithms and the latter are valid
when contrasting more than two techniques.

Nonparametric methods should be used when the
sample sizes are small, especially when the number of
instances is less than 30. In turn, for large samples,
e.g., for the number of instances greater than 100, due to
the central limit theorem, parametric methods are more
appropriate because they have more statistical power and
therefore are more sensitive.

The nonparametric Wilcoxon test, when employed
to multiple comparisons, would lead to overoptimistic
conclusions. In our analysis we omitted the nonparametric
Sign test, which is less statistically powerful than the
Wilcoxon matched pairs test. However, the latter assumes
it is possible to rank order the magnitude of differences in
matched observations in a meaningful manner, otherwise
the Sign test might be more applicable.

Among 1×N procedures, the Bonferroni–Dunn one
is the simplest but is also the least powerful. Holm’s
procedure has also little power, because it is based on
the Bonferonni inequality. Both Rom’s and Hommel’s

procedures are more powerful than Hochberg’s procedure
due to the fact that sharp inequalities (or equalities)
are used in both; however, the power improvement is
negligible compared to their complexities. Finner’s and
Li’s procedures yielded the lowest adjusted p-values and
thus they seem to have the highest power.

In turn, among N ×N procedures, that of Bergmann
and Hommel is the most powerful but it requires intensive
computations in comparisons comprising a bigger number
of predictors. Thus, Shaffer’s static routine or Holm’s
step down method is recommended. For multiple
comparisons, the more data sets used in tests, the larger
the number of null hypotheses rejected. Our investigation
proved the usefulness and strength of multiple comparison
statistical procedures to analyse and select machine
learning algorithms.

For the authors proposing novel classification and
regression algorithms (Baruque et al., 2011; Czarnowski
and Jędrzejowicz, 2011; Jackowski and Woźniak, 2010;
Kajdanowicz and Kazienko, 2011; Troć and Unold, 2010),
especially 1 × N procedures are recommended because
they are simpler and require less measurement points than
N × N procedures to provide meaningful output.

It should be noted that nonparametric tests of
significance are based on asymptotic theory, which
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assumes large samples, therefore their output could not
be meaningful if the sample sizes were too small. Thus,
more thorough analysis of statistical power and efficiency
of individual tests including sample size estimation is also
necessary.
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K. (2010). Comparison of data driven models for the
validation of residential premises using KEEL, Interna-
tional Journal of Hybrid Intelligent Systems 7(1): 3–16.
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