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This work proposes a SLAM (Simultaneous Localization And Mapping) solution based on an Extended Kalman Filter
(EKF) in order to enable a robot to navigate along the environment using information from odometry and pre-existing
lines on the floor. These lines are recognized by a Hough transform and are mapped into world measurements using a
homography matrix. The prediction phase of the EKF is developed using an odometry model of the robot, and the updating
makes use of the line parameters in Kalman equations without any intermediate stage for calculating the distance or the
position. We show two experiments (indoor and outdoor) dealing with a real robot in order to validate the project.
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1. Introduction

In SLAM problems, a mobile robot uses its sensors to
explore surroundings, construct a suitable map, and then
compute its relative positioning from this map. These
maps can be represented in several manners, such as an
occupancy grid or a feature map. We are interested in
the latter form of representation. Further theoretical de-
tails on the SLAM technique can be found in the works
of Durrant-Whyte and Bailey (2006a; 2006b) as well as
Skrzypczyński (2009).

The literature makes use of the expression visual
SLAM when referring to the process of a robot using cam-
eras as the main sensor to solve SLAM problems. The
main challenges are as follows:

(a) how to detect features in images;

(b) how to recognize that a detected feature is or is not
the same as a previously detected one;

(c) how to decide if a new detected feature will or will
not be adopted as a new mark;

(d) how to calculate the 3D position of the marks from
2D images; and

(e) how to estimate the uncertainty associated with the
calculated values.

Generally speaking, all these aspects must be solved.
However, in special cases, it is possible to develop specific
strategies to overcome all these problems.

The introduced system presents a visual SLAM tech-
nique considering a plane environment and lines on the
floor. This is not a very restricting condition, since a lot of
environments, such as universities, malls, museums, hos-
pitals, houses, and airports, have lines on the floor.

The algorithm used is based on an Extended Kalman
Filter (EKF) in order to enable a robot to navigate along
the environment fusing odometry information and monoc-
ular vision. The image processor identifies lines on the
floor using a Hough Transform (HT), and their parame-
ters are used as marks of the environment. The prediction
phase of the filter is carried out using the kinematic model
of the robot. Then, during the updating phase, the param-
eters of the straight-line returned by Hough are mapped
to world measurements using a homography matrix, and
these values are used in Kalman equations without inter-
mediate stage for calculating the distance or the position.

Using the preexisting lines as marks, the overall com-
plexity of the SLAM problem is reduced, since
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(a) lines can be easily detected in images;

(b) lines on the floor are usually equally spaced well
apart, so the possibility of confusion is reduced;

(c) as the number of lines in an image is not so big, every
newly detected line can define a new mark;

(d) a flat floor is a 2D surface and then there is a con-
stant and easily computable conversion matrix (a ho-
mography) between the image plane and the floor
plane, without uncertainties concerning the 3D depth
of points; and

(e) after processing, the number of pixels in the image
belonging to the line is a good measure of confidence
in the detected mark.

2. Theoretical background

As mentioned previously, our proposal is based on the ex-
tended Kalman filter, the use of a Hough transform to ex-
tract information from images, and the application of a
homography to develop the world image map. Thus, the
purpose of this section is to briefly show these three top-
ics, as well as to make a summary of the proposed system.

2.1. Extended Kalman filter. The extended Kalman
filter deals with a system modeled by Eqn. (1), whose vari-
ables are described in Table 1. εt and δt are supposed to
be zero-mean Gaussian white noises. The prediction and
update phases of the EKF are based on Eqns. (2) and (3),
respectively:

{
st = p(st−1,ut−1, εt−1),
zt = h(st) + δt,

(1)

{
μ̄t = p(μt−1,ut−1, 0),

Σ̄t = GtΣt−1GT
t + VtMtVT

t ,
(2)

⎧⎪⎨
⎪⎩

Kt = Σ̄tHT
t (HtΣ̄tHT

t + Qt)−1,

μt = μ̄t + Kt(zt − h(μ̄t)),
Σt = (I − KtHt)Σ̄t,

(3)

where

Gt =
∂p(s,u, ε)

∂s

∣∣∣∣
s=μt−1,u=ut−1,ε=0

, (4)

Vt =
∂p(s,u, ε)

∂ε

∣∣∣∣
s=μt−1,u=ut−1,ε=0

, (5)

Ht =
∂h(s)
∂s

∣∣∣∣
s=μt−1

. (6)

Table 1. Symbols in Eqns. (1)–(3).
st state vector (order n) at instant t—robot pose

(x, y, θ) and map (ρi,αi, . . . , ρn,αn)
p(·) non-linear model of the system

ut−1 input signals (order l), instant t− 1
εt−1 process noise (order q), instant t− 1

zt vector of measurements (order m) returned
by the sensors

h(·) non-linear model of the sensors
δt measurement noise

μ̄t, μt mean (order n) of the state vector st, before
and after the update phase

Σ̄t,Σt covariance (n× n) of the state vector st

Gt Jacobian matrix (n × n) that linearizes the
system model p(·)

Vt Jacobian matrix (n × q) that linearizes the
process noise εt

Mt covariance (q × q) of the process noise εt

Kt gain of the Kalman filter (n×m)
Ht Jacobian matrix (m × n) that linearizes the

model of the sensors h(·)
Qt covariance matrix (m × m) of the measure-

ment noise δt

2.2. Hough transform. Due to the choice of the floor
lines as marks, the adopted technique to identify them
was the Hough transform (Hough, 1962). The purpose
of this technique is to identify imperfect instances of ob-
jects within a certain class of shapes by a voting proce-
dure. This voting procedure is carried out in a space of
parameters from which candidate objects are obtained as
local maxima in an accumulation matrix which is con-
structed by the algorithm for computing the Hough trans-
form (Bradski and Kaehler, 2008).

When the classical Hough transform is used to iden-
tify lines, its return is two parameters (ρ and α) for
each obtained straight line in the image (Gonzalez and
Woodes, 2007). The interpretation of these parameters
is as follows: ρ is the module and α is the angle of the
shortest vector connecting the origin of the system of co-
ordinates to the line (see Fig. 1). The relation between
them is

ρ = x cos(α) + y sin(α). (7)

From a practical point of view, Forsyth and Ponce
(2002) relate the quantification of the accumulator matrix
and the influence of the image noise as Hough problems.
As a solution to these problems, they suggest the use of an
edge detector to smooth the texture and increase the bor-
der contrast, as well as choosing the size of the accumula-
tor matrix carefully in accordance with the application.
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Fig. 1. Line parameters ρ and α.

2.3. Homography. In computer vision, planar homog-
raphy is defined as a projective mapping from a planar
surface to another. Thus, the mapping of points from a
two-dimensional planar surface to the image plane of a
camera is an example of planar homography.

It is possible to express this mapping as a matrix mul-
tiplication if we use homogeneous coordinates to express
the world point Q, as well as the image point q which is
mapped from Q. Then, one can express the action of the
homography matrix A as

q̃ = s · A · Q, (8)

regarding s as an arbitrary scale factor.

2.4. Proposed system. The system proposed in this
work presents a suitable visual SLAM technique to plane
environment with lines on the floor. The algorithm used
is based on information about odometry and image pro-
cessing. The lines are identified by the Hough transform,
and the parameters of the normal representation of the
straight-line returned by the Hough transform are mapped
to the world using a homography matrix. The EKF predic-
tion phase is developed using the odometry model of the
robot, and the updating phase uses the line parameters di-
rectly in Kalman equations without any intermediate stage
for calculating the distance or the position. Figure 2 shows
this proposal.

It is important to note that the proposed approach has
no intention to be generic, since a plane floor with lines is
necessary. This is not such a restrictive condition, since
that is the case in many buildings such as universities,
shopping malls, museums, hospitals, homes, supermar-
kets and airports that have lines on the floor. This work
shows that satisfactory results are verified if this approach
can be applied.

3. Related work

Recent extensions to the general SLAM problem show
it is possible to use a camera instead of a sonar or a
laser. For example, Davison and Murray (2002), Jung
(2004), Moreno et al. (2009) and Herath et al. (2007)
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Fig. 2. Proposed system.

make use of stereo vision, while Davison et al. (2004)
and Kwok et al. (2005) use only one camera.

Mansinghka (2004) shows visual SLAM for a dy-
namic environment using the Scale-Invariant Feature
Transform (SIFT) and optical flow. Estrada et al. (2005)
suggest a hierarchical mapping method that makes it pos-
sible to obtain precise metric maps of large environments
in real time. The bottom level of the map is formed by a
set of local maps which are statistically independent. The
upper part of the map is a neighborhood graph whose arcs
are marked with the relation between the localization of
the local maps, and a relative estimation of these maps
is kept at this level through a stochastic relation. The
main advantage of this approach is its precision to the
closed-loop problem. Williams et al. (2009) draw com-
parisons between monocular SLAM techniques and the
closed-loop problem.

Chen and Samarabandu (2006) show a solution from
geometric information about the environment. They ex-
plain that SLAM redundancy can increase the reliability
and precision of the observed features. Thus the common
geometric primitives in indoor environments (lines, and
squares) are, for instance, incorporated in an EKF to in-
crease the knowledge level of the observed feature.

Frintrop et al. (2006) introduce a new method that
is a biologically inspired attention system to identify con-
trasting regions in an image. This approach makes regions
more easily re-identified, and thus easier to be matched.

Dailey and Parnichkun (2005) use stereo vision to a
visual SLAM based on particle filter. Choi et al. (2006)
show an approach fusing information from a stereo vision
sonar using an extended Kalman filter.

Automatic identification and register of objects as vi-
sual marks are proposed by Lee and Song (2007). In this
case, the SIFT and a contour algorithm are used to distin-
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guish objects from the background image. When objects
are detected and considered suitable for robot navigation,
they are stored and can be used to correct its pose.

Clemente et al. (2007) show that SLAM with only
one camera transmitting input data can run on a large scale
and in real time. They use inverse depth and hierarchical
maps during the experiment. Another work on monocular
SLAM for outdoors is by Wu et al. (2010).

Jing Wu and Zhang (2007) show a camera model-
ing for visual SLAM. It aims at discovering how to model
optical sensor uncertainty and how to develop probabilis-
tic compounds of the model. If we have the determinis-
tic component of the camera calibration process, we can
use intrinsic parameters for error re-projection. Then, the
errors are found according to a bivariate Gaussian distri-
bution, and the covariance measurement can be calculated
considering different distances from the camera.

Recent studies on visual SLAM show how to obtain
depth information from one camera (e.g., Civera et al.,
2008; Marzorati et al., 2009; Li et al., 2008).

Hafez et al. (2008) also give a proposal to estimate
profundity and to perform in real time based on the opti-
mization of triangulation techniques. Calway and Cuevas
(2008) show resources to identify and then incorporate
a high-level structure, such as lines and surfaces, on vi-
sual SLAM maps, while Martinez-Carranza and Calway
(2009) use planar information.

Lemaire and Lacroix (2007) suggest the use of 3D
lines as marks. They analyze the advantages of using 3D
lines: these primitives are numerous indoors and, unlike
dispersed point maps, which are useful only for localiza-
tion, a relevant segment map supplies information about
the environment structure.

Fu et al. (2007) use vertical lines to show a work on
combining laser information and a camera in an extended
Kalman filter. In this case, the lines are extracted from an
image using a Canny detector. Ahn et al. (2007) show a
strategy for developing a hybrid map for SLAM using 3D
points and lines.

The literature covers some older works (Dao et al.,
2003; Smith et al., 2006; Kitanov et al., 2007) and recent
ones (Kim and Oh, 2008; Wu et al., 2009) using lines.

Wongphati et al. (2009) develop fast SLAM using
vertical straight lines identified by an omnidirectional
view system. Fu and Yang (2009) also show an approach
using straight lines for indoor SLAM. Amarasinghe et al.
(2009) give a SLAM proposal based on extended Kalman
filter integrating laser and camera so that the identified
marks are wall outer points, tables and chairs. Eade and
Drummond (2006) show that edges can be used as marks
for monocular SLAM.

Unlike the last works presented in this section, our
approach uses 2D lines from the environment as marks.
The lines are extracted from an image and mapped to the
robot plane through the elements of a homography ma-

trix. The assumption that the straight lines are on the
same plane provides wide and precise information about
its characteristics and enables the use of these characteris-
tics at the possible detection moment.

4. Modelling

4.1. Prediction phase: Process model. If we take
into account a differential drive robot (see Fig. 3) so that
ΔθR and ΔθL are right and left angular movements of
the wheels, respectively, and the speed can be considered
constant during the sampling period, it is possible to de-
termine the kinematic geometric model of the robot move-
ment through⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

xt =xt−1+
ΔL
Δθ

[sin(θt−1+Δθ)− sin(θt−1)],

yt =yt−1− ΔL
Δθ

[cos(θt−1+Δθ)− cos(θt−1)],

θt =θt−1+ Δθ,

(9)

in which ⎧⎪⎨
⎪⎩

ΔL =
1
2
(ΔθRrR + ΔθLrL),

Δθ =
1
b
(ΔθRrR − ΔθLrL).

(10)

ΔL and Δθ are the robot linear and angular movements; b
is the distance between the wheels, and rR and rL are the
radii of the right and left wheels, respectively. As Δθ →
0, another system obtained from the limit of Eqn. (9) must
be used.
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Fig. 3. Kinematic variable model.

The approach supported by Thrun et al. (2005),
which takes into account the odometry information as in-
put signals to be incorporated to the model of the robot
instead of sensory measures, was adopted.

The difference between the real angular movement of
the wheels (ΔθR and ΔθL) and movements measured by
encoders (Δθ̃R and Δθ̃L) are molded by a Gaussian white
noise: ΔθR = Δθ̃R + εR and ΔθL = Δθ̃L + εL. The
increments ΔL̃ and Δθ̃ are defined by switching (ΔθR

and ΔθL) for (Δθ̃R and Δθ̃L) in Eqn. (10).
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Using Eqns. (9) and (10) to determine the state model
p(·), it is possible to calculate the matrices G and V
(Eqns. (4) and (5)) used in the prediction phase by model
derivation.

It is known that odometry causes accumulative er-
rors. Therefore, the standard deviation of noises εR and
εL is proportional to the modulus of the angular move-
ment of each wheel. This observation admits the specifi-
cation of the matrix M as expressed by

M =
(

(MR|Δθ̃R|)2 0
0 (ML|Δθ̃L|)2

)
. (11)

4.2. Updating phase: Sensor model. This section
presents a model for a direct mapping of the normal pa-
rameters of a straight line from an image to the world. If
it is known that a camera is connected to a robot structure,
it is necessary to express the parameters of the straight line
in relation to the robot pose.

So, a Fixed (F) coordinate system and a Mobile (M)
coordinate system, which are attached to the robot, were
defined as illustrated in Fig. 4.

Using Eqn. (7) to describe a straight line in world
coordinates and the relations between coordinates of
the systems (M) and (F), it is possible to obtain Eqns.
(12) and (13), which represent the mapping of the straight
line parameters of the fixed coordinate system to the mo-
bile coordinate system.1 To decide about which model to
use, we calculate both values of αM and use the model
which generates the value closer to the measured one:{

ρM = ρF − xF
M cos(αF ) − yF

M sin(αF ),

αM = αF − θF
M + π/2,

(12)

{
ρM = −ρF + xF

M cos(αF ) + yF
M sin(αF ),

αM = αF − θF
M − π/2.

(13)

The next step is to map the line parameters of the mo-
bile coordinate system to the image plane. It is known that

1The two equations are needed because the same line identified by
the robot for two different points of view (mirrored situation) gives the
same result.

the mapping between planes can be modeled by a homog-
raphy matrix A. Thus, a point (xM , yM , 1) in the plane
(M) can be mapped into another point (xI , yI , 1) of the
image plane (I) using the relation expressed in Eqn. (14):

s ·
⎛
⎝xM

yM

1

⎞
⎠ = A ·

⎛
⎝xI

yI

1

⎞
⎠ . (14)

Using the parametric equation of a straight line, a
point (x, y) ∈ line (ρ, α) can be defined by Eqn. (15):{

x = ρ · cos(α) − λ · sin(α),
y = ρ · sin(α) + λ · cos(α).

(15)

Expanding Eqn. (14), using Eqn. (15) and manipulat-
ing these equations, we obtain Eqn. (16), which represents
the mapping from an image to the world (mobile coordi-
nate system) of the straight line parameters, whereCij are
the elements of the matrix of A-cofactors. For mathemat-
ical details, see Appendix.

Using Eqn.(6) to obtain the sensor model h(·),
through model derivation it is possible to calculate the ma-
trix H used in the updating phase of the filter. Its elements
are fully described in Appendix.

4.3. Matching. A very important aspect of the SLAM
algorithm is to establish a correspondence between the
detected line in the image and one of the marks repre-
sented in the state vector. To choose the right mark,
firstly, if α̃M ≥ 0, the predicted values for (ρF , αF ), us-
ing the measured values of (ρ̃M , α̃M ), and the model of
Eqn. (16), using Eqn. (12), are calculated; if α̃M < 0,
then Eqn. (16) is calculated using Eqn. (13).2

The predicted values are compared with each value
(iρF , iαF ) in the state vector. If the difference between
the predicted value and the best, (iρF , iαF ), is small
enough, the correspondence is found. Otherwise, one as-
sumes that a new mark was detected and the size of the
state vector must be enlarged.

5. Image processing

5.1. Detection of lines. The adopted technique to
identify the marks was a Hough transform, since it is a
method that aimed to find imperfect instances of the ob-
jects (Gonzalez and Woodes, 2007). In this case, these ob-
jects are pre-existing lines in the environment. The images
are captured in gray scale and converted to black-and-
white through the Canny edge detector (Canny, 1986).
Figure 5 shows an image of the floor from an indoor en-
vironment where one of the experiments was carried out,
and Fig. 6 shows images of an outdoor environment.

2We use a tilde (˜) above the variable to indicate the measured values
instead of the calculated ones.
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⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩
ρI =

−ρMC33 + sin(αM )C32 + cos(αM )C31√
(ρMC23 − sin(αM )C22 − cos(αM )C21)2 + (ρMC13 − sin(αM )C12 − cos(αM )C11)2

,

αI = tan−1
(ρMC23 − sin(αM )C22 − cos(αM )C21

ρMC13 − sin(αM )C12 − cos(αM )C11

)
.

(16)

Fig. 5. Image processing: original (a), Canny (b), Hough (c).

Fig. 6. Image processing: original (a), Canny (b), Hough (c).

5.2. From images to the world. Since the floor is a
plane and the camera is fixed, there is a constant rela-
tion (a homography A) between the points in the floor
plane (x, y) and the points in the image plane (u, v) (see
Eqn.(14)).

The scale factor s is determined for each point so that
the value of the third element is always 1. The homogra-
phy can be calculated off-line using a model with four or
more notable points whose coordinates are known. After
detecting the notable points, one has several correspon-
dences between the coordinates of the points on the plane
of the floor and of the image. Substituting these points
in Eqn. (14), one finds a linear system in which one can
determine the eight elements of the homography matrix.

In this case, the matrix A is calculated at the begin-
ning of the experiment from an image in which the robot
identifies four or more points through the intersection of

straight lines detected by the Hough transform. The met-
ric values of the points in the world are measured and pro-
vided.

Fig. 7. Identification of the points to calculate the matrix A.

5.3. Sensor noise. Once the sensor modeling is devel-
oped so that it allows the mapping of the Hough parame-
ters directly from the image to the world, the noise model
takes into consideration the two main components: the ac-
quisition noise and the processing noise of the image. The
first is modeled by a Gaussian (as suggested by Forsyth
and Ponce (2002)), and the second aggregates the influ-
ence of the discretization of the accumulative matrix. To
model this influence, the adopted standard deviation of the
noise in this work is a measure that takes into account the
quantity of received votes (Eqn. (17)) for each straight line
in an individual way:

ρ(n(ρ,α)) = a · nmax

n(ρ,α)
· ψI

t . (17)

In this equation, nmax is the maximum number of
votes that a straight line can receive, n(ρ,α) is the num-
ber of the votes received by the straight line, ψI

t is the
acquisition noise of the image and a is a weighing factor.
Through experimentation, the value 0.02 for a was found.
The other variables are calculated for each image.

6. Results

6.1. Indoor experiment. The experiments were car-
ried out using a robot whose wheels were powered by DC
motors with differential action. Each motor had an opti-
cal encoder and a dedicated velocity controller. The robot
system also had a color webcam, and a notebook to pro-
cess the information (see Fig. 8).
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During this experiment the robot navigated in an en-
vironment that had a floor made out of squared tiles with
sides of length 25 cm (see Fig. 5). The intersections of
these squared tiles created horizontal and vertical lines
that were used as marks in the SLAM algorithm. Figure 9
shows the characteristics of this environment.

The robot performed a pretty much rectangular tra-
jectory in this building, and during its movement 1962
images were processed. The camera used captures
640 × 480 images and each image is processed, on aver-
age, in 180 ms. Figure 10 shows the graphs of the acqui-
sition time of the image, the processing time and the total
time of the system including acquisition, processing and
SLAM algorithm calculations.

In this graph it is clearly possible to observe two
peaks. They occurred due to the change in the illumi-
nation in the environment when the robot came near the
garden. The processing time increased due to the sensitiv-
ity of the Canny algorithm. The average acquisition time
was 50 ms, the average processing time was 125 ms, and
the average total time was 180 ms.

In relation to homography, Fig. 7 shows the image
that was used at the beginning of the experiment to cal-
culate it. The camera was set so that it was possible to
have a vision field about twice as large as the robot size.
It is important to know that from the camera position the
image plane is not parallel to the floor plane (see Fig. 8).

Figure 11 shows the 2D trajectory in meters. The
blue points correspond to the trajectory calculated by
odometry only, and the red points correspond to the tra-
jectory calculated by SLAM.

This experiment shows that the odometry model is
flawed in rotational movements of the robot due to the
effect of wheel slippage, and this effect did not have major
implications in SLAM.

Considering the total movement carried out by the
robot, the correspondence of detected lines was right in
95% of the cases and each line was observed in 15 con-
secutive images on the average. In 98% of the images,
the system detected three lines in 61%, four lines in 26%
and five lines in 11% of the images. The remainder of 2%
covered errors of the image processing algorithm.

In spite of these 2% of errors, the vision system re-
sponded well to the illumination problems (Fig. 12) and

Fig. 8. Robotic system.

Fig. 9. Description of the environment. The real image can be
obtained from online mapping systems using the coordi-
nates 5o50′29.50′′S35o1′49.48′′W .
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the dirt on the floor (Fig. 13).
The distance between the initial and final position
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calculated from an initial pose (0, 0, 0o) was 0.89 m us-
ing odometry only, and 0.03 m using SLAM. The final
real distance measured in loco was very close to that cal-
culated by SLAM.

6.2. Structured outdoor experiment. The second ex-
periment was carried out in a supermarket parking lot.
This environment (Fig. 14) has lines painted on the floor:
white lines to delimit the parking place (see Fig. 6), and
yellow lines to indicate the central area of the track where
the cars can pass through (see Fig. 16).

In this experiment the robot developed a rectangular
trajectory of size 35 m× 16 m. Figure 15 shows the trajec-
tory (calculated) carried out by the robot using odometry
and using the proposed algorithm.

During this movement (about 100 m long), 2566 im-
ages were processed and the average processing time of
each image was 100 ms. In 78% of images lines were
identified. In this percentage, one line was identified in
53%, two lines in 31%, three lines in 11% of the images
and four lines in 5%. To illustrate this, Fig. 16 shows a
situation in which the image processor should have iden-
tified two straight lines, but it did identify only one.

When there was dirt on the floor, the results of the
second experiment were not as satisfactory as those in the
first one. For instance, Fig. 17 shows a mark that was not
identified by the robot.

The correspondence between detected lines was cor-
rect in 94% of the cases and each line was observed on the
average in seven consecutive images. Despite the small
number of observations of each straight line if compared
with the indoor experiment, the rate of correspondence
was higher. This happened because the straight lines in
the environment were more spaced.

In relation to the closed-loop problem, even after the
robot navigated for more than 100 m, the behavior of the
algorithm was suitable. The error between the robot fi-
nal position calculated by SLAM and its initial position
was 88 cm. This value was measured in the environment

Fig. 12. Resistance to an illumination change.

Fig. 13. Resistance to dirt on the floor.

Fig. 14. Supermarket: structured outdoor experiment. The su-
permarket view obtained from an online mapping sys-
tem using the coordinates 5o45′31′′S35o14′50′′W .
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Fig. 15. Trajectory in the supermarket parking.

considering the starting and final position of the robot.

6.3. Comparative results. The classical technique of
visual SLAM based on points was used for comparison.
It is known that a big problem related to this technique
is right initialization of the three coordinates of the de-
tected mark. However, there are works that propose ways
to solve this problem, as shown by Civera et al. (2008).
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Fig. 16. Identification of only one straight line from the image.

Fig. 17. Some lines not identified from the image due to dirt.

The implemented algorithm to compare our proposal
uses as features the coordinates (x, y, z) of the intersec-
tion points between the straight lines on the floor. In order
to make a fair comparison between the two algorithms,
we provided the correct value of the third coordinate of
the points, assuming that they all lied on the floor.

Figure 18 shows the trajectories calculated by the
robot using the algorithm based on points and using the
one based in straight lines. It is noticeable that the ap-
proach using straight lines exhibits a more satisfactory be-
havior than that using points.
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Fig. 18. Trajectory by SLAM using lines and points.

The final error was 0.03 m when using lines and
0.18 m when using points. The average number of ob-
servations of each mark was 15 times for the method us-
ing lines and 6 times for the method using points. An-
other comparative result is the quantity of the character-
istics used in the SLAM algorithm during the total robot
movement. For the approach using points, 1401 features
referring to 467 marks were inserted in the state vector,
while in the algorithm using straight lines there were 388
features and 194 marks inserted.

Finally, Figs. 19–21 show the variances of the com-
ponents x, y, θ of the robot pose, respectively. These fig-
ures show that the variance behavior of the robot pose was
smaller during a great majority of the runs.

Fig. 19. Variance of the component x of the robot pose.

Fig. 20. Variance of the component y of the robot pose.

7. Conclusions and perspectives

The main contribution of this work is the modeling of the
optical sensor in order to allow the use of the parameters
of the straight line obtained from the processing image
algorithm directly in the Kalman filter equations without
any intermediate phases for calculating the position and
distance.
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Fig. 21. Variances of the component θ of the robot pose.

Another important aspect of this approach is the use,
besides odometry, of a system of monocular vision and
no other auxiliary sensors such as lasers or sonars. De-
spite monocular vision, the straight lines can be used in
the Kalman filter at the moment of detection, since their
characteristics are mapped directly to world coordinates
using the homography matrix.

The proposed approach has no intention to be
generic, since a plane floor with lines is necessary. How-
ever, if this approach can be used, it is more efficient with
regard to computational costs (due to the reduced number
of elements to represent the environment) and accuracy
(due to the small rate of correspondence errors and accu-
racy in determining 3D information of the characteristics)
when compared with other classical approaches of visual
SLAM.

Even with the loop-closed problem, as was shown in
the results (Section 6), the system performed well in both
indoor and outdoor environments, recognizing previously
detected lines without special procedures to deal with this
problem.

In future studies, it is necessary to improve the real
time properties of the algorithm of image processing
through adoption of some variants of the Hough trans-
form, to deal with segments of straight line of finite length,
and to verify our approach using other statistic filters: an
unscented Kalman filter, an information filter and a parti-
cle filter.
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Appendix

This appendix shows the modeling of the straight lines so
that the parameters can be used directly in the extended
Kalman filter equations (see Fig. 22). The mapping of
the image plane to world coordinates is done using a ho-
mography matrix, calculated once at the beginning of the
experiment, and the direct conversion (image to world) is
presented below.

Image

Image Processing:
Hough Transform

Homogrphy Matrix:
Calculated once at the
beginning of the experiment
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Fig. 22. Modeling scheme.

We should take into account a homography matrix
A3×3 and a matrix of A-cofactors C3×3, where Cij =
(−1)i+j · det(A∗) and A∗ can be obtained from A by
eliminating line i and column j:

A =

⎛
⎝a11 a12 a13

a21 a22 a23

a31 a32 a33

⎞
⎠ ,

C =

⎛
⎝C11 C12 C13

C21 C22 C23

C31 C32 C33

⎞
⎠ . (18)

Using the parametric equation of the straight line
(Eqn. (19)) and the homography relation (Eqn. (20)), any
point in a plane (I) can be mapped to another plane (F)

using the relation expressed in Eqn. (21).{
x = ρ · cos(α) − λ · sin(α),
y = ρ · sin(α) + λ · cos(α),

(19)

s ·
⎛
⎝xI

yI

1

⎞
⎠ = A ·

⎛
⎝xF

yF

1

⎞
⎠ , (20)

xI =
Kx · λ+ Cx

Kt · Ct
, yI =

Ky · λ+ Cy

Kt · Ct
, (21)

so that⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Kx = a12 · cos(α) − a11 · sin(α),

Ky = a22 · cos(α) − a21 · sin(α),

Kt = a32 · cos(α) − a31 · sin(α),

Cx = a11 · ρ · cos(α) + a12 · ρ · sin(α) + a13,

Cy = a21 · ρ · cos(α) + a22 · ρ · sin(α) + a23,

Ct = a31 · ρ · cos(α) + a32 · ρ · sin(α) + a33.

(22)

Using the normal representation of the straight line

ρ = x cos(α) + y sin(α) (23)

and manipulating Eqn. (21), Eqn. (24), which shows the
mapping between (I) and (F) planes, can be obtained.

It is necessary to find a relationship between the mo-
bile coordinate system and the fixed coordinate system.
Thus a fixed coordinate system (F) and a mobile coordi-
nate system (M) were defined, see Fig. 23.

XF

YF

FxM

F
Mθ

Y
M X

M

FyM

Fig. 23. Fixed and mobile coordinate systems.

The origin of the system has coordinates (xF
M , yF

M )
in the fixed system and θF

M represents the rotation of the
mobile system in relation to the fixed one. It is important
to note that there is a close relation between these vari-
ables (xF

M , yF
M , θF

M ) and the robot pose (xt, yt, θt), which
is given by

xt = xF
M , yt = yF

M , θt = θF
M + π/2. (25)
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ρI =
−ρFC33 + sin(αF )C32 + cos(αF )C31√

(ρFC23 − sin(αF )C22 − cos(αF )C21)2 + (ρFC13 − sin(αF )C12 − cos(αF )C11)2
,

αI = tan−1(
ρFC23 − sin(αF )C22 − cos(αF )C21

ρFC13 − sin(αF )C12 − cos(αF )C11
),

(24)

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

ρI =
−ρMC33 + sin(αM )C32 + cos(αM )C31√

(ρMC23 − sin(αM )C22 − cos(αM )C21)2 + (ρMC13 − sin(αM )C12 − cos(αM )C11)2
,

αI = tan−1
(ρMC23 − sin(αM )C22 − cos(αM )C21

ρMC13 − sin(αM )C12 − cos(αM )C11

)
.

(31)

The relation between the coordinates of the systems
(M) and (F) (Eqn. (26)) and Eqn. (23) in both the coordi-
nate systems (Eqns. (27) and (28)) was used:

{
xF = xM · cos(θF

M ) − yM · sin(θF
M ) + xF

M ,

yF = xM · sin(θF
M ) + yM · cos(θF

M ) + yF
M ,

(26)

ρF = xF · cos(αF ) + yF · sin(αF ), (27)

ρM = xM · cos(αM ) + yM · sin(αM ), (28)

To obtain Eqns. (29) and (30), it is necessary to
substitute Eqn. (26) in Eqn. (27), exploit the equiva-
lences with Eqn. (28), and substitute some variables using
Eqn. (25):

{
ρM = ρF − xt · cos(αF ) − yt · sin(αF ),

αM = αF − θt + π/2,
(29)

{
ρM = −ρF + xt · cos(αF ) + yt · sin(αF ),

αM = αF − θt − π/2.
(30)

Finally, replacing Eqn. (29) or (30) in Eqn. (24), we
obtain Eqn. (31).

The matrix H used in the Kalman filter is defined by

Ht =
∂h(s)
∂s

∣∣∣∣
s=μt−1

. (32)

Thus,

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

∂αI

∂xt
= − cos(αF ) · ∂α

I

∂ρF
,

∂ρI

∂xt
= − cos(αF ) · ∂ρ

I

∂ρF
,

∂αI

∂yt
= − sin(αF ) · ∂α

I

∂ρF
,

(33)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂ρI

∂yt
= − sin(αF ) · ∂ρ

I

∂ρF
,

∂αI

∂θt
= −K · det(A) · f1,

∂ρI

∂θt
=

√
K3 · det(A) ·

[
ρ · cos(αM ) · f3

− ρ · sin(αM ) · f4 + f5

]
,

∂αI

∂ρM
= −K · det(A) · f2,

∂ρI

∂ρM
=

√
K3 · det(A)

· [sin(αM ) · f3 − cos(αM ) · f4],
∂αI

∂αM
= yt · ∂α

I

∂xt
− xt · ∂α

I

∂yt
− ∂αI

∂θt
,

∂ρI

∂αM
= yt · ∂ρ

I

∂xt
− xt · ∂ρ

I

∂yt
− ∂ρI

∂θt
,

(34)

and

K = [(KxCt −KtCx)2 + (KtCy −KyCt)2]−1,

f1 = ρM · a31 · cos(αM ) + ρM · a32 · sin(αM ) − a33,

f2 = a31 · sin(αM ) − a32 · cos(αM ),
f3 = T13 · ρM − T12 · sin(αM ) − T11 · cos(αM ),
f4 = T23 · ρM − T22 · sin(αM ) − T21 · cos(αM ),
f5 = T33 · ρM − T32 · sin(αM ) − T31 · cos(αM ).

The elements aij are from the homography matrix A
and the elements Cij are from cofactor A while tij are
elements of the matrix T:

T =

⎛
⎝h11 h21

h12 h22

h13 h23

⎞
⎠ ·

(
C21 C22 C23

C11 C12 C13

)
. (35)
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