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COMPUTER METHODS FOR STABILITY ANALYSIS OF THE ROESSER TYPE
MODEL OF 2D CONTINUOUS–DISCRETE LINEAR SYSTEMS
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Asymptotic stability of models of 2D continuous-discrete linear systems is considered. Computer methods for investigation
of the asymptotic stability of the Roesser type model are given. The methods require computation of eigenvalue-loci of
complex matrices or evaluation of complex functions. The effectiveness of the stability tests is demonstrated on numerical
examples.
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1. Introduction

In continuous-discrete systems both continuous-time and
discrete-time components are relevant and interacting and
cannot be separated. Such systems are called hybrid sys-
tems. Examples of these can be found in the works of
Gałkowski et al. (2003), Hespanha (2004), Johanson et
al. (2004) and Liberzon (2003). The problems of dyna-
mics and control of hybrid systems were studied by Dym-
kov (2005), Dymkov et al. (2003; 2004), Gałkowski et al.
(2003), Rogers et al., (2007) and Liberzon (2003).

In this paper we consider continuous-discrete linear
systems whose models have a structure similar to that of
models of 2D discrete-time linear systems. Such models,
called 2D continuous-discrete models or 2D hybrid mo-
dels, were considered by Kaczorek (2002) in the case of
positive systems.

A new model of positive 2D hybrid linear systems,
similar to the Roesser model of 2D systems, was intro-
duced for standard and for fractional systems by Kaczo-
rek (2007; 2008a). The realization and solvability pro-
blems of positive 2D hybrid linear systems were consi-
dered by Kaczorek (2002; 2008b) as well as Kaczorek et
al. (2008) and Sajewski (2009), respectively (see also Ka-
czorek, 2011, Chapter 12).

The problems of stability and robust stability of 2D
continuous-discrete linear systems were investigated by
Bistritz (2003; 2004), Xiao (2001), Busłowicz, (2010a;
2010b; 2011a; 2011b) as well as Busłowicz and Ruszew-
ski (2011) (see also Kaczorek, 2011, Chapter 12). The

problem of stability of solutions of a class of hybrid
difference-difference systems was considered by Mar-
chenko and Loiseau (2009).

The main purpose of this paper is to present compu-
tational methods for investigation of asymptotic stability
of the Roesser type model of 2D continuous-discrete line-
ar systems.

The following notation will be used: R is the set of
real numbers, R+ = [0,∞], Z+ is the set of non-negative
integers, R

n×m is the set of real n × m matrices, λi{X}
is the i-th eigenvalue of matrix X .

2. Problem formulation

Consider the state equation of the Roesser type model
of 2D continuous-discrete linear system (for i ∈ Z+ and
t ∈ R+)

ẋ1(t, i) = A11x1(t, i) + A12x2(t, i) + B1u(t, i),

x2(t, i + 1) = A21x1(t, i) + A22x2(t, i) + B2u(t, i),
(1)

where

ẋ1(t, i) = ∂x1(t, i)/∂t, x1(t, i) ∈ R
n1 ,

x2(t, i) ∈ R
n2 , u(t, i) ∈ R

m
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and

A11 ∈ R
n1×n1 , A12 ∈ R

n1×n2 ,

A21 ∈ R
n2×n1 , A22 ∈ R

n2×n2 ,

B1 ∈ R
n1×m, B2 ∈ R

n2×m.

The model (1) was introduced by Kaczorek (2007).
A similar model was also considered by Dymkov et al.
(2003).

The boundary conditions for the model (1) are as fol-
lows:

x1(0, i) = x1(i), i ∈ Z+,

x2(t, 0) = x2(t), t ∈ R+.
(2)

The model (1) can be written in the form
[

ẋ1(t, i)
x2(t, i + 1)

]
=

[
A11 A12

A21 A22

] [
x1(t, i)
x2(t, i)

]

+
[

B1

B2

]
u(t, i).

(3)

From (3) it follows that the model (1) has a structu-
re similar to that of the Roesser type model (Kaczorek,
2002). The characteristic matrix of the model (1) has the
form

H(s, z) = det
[

sIn1 − A11 −A12

−A21 zIn2 − A22

]
, (4)

where s and z are complex variables.
The characteristic function of the model (1) is a po-

lynomial in two independent variables s and z of the form

w(s, z) = detH(s, z)

=
n1∑

k=0

n2∑
j=0

akjs
kzj , an1n2 = 1.

(5)

Definition 1. The model (1) is called asymptotically sta-
ble (or Hurwitz–Schur stable) if for u(t, i) ≡ 0 and the bo-
unded boundary conditions (2) the condition x(t, i) → 0
holds as t, i → ∞.

Following Bistritz (2003; 2004) as well as Guiver and
Bose (1981), we have the following theorem.

Theorem 1. The model (1) is asymptotically stable if and
only if

w(s, z) �= 0, Re s ≥ 0, |z| ≥ 1. (6)

The polynomial (5) satisfying the condition (6) is cal-
led continuous-discrete stable (C-D stable) or Hurwitz–
Schur stable. Several algebraic methods for asymptotic
stability checking of such bivariate polynomials were gi-
ven by Bistritz (2003; 2004) and Xiao (2001).

Computational methods for investigation of asymp-
totic stability of special classes of the Fornasini–
Marchesini and the Roesser type models of continuous-
discrete linear systems was given by Busłowicz (2011a).
These methods require computation of the eigenvalue-loci
of complex matrices.

Analytical conditions for asymptotic stability and for
robust stability of the general scalar model and the sca-
lar model (1) of continuous-discrete linear systems were
derived by Busłowicz (2010b; 2011b; 2010a).

The main purpose of this paper is to present com-
putational methods for checking the condition (6) of the
asymptotic stability of the continuous-discrete linear mo-
del (1) which does not require a priori knowledge of the
characteristic bivariate polynomial (5).

3. Solution of the problem

Theorem 2. The model (1) is asymptotically stable if and
only if the following two conditions hold:

w(s, ejω) �= 0, Re s ≥ 0,

∀ω ∈ Ω = [0, 2π], j2 = −1,
(7)

w(jy, z) �= 0, |z| ≥ 1,

∀y ∈ [0, ∞), j2 = −1.
(8)

Proof. From the work of Guiver and Bose (1981) it fol-
lows that (6) is equivalent to the conditions

w(s, z) �= 0, Re s ≥ 0, |z| = 1, (9)

w(s, z) �= 0, Re s = 0, |z| ≥ 1. (10)

It is easy to see that (9) and (10) can be written in the
forms (7) and (8), respectively. �

Lemma 1. If the model (1) is asymptotically stable, then

Re λl(A11) < 0, l = 1, 2, . . . , n1 (11)

and
|λi(A22)| < 1, i = 1, 2, . . . , n2. (12)

Proof. From the first equation of (1) for A12 ≡ 0 and
B1 ≡ 0 we obtain the homogeneous state equation of the
continuous-time linear system

ẋ1(t, i) = A11x1(t, i). (13)

The system (13) is asymptotically stable if and only
if the condition (11) holds, i.e., the matrix A11 is Hurwitz
stable (e.g., it is a Hurwitz matrix).

Similarly, substitution of A21 ≡ 0 and B2 ≡ 0 in the
second equation of (1) yields the homogeneous state equ-
ation of discrete-time linear system

x2(t, i + 1) = A22x2(t, i), (14)
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which is asymptotically stable if and only if the condition
(12) holds, i.e., the matrix A22 is Schur stable (is a Schur
matrix).

If the model (1) is asymptotically stable, then, in par-
ticular, it is asymptotically stable for A12 ≡ 0 or A21 ≡ 0.
Hence, the conditions (11) and (12) are necessary for the
asymptotic stability of the model (1). �

To show that the conditions (11) and (12) are not suf-
ficient, we consider the scalar system (1) with A11 = −1,
A22 = 0 ((11) and (12) hold) and A12A21 = 1. In
this case the characteristic equation has the form
sz + z − 1 = 0. From this equation we have that if, for
example, z = 1/2, then s = 1 > 0, and if s = 0, then
z = 1. This means that there exist values of zeroes of the
characteristic equation which do not satisfy the condition
(6) and the system is unstable.

Using the rules for computing the determinant of
block matrices (Kaczorek, 1998), we obtain that the cha-
racteristic matrix (4) of the model (1) can be computed
from one of the following equivalent formulae:

H(s, z) = [zIn2 − A22][sIn1 − S1(z)], (15)

H(s, z) = [sIn1 − A11][zIn2 − S2(s)], (16)

where

S1(z) = A11 + A12(zIn2 − A22)−1A21, (17)

S2(s) = A22 + A21(sIn1 − A11)−1A12. (18)

Using (5) and (15), (16) we can write

w(s, z) = det[zIn2 − A22] det[sIn1 − S1(z)], (19)

w(s, z) = det[sIn1 − A11] det[zIn2 − S2(s)]. (20)

From (15) for z = ejω we have

H(s, ejω) = [In2e
jω − A22][sIn1 − S1(ejω)], (21)

where

S1(ejω) = A11 + A12(In2e
jω − A22)−1A21. (22)

Lemma 2. Let the necessary condition (12) be satisfied.
The condition (7) holds if and only if all eigenvalues of
the complex matrix (22) have negative real parts for all
ω ∈ [0, 2π].

Proof. From (21) we have

w(s, ejω) = det[In2e
jω − A22] det[sIn1 − S1(ejω)].

(23)
If (12) holds, then the matrix In2e

jω − A22 is non-
singular for all ω ∈ Ω. Hence, from (23) it follows that
the condition (7) is satisfied if and only if

det[sIn1 − S1(ejω)] �= 0, Re s ≥ 0, ∀ω ∈ Ω. (24)

Satisfaction of (24) means that all eigenvalues of
the complex matrix (22) have negative real parts for all
ω ∈ [0, 2π]. �

From (16) for s = jy we have

H(jy, z) = [jyIn1 − A11][zIn2 − S2(jy)] (25)

and

w(jy, z) = det[jyIn1 − A11] det[zIn2 − S2(jy)], (26)

where

S2(jy) = A22 + A21(jyIn1 − A11)−1A12. (27)

Lemma 3. Let the necessary condition (11) be satisfied.
The condition (8) holds if and only if all eigenvalues of the
complex matrix (27) have absolute values less than one for
all y ≥ 0.

Proof. If (11) holds, then the matrix jyIn1 − A11 is non-
singular for all y ≥ 0. From (26) we have that the condi-
tion (8) is satisfied if and only if

det[zIn2 − S2(jy)] �= 0, |z| ≥ 1, ∀y ∈ [0, ∞), (28)

i.e., all eigenvalues of the matrix (27) have absolute values
less than one for all y ≥ 0. �

The conditions of Lemmas 2 and 3 can be written in
the following forms:

Re λi{S1(ejω)} < 0, ∀ω ∈ Ω, i = 1, 2, . . . , n1, (29)

and

|λi{S2(jy)}| < 1, ∀y ≥ 0, i = 1, 2, . . . , n2, (30)

respectively.

Theorem 3. The model (1) is asymptotically stable if and
only if the conditions (11), (12), (29) and (30) are satis-
fied.

Proof. The proof follows directly from Theorem 2 and
Lemmas 1–3. �

Busłowicz (2011a) showed that, if A11 �= In1 and
A22 �= ±In2 , then the the model (1) is asymptotically
stable if and only if the conditions (29) and (30) hold.
This means that the result of Busłowicz (2011a) con-
cerns only a special case of the model (1). Moreover,
if A11 �= In1 , A22 �= ±In2 and the necessary conditions
(11), (12) are not satisfied, then applying the result of Bu-
słowicz (2011a) we have to check the conditions (29) and
(30), whereas applying Theorem 3 we simply conclude
that the model (1) is not asymptotically stable.

Xiao (2001) showed that the Roesser model of 2D
continuous-discrete systems is asymptotically stable if
and only if A11 is a Hurwitz stable matrix and the matrix

A22 + A21(sIn1 − A11)−1A12
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is Schur stable for Re s = 0.
Comparison of the above and Theorem 3 gives that

the result of Xiao (2001) is equivalent to the necessary
condition (11) and the condition (30), while satisfaction of
(12) and (29) is unnecessary. Below, by a counterexample,
we show that the result of Xiao (2001) is incorrect.

Consider the scalar system (1) with
A11 = −1, A22 = 0 and A12A21 = 0.5. It is easy to
see that A11 is Hurwitz stable and

A22 + A21(sIn1 − A11)−1A12 =
0.5

s + 1

is Schur stable for Re s = 0. This means that the condi-
tions of Xiao (2011) are satisfied.

The zeroes of the characteristic function
w(s, z) = sz + z − 0.5 of the system satisfy the re-
lationship s = −1 + 1/(2z). For example, if z = 0.25,
then s = 1. This means that the condition (6) is not
satisfied and the system is unstable.

From the above it follows that the main result of Xiao
(2001) is incorrect.

Example 1. Consider the model (1) with the matrices

A11 =
[ −3 1

0.1 −1

]
, A12 =

[
1.5 −1
−1 0

]
,

A21 =
[

0.3 0.1
2 1

]
, A22 =

[
0.5 0
1 0.2

]
.

(31)

Computing eigenvalues of A11 and A22, we obtain
s1 = −0.951, s2 = −3.049 and z1 = 0.2, z2 = 0.5, re-
spectively. This means that the necessary conditions (11)
and (12) hold, i.e., the matrix A11 is Hurwitz stable and
the matrix A22 is Schur stable.

The eigenvalues of the matrix S1(ejω) for ω ∈ Ω and
the matrix S2(jy) for y ∈ [−100, 100] are shown in Figs.
1 and 2. If is easy to check that eigenvalues of S2(jy)
remain in the unit circle for all y with |y| > 100.

From Figs. 1 and 2 it follows that the conditions
(29) and (30) of Theorem 3 are satisfied and the model
is asymptotically stable. �

The above methods for checking the conditions of
Theorem 3 may be inconvenient with respect to computa-
tional problems, particularly in the case of ill conditioned
matrices.

Therefore, now we present a new method for investi-
gation of the asymptotic stability of the model (1) which
does not require computation of eigenvalues of the com-
plex matrices (22) and (27). In this method, computation
of determinants of some matrices is necessary.

Consider the polynomial

w1(s, ejω) = det(sIn1 − S1(ejω)), (32)

where the matrix S1(ejω) is defined by (22). From the
classical Mikhailov theorem (see, e.g., Busłowicz, 1997;
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Fig. 1. Eigenvalues of S1(e
jω), ω ∈ [0, 2π].
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Fig. 2. Eigenvalues of S2(jy), y ∈ [−100, 100].

Keel and Bhattacharyya, 2000), it follows that the condi-
tion (24) holds if and only if for any fixed ω ∈ [0, 2π]
the plot of w1(jy, ejω) starts for y = 0 in the point
w1(0, ejω) = det(−S1(ejω)) and runs in the positive di-
rection by n1 quadrants of the complex plane (missing the
origin of this plane) if y increases from 0 to +∞.

It is easy to see that the plot of w1(jy, ejω) quickly
tends to infinity as y grows to ∞. Therefore, direct appli-
cation of the Mikhailov theorem to checking the condition
(24) is not practically reliable.

To remove this difficulty, we introduce the rational
function

ϕ1(jy, ejω) =
w1(jy, ejω)

w1o(jy)
, ω ∈ Ω, (33)

instead of w1(jy, ejω), where w1o(s) is any Hurwitz sta-
ble polynomial of degree n1.

Lemma 4. The condition (24) holds if and only if for all
fixed y ≥ 0 the plot of the function (33) does not encircle
or cross the origin of the complex plane.
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Proof. If the reference polynomial w1o(s) is Hurwitz sta-
ble, then from the argument principle we have

Δ argy∈(−∞,∞) w1o(jy) = n1π. (34)

From (33) it follows that, for any fixed ω ∈ Ω,

Δ argϕ1(jy, ejω) = Δ arg w1(jy, ejω)−Δ argw1o(jy).
(35)

The matrix (22) for any fixed ω ∈ Ω is Hurwitz stable
if and only if

Δ argy∈(−∞,∞) w1(jy, ejω)
= Δ argy∈(−∞,∞) w1o(jy) = n1π,

which holds if and only if Δ arg ϕ1(jy, ejω) = 0, i.e., the
plot of (33) does not encircle or cross the origin of the
complex plane for all fixed y ≥ 0.

Taking into account all ω ∈ Ω, we obtain that the
above holds ∀ω ∈ Ω if and only if for all fixed y ≥ 0 the
plot of (33) as a function of ω ∈ Ω does not encircle or
cross the origin of the complex plane. �

The reference polynomial w1o(s) can be chosen in
the form

w1(s, 1) = det(sIn1 − S1(1)), (36)

where S1(1) = A11 + A12(In2 − A22)−1A21, which we
get from (32) and (22) by substituting ω = 0. Hurwitz
stability of (36) is necessary for Hurwitz stability of the
complex polynomial (32) for all ω ∈ Ω.

If w1o(s) = w1(s, 1), then

ϕ1(jy, ejω) =
w1(jy, ejω)
w1(jy, 1)

, ω ∈ Ω. (37)

The plot of (37) as a function of ω ∈ Ω (with any
fixed y ≥ 0) is a closed curve. It begins with ω = 0 and
ends with ω = 2π in the point ϕ1(jy, 1) = 1. It is easy to
check that, as y → ∞, the closed curve (37) reduces to the
point (1, j0).

Now, we consider the complex polynomial

w2(jy, z) = det(zIn2 − S2(jy)), (38)

where the matrix S2(jy) is defined by (27). Let w2o(z) be
any Schur stable polynomial of degree n2.

Proceeding similarly as in the case of Lemma 4, we
obtain the following lemma.

Lemma 5. The condition (28) holds if and only if for all
fixed y ≥ 0 the plot of the function

ϕ2(jy, ejω) =
w2(jy, ejω)
w2o(ejω)

, ω ∈ Ω, (39)

does not encircle or cross the origin of the complex plane,
where w2(jy, ejω) has the form (38) for z = ejω .

The reference polynomial w2o(z) can be chosen in
the form

w2(0, z) = det(zIn2 − S2(0)), (40)

where S2(0) = A22 + A21(−A11)−1A12. Schur stability
of (40) is necessary for Schur stability of the complex po-
lynomial (38) for all y ≥ 0.

If w2o(z) = w2(0, z), then

ϕ2(jy, ejω) =
w2(jy, ejω)
w2(0, ejω)

, ω ∈ Ω. (41)

The plot of (41) as a function of ω ∈ Ω with the fixed
y ≥ 0 is a closed curve. It begins with ω = 0 and ends
with ω = 2π at the point

ϕ2(jy, 1) =
w2(jy, 1)
w2(0, 1)

=
det(In2 − S2(jy))
det(In2 − S2(0))

. (42)

It is easy to see that ϕ2(0, 1) = 1.
From (27) it follows that

S2(∞) = lim
y→∞S2(jy) = A22. (43)

Hence, from (38) and (41) we have

ϕ2(∞, ejω) = lim
y→∞ϕ2(jy, ejω)

=
det(ejωIn2 − A22)

det(ejωIn2 − S2(0))
, ω ∈ Ω.

(44)

From the above it follows that, as y → ∞, the plot
of (41) tends to the closed curve (44) with endpoints (for
ω = 0 and ω = 2π),

ϕ2(∞, 1) =
det(In2 − A22)

det(In2 − S2(0))
. (45)

From Theorem 3 as well as Lemmas 4 and 5 we have
the following result.

Theorem 4. Assume that the necessary conditions (11)
and (12) are satisfied. The model (1) is asymptotically sta-
ble if and only if the following two conditions hold:

(i) plots of the function (37) do not encircle or cross the
origin of the complex plane for all fixed y ≥ 0;

(ii) plots of the function (41) do not encircle or cross the
origin of the complex plane for all fixed y ≥ 0.

Applying the computational method given in The-
orem 4, we can formulate the following remark.

Remark 1. The range Y = [0, yf ] of the values of the
parameter y should be suitably large, so that from plots
of the functions (37) and (41) for y ∈ Y we could ascer-
tain the fulfilment of the conditions of Theorem 4 for all
y ≥ 0. For any fixed y ∈ Y, determined with an appro-
priately small step Δy, plots of the functions (37) and
(41) should be drawn separately to discretize the range
Ω = [0, 2π] with a sufficiently small step Δω.
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Fig. 3. Plots of (37) for y = 0, 1, . . . , 10 and y = 80.

Example 2. Using Theorem 4, we check the asymptotic
stability of the model (1) with the matrices (31).

In Example 1 it was shown that the necessary condi-
tions (11) and (12) hold.

Computing from (36) and (40) the reference polyno-
mials, we obtain, respectively,

w1(s, 1) = s2 + 6.55s + 6.32
= (s + 1.176)(s + 5.374)

(46)

and

w2(0, z) = z2 + 0.0707z − 0.199
= (z + 0.4121)(z − 0.4828).

(47)

It follows that the reference polynomial (46) is Hur-
witz stable and the reference polynomial (47) is Schur sta-
ble.

Plots of (37) for y = 0, 1, . . . , 10 and for y = 80
are shown in Fig. 3. Figure 4 shows plots of (41) for
y = 0, 1, . . . , 10 and for y = ∞ (computed from (44)).
The range Ω = [0, 2π] for all plots was discretized with
the step Δω = 0.01π.

From Figs. 3 and 4 it follows that the plots do not
encircle the origin of the complex plane for all y ≥ 0.
According to Theorem 4, this means that the model (1),
(31) is Hurwitz–Schur stable.

4. Concluding remarks

Simple necessary conditions and computational methods
for investigation of asymptotic stability of the Roesser ty-
pe model (1) of 2D continuous-discrete linear systems ha-
ve been given in Lemma 1 and in Theorems 3 and 4, re-
spectively. The first method requires computation of the
eigenvalue-loci of complex matrices (22) and (27). The
second method requires evaluation of functions (37) and
(41). This method is simpler from the computational point
of view.
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Fig. 4. Plot of (41) for y = 0, 1, . . . , 10 and y = ∞.

The method of Theorem 4 was applied by Busłowicz
and Ruszewski (2011) to asymptotic stability analysis of
the first Fornasini–Marchesini type model.

It has been also shown that the main result of Xiao
(2001) is incorrect.
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