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The paper presents two methods used for the identification of Continuous-time Linear Time Invariant (CLTI) systems. In
both methods the idea of using modulating functions and a convolution filter is exploited. It enables the proper transforma-
tion of a differential equation to an algebraic equation with the same parameters. Possible different normalizations of the
model are strictly connected with different parameter constraints which have to be assumed for the nontrivial solution of
the optimal identification problem. Different parameter constraints result in different quality of identification. A thorough
discussion on the role of parameter constraints in the optimality of system identification is included. For time continuous
systems, the Equation Error Method (EEM) is compared with the continuous version of the Output Error Method (OEM),
which appears as a special sub-case of the EEM.
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1. Introduction

Continuous-time differential equations are the main math-
ematical tool for the description of many models of pro-
cess physics. The knowledge of the parameters of these
equations is necessary for simulation and control. One
approach to the identification of a time continuous system
given by the output differential equation

n∑

i=0

aiy
(i)(t) =

m∑

j=0

bju
(j)(t) (1)

is its discretization, and identification of the discrete
model. To have a continuous model, one has to con-
vert the obtained parameters of the discrete model to the
continuous version (1). Such indirect identification does
not always guarantee proper results, especially when mea-
surement disturbances occur. The discretization of the
model (1) is also applied because identification meth-
ods for continuous time need information about derivative
terms which are not available for measurement in most
practical situations. Other approaches to identification of
the model (1) when input or output data are given as non-
uniformly sampled data can be found in works of Garnier
and Wang (2008), Gillberg and Ljung (2009), Ljung and
Wills (2010) as well as Johansson (2010).

The aim of this paper is to recall the background of
a direct method for identification of continuous systems
by using a modulating function with compact support and
a convolution filter. Based on this methodology, a gen-
eral and optimal identification method is presented as the
Continuous Equation Error Method (CEEM). An impor-
tant discussion about the role of the parameter constraints
in the optimality of identification of time continuous sys-
tems is carried out. It will be shown that the assumption
of different parameter constraints is equivalent to differ-
ent normalizations of the model (1) and results in different
quality of identification.

A suitable continuous version of the Output Error
Method (COEM) is also derived. It is proved that the
COEM can be treated as a special case of the CEEM. For
these methods identification results are obtained and com-
pared.

It is worth noting that the parameters an and bm ap-
pearing in the model (1) are not normalized to one.

2. Method of modulating functions

In many cases of the modeling of Single Input-Single Out-
put Continuous Linear Time Invariant (SISO CLTI) sys-
tems given by (1), only inputs u = u(0) and outputs
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y = y(0) are available for direct measurements. The
main problem in the identification of parameters ai and
bj is caused by the unknown values of the derivatives u(i)

and y(i) of input/output signals. Various filtration meth-
ods are to for obtain these derivatives, but all of them give
only their approximations. Substituting these derivative
approximations to the model (1) will cause the inequality
of the left and right hand sides of the equation even under
the assumption that all parameters are known while input
u and output y measurements are perfect.

To guarantee the equality of both the sides of Eqn. (1)
and to omit the problem of unknown derivatives, one may
use special mathematical transformations which are based
on integral convolution of both the sides of Eqn. (1) and a
specially chosen function ϕ defined on a compact support
(a finite window). This method was first used by Shinbrot
(1957) and the functions ϕ were called modulating func-
tions. In the works of Byrski and Fuksa (1995) as well
as Byrski et al. (1999) one can find generalizations of this
idea, which represents a continuous version of the equa-
tion error method. Below we briefly present this method.

Assume that the CLTI model of the continuous SISO
system to be identified is of the form (1), where m ≤ n,
y(i)(t) and u(i)(t) are the i-th derivatives of the output
and input, respectively, and the n + m + 2 unknown pa-
rameters ai, bj are constant. It can be assumed that per-
fect measurements of y and u on the interval [t0, T ] are
given. In order to avoid difficulties caused by the presence
of derivatives in (1), this model can be transformed into a
more convenient form by means of convolution. Choosing
some special filtering modulating function ϕ with known
derivatives ϕ(i), one can calculate the convolution of both
the sides of the model (1) and the function ϕ. This func-
tion ϕ is supposed to be nonzero in the interval [0, h],
m � n and zero outside this interval (ϕ is a function
with compact support).

The convolution of two functions, e.g., y(i)(t) and
ϕ(t) (one of which is the i-th derivative), gives a new
function yi(t), for t ∈ [t0 + h, T ]. From the well-known
properties of integration by parts it also follows that the
convolution of unknown derivatives of the output y(i)(t)
or input u(i)(t) and the known function ϕ is equal to the
convolution of a known output (input) signal y(t), (u(t))
and a known derivative ϕ(i). Because of special properties
of the assumed modulating function ϕ, the main formulas
have the following form:

yi(t)
def=
[
y(i) ∗ ϕ

]
(t) =

[
y ∗ ϕ(i)

]
(t)

=

+∞∫

−∞
y(τ)ϕ(i)(t − τ) dτ

=

t∫

t−h

y(τ)ϕ(i)(t − τ) dτ =

h∫

0

y(t − τ)ϕ(i)(τ) dτ.

uj(t)
def=
[
u(j) ∗ ϕ

]
(t) =

[
u ∗ ϕ(j)

]
(t)

=

+∞∫

−∞
u(τ)ϕ(j)(t − τ) dτ

=

t∫

t−h

u(τ)ϕ(j)(t − τ) dτ =

h∫

0

u(t − τ)ϕ(j)(τ) dτ.

After integral transformation, the function y(0)(t) =
y(t) is represented by y0(t) and, e.g., the first derivative
y(1)(t) by y1(t). After convolution, the differential model
(1) becomes an algebraic one with the sum of known func-
tions yi and ui on both the sides of the equation,

n∑

i=0

aiyi(t) =
m∑

j=0

bjuj(t). (2)

These known functions are weighted by unknown pa-
rameters. The identification method should find the best
parameters which give the least error between both the
sides of (2). Equation (2) is well defined and valid for
t ∈ [t0 + h, T ] for any function ϕ of compact support (in
this case [0, h]) and any distributions u, y from D′(R1)
(Schwartz, 1966).

For the presented method, one should assume more
about the function ϕ:

• The first assumption is connected with the support of
the filtering function ϕ. It was assumed that the mea-
surements of y and u are given on the finite time in-
terval [t0, T ], so the support of the function ϕ should
also be finite and of width h less than T − t0. Then
the relation (2) will be fulfilled on [t0 + h, T ]. It
is important that Eqn. (2) is independent of the ini-
tial conditions at the moment t0 in (1). For different
initial conditions there will be different y(i)(t) and
u(j)(t), and hence functions yi(t) and uj(t), but they
will all fulfil (2).

• If we assume that perfectly measured y and u are
from space L2[t0, T ], then functions yi, ui obtained
after the transformation should also be from the func-
tion space L2[t0 + h, T ], and all the left and right
hand sides in relation (2) should be from the space
L2[t0 + h, T ]. This enables the use of the L2 norm
of the difference of both sides in (2) for identifica-
tion purposes. Such a difference appears if the mea-
surements of y and u are not perfect and are affected
by noise. It will also happen if the order n of the
model (1) is chosen incorrectly. Then the norm of
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the equation error in the space L2[t0 + h, T ] will di-
rectly represent the quality of identification. Suffi-
cient conditions assumed for function ϕ, namely, that
its derivative ϕ(n−1) is continuous ϕ ∈ C(n−1)[0, h]
and satisfies special boundary conditions,

ϕ(i)(0) = ϕ(i)(h) = 0, i = 0, 1, 2, . . . , n − 1,

guarantee the equality
[
y(i) ∗ ϕ

]
(t) =

[
y ∗ ϕ(i)

]
(t)

in the procedure of integration by parts.

• The last assumption on the function ϕ is connected
with the condition of uniqueness. This condition
guarantees that from the equality y ∗ ϕ = 0 it fol-
lows that y = 0 on the interval [t0 + h, T ]. This
condition will eliminate, for example, any symmetric
function ϕ: ϕ(h/2 + t) = ϕ(h/2− t), t ∈ (0, h/2),
which may give y ∗ ϕ = 0 for nonzero y (e.g.,
y = sin(k2πt/h), and k = 1, 2, 3, . . . ). This prob-
lem was discussed in detail by Byrski and Fuksa
(1995).

Various modulating functions were tested in the lit-
erature (Maletinsky, 1979; Co and Ydstie, 1990; Preisig
and Rippin, 1993). We have found that the exponential
modulating functions of the Loeb–Cahen type ϕ (t) =
tM (h − t)N are suitable for our purpose. Based on this
modulating function method, a consistent and generalized
theory, as well as various versions of optimal continu-
ous identification algorithms, was presented by Byrski and
Fuksa (1995; 1996; 1999; 2000). The main contribution of
theze authors to this identification method is the assump-
tion of a general type of constraints for parameters.

In this paper we will discuss the influence of the dif-
ferent constraints assumption (linear or quadratic normal-
izing conditions) on the identification quality. We also
present a continuous version of the output error method.

3. Normalization of the transfer function

In fundamental monographs related to parameter identifi-
cation, the parameters of the linear differential equation
and those of the corresponding transfer function are al-
ways normalized.

The standard normalization of G(s),

G(s) =
bmsm + · · · + b1s + b0

ansn + · · · + a1s + a0
, (3)

is concerned with the assumption an = 1 or a0 = 1,
(Young, 1981; Unbehauen and Rao, 1987). It is also
applied to discrete systems (Eykhoff, 1974; Sinha and
Kuszta, 1983; Soderstrom and Stoica, 1994).

Indeed, theoretically during input/output analysis for
control purposes there is no difference between (3) and

two other transfer functions,

G1(s) =
(bm/an)sm + · · · + (b1/an)s + b0/an

sn + · · · + (a1/an)s + a0/an
,

G2(s) =
(bm/a0)sm + · · · + (b1/a0)s + b0/a0

(an/a0)sn + · · · + (a1/a0)s + 1
.

(4)

However, in process identification, an arbitrary as-
sumption an = 1 or a0 = 1 leads to different results on
identified parameter values and the value of the perfor-
mance identification index. This problem for continuous
systems was discussed by Byrski et al. (2003) and for the
discrete systems by Yeredor (2006). In the following sec-
tions the complete results of investigations for continuous
systems will be shown.

The basic form (3) is more useful for identification
than the common form (4). For instance, in the case of an
uncertain system structure and over-parametrization, there
is a possibility to estimate the parameter an by zero as a
result of the identification procedure.

We can formulate the following question: Is the iden-
tification of all parameters in (3) or (1) (without any con-
straints) possible so that the possible equation error will
be minimized? The answer is positive but the best result
will be trivial: all parameters equal zero. This is the rea-
son why some extra constraint assumptions are needed,
e.g., the parameter an = 1. This enables the formulation
of the optimization task with constraints and obtaining a
nontrivial solution for the rest of the parameters as well
as a minimal value of the equation error. The assumption
of parameter constraint a0 = 1 will result in another
optimal solution for the rest of the parameter values.

Hence one can state the problem of the general linear
form for the parameter constraint,

η1a0 + · · · + ηn+1an + ηn+2b0 + · · · + ηn+m+2bm = 1,

or in the vector form

[η1, η2, . . . , ηn+m+2] ·
[

a
b

]
= ηT Θ = 1,

where the vector of coefficients η ∈ R
n+m+2 is arbitrarily

chosen and η �= 0. It represents the weights for different
parameters ai, bj .

This condition eliminates the trivial solution Θ = 0
and is a generalization of other linear constraints. For ex-
ample, the vector η = [0, 0, . . . , 1, 0, . . . , 0]T gives the
above mentioned common constraint for only one param-
eter an = 1, and the vector η = [1, 0, . . . , 0]T will rep-
resent the constraint for only a0 = 1. The assumption of
the vector η = [1, 1, . . . , 1]T means that the sum of all pa-
rameters ai, bj should be equal to 1. Then no parameter
in (2) is preferred and the equation error is minimized by
all the functions yi and ui in the best way.

Below we will derive a general formula for the iden-
tification of optimal parameters under linear constraints.
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4. Equation error method for optimal
identification of a continuous LTI system

Real continuous measurements of the input and output are
given by u, y ∈ L2[t0, T ]. For y(t) and u(t) the corre-
sponding functions yi, uj ∈ L2[t0 + h, T ] are computed
by the convolution procedure.

The term ε ∈ L2[t0 +h, T ] will denote the combined
effects of unmeasurable noise or a general equation error,

n∑

i=0

aiyi(t) =
m∑

j=0

bjuj(t) + ε(t). (5)

As the performance index for identification we can choose
the norm of the difference of both the sides of the
model (2),

J =
∥∥∥

n∑

i=0

aiyi(t) −
m∑

j=0

bjuj(t)
∥∥∥

L2[t0+h,T ]
. (6)

Denoting by c(t) = [ỹ(t), ũ(t)] the vectors of yi and ui

after convolutions and by Θ the vectors of parameters
ΘT = [a, b] = [a0, a1, . . . , an, b0, . . . , bm], we obtain

ε(t) = cT (t)Θ = [ỹ(t),−ũ(t)]Θ

= [y0(t), . . . , yn(t),−u0(t), . . . ,−um(t)]
[

a
b

]
.

(7)

The statement of the minimization problem is

min
Θ

J2 = min ‖ε(t)‖2
L2[t0+h,T ]

= min
∥∥cT (t)Θ

∥∥2
L2[t0+h,T ]

,

and a general linear constraint (normalizing condition) is
assumed as

ηT

[
a
b

]
= ηT Θ = 1, (8)

where the vector of weight coefficients η ∈ R
n+m2 , η �=

0 is chosen arbitrarily. The norm (6) has the form of an
inner product in the space L2:

J2 =
〈
cT (t)Θ, cT (t)Θ

〉
L2[t0+h,T ]

= ΘT
〈
c(t), cT (t)

〉
Θ = ΘT GΘ.

The real matrix G is a nonnegative definite, symmet-
ric Gram (n + m + 2)× (n + m + 2) matrix of the inner
products of functions which are elements of vector c(t),

G =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎣

〈y0, y0〉 · · · 〈y0, yn〉
...

. . .
...

〈yn, y0〉 · · · 〈yn, yn〉
− 〈u0, y0〉 · · · − 〈u0, yn〉

...
. . .

...
−〈um, y0〉 · · · − 〈um, yn〉

− 〈y0, u0〉 · · · − 〈y0, um〉
...

. . .
...

−〈yn, u0〉 · · · − 〈yn, um〉
〈u0, u0〉 · · · 〈u0, um〉

...
. . .

...
〈um, u0〉 · · · 〈um, um〉

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (9)

where

〈yi, uj〉 =

T∫

t0+h

yi(τ)uj(τ) dτ

=

T∫

t0+h

⎡

⎣
h∫

0

[
ϕ(i)(s)y(τ − s)

]
ds

·
h∫

0

[
ϕ(j)(s)u(τ − s)

]
ds

⎤

⎦ dτ.

The Lagrange functional L for the above problem has the
form

L = ΘT GΘ + λ(ηT Θ − 1). (10)

From the necessary condition for a minimum it follows
that

∂L

∂Θ
= 2GΘ + λη = 0. (11)

The matrix G is nonsingular if there are uncorrelated
disturbances in measurements or the rank of the model is
less than that of the real system. From now on, if not oth-
erwise stated, the matrix G will be assumed nonsingular.
From (11) it follows that

Θ = −0.5λG−1η, ηT Θ = 1 = −0.5ηT λG−1η.

Hence, we get the final formula for the best identified pa-
rameters of the system (1)–(3),

Θo =
G−1η

ηT G−1η
. (12)

Combining (12) and the formula for J we obtain the
minimum of the performance index,

Jo =
√

ΘoT GΘo =
1√

ηT G−1η
. (13)
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The introduction of the vector η also makes it possible to
solve the problem in the more general case when the Gram
matrix G is singular and its rank defect is equal to one or,
generally, G is ill conditioned. Combining (8) and (11),
we can use a special regularization technique,

[
GT , η

] ·
[

G
ηT

]
Θ =

[
GT , η

] ·
[ −0.5λη

1

]

and

[
GT G + ηηT

]
Θ =

[−0.5λGT η + η
]
,

Θ =
[
GT G + ηηT

]−1 [−0.5λGT η + η
]
.

Hence

ηT Θ = ηT
[
GT G + ηηT

]−1 [−0.5λGT η + η
]

= 1,

λ = 2
ηT
[
GT G + ηηT

]−1
η − 1

ηT [GT G + ηηT ]−1
GT η

.

The matrix [GT G + ηηT ] is nonsingular, and finally
the following optimal parameter formula is obtained:

Θo =
[
GT G + ηηT

]−1

·
[

1 − ηT
[
GT G + ηηT

]−1
η

ηT [GT G + ηηT ]−1
GT η

GT η + η

]
. (14)

If the matrix G is nonsingular, the above formula is re-
duced to (12). The vector η can be chosen almost arbitrar-
ily (except that η is orthogonal to the kernel of G). In the
next section it is shown that some η give better or worse
results of identification if measurement noise occurs.

4.1. Optimal linear constraint in the EE method.
The optimal solution for the parameters (12) as well as the
minimal value of the identification index (13) depend on
the chosen vector η. Hence one can calculate a nontrivial
vector η which additionally minimizes (13). To guarantee
the existence of an optimal solution, one can formulate
the minimization of the index (13) as a maximization of
its denominator on a unit ball B. The vector η ∈ B with
unit norm ηT η = 1 will indicate the optimal direction in
the space of parameters,

min
B

Jo ⇒ max
B

[
ηT G−1η

]
= max

B
J1.

In this case the Lagrange function has the form

L = ηT G−1η − λ(ηT η − 1),

and the optimality condition gives

∂L

∂η
= 2G−1η − 2λη = 0 ⇒ G−1ηo = ληo.

It can be seen that the optimal vector ηo is an eigenvector
of the inverse Gram matrix G−1 and the Lagrange multi-
plier λ is its eigenvalue. Hence the value of the identifica-
tion index is given by

Jo =
(√

ηT G−1η
)−1

=
(√

ηT λη
)−1

=
1√
λ

. (15)

It is easy to see that the minimum of squared J is equal

to the inverse of the maximal eigenvalue
�

λmax of G−1

or to the minimal eigenvalue
�

λmin of G. It is clear that
�

λmax = 1/
�

λmin,

min
B

Jo =
1√

�

λmax(G−1)
=
√

�

λmin(G).

The eigenvalues of the Gram matrix G are positive.
The optimal real vector ηo should thus be chosen

as the eigenvector w1 which corresponds to the minimal
eigenvalue of G and the worst vector η is the eigenvector
w2 which corresponds to the maximal eigenvalue of G,

ηo = wmin(G) = w1.

Then from (12) it follows that the normalized vector of
optimal parameters Θo is also equal to the eigenvector
Θo = w1,

Θo =
G−1η

ηT G−1η
=

λw1

wT
1 λw1

=
w1

wT
1 w1

= w1 = ηo. (16)

The above result means that the norm of the parameter
vector Θ is normalized to one, ΘT Θ = 1.

This proves that the quality of the identification given
by (13) depends on the chosen linear constraint.

In Fig. 1 one can see that in the two dimensional
case the assumption of the only constraint a1 = 1 results
in a higher value of the quality index contour than the as-
sumption of the quadratic constraint a2

0 + a2
1 = 1 (the unit

circle).
Below, numerical tests are presented. Some of them

were also presented by Byrski et al. (2003).

4.2. Numerical experiments. Consider the transfer
function G(s) of a second order system,

G(s) =
−0.8s + 2

0.6s2 + 2.3s + 1.5
,

with the parameter vector

Θ = [a0, a1, a2, b0, b1]
T = [1.5, 2.3, 0.6, 2,−0.8] .

Six cases of parameter normalization are tested.

1. Normalization of Θ to unit length yields ΘT
1 Θ1 = 1,

G1(s) =
−0.226s + 0.565

0.169s2 + 0.649s + 0.423
.
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Fig. 1. Contours of the quality index and optimal solutions.

2. Normalization of Θ to a1 = 1 gives Θ2,

G2(s) =
−0.348s + 0.869

0.261s2 + s + 0.652
.

3. Normalization of Θ to b0 = 1 gives Θ3,

G3(s) =
−0.4s + 1

0.3s2 + 1.15s + 0.75
.

4. Normalization of Θ to a0 = 1 gives Θ4,

G4(s) =
−0.533s + 1.333

0.4s2 + 1.533s + 1
.

5. Normalization of Θ to b1 = 1 gives Θ5,

G5(s) =
s − 2.5

−0.75s2 − 2.875s− 1.875
.

6. Normalization of Θ to a2 = 1 gives Θ6,

G6(s) =
−1.333s + 3.333
s2 + 3.833s + 2.5

.

From experiments with the original transfer func-
tion G(s), noisy input and output functions were mea-
sured and after convolution with the modulating function
ϕ(t) = t5(h − t)6 (with support h = 3 and observation
interval T = 6, noise variance δ = 0.01) the algebraic
model (2) was derived. Next, the Gram matrix (9) was
calculated:

G =

⎡

⎢⎢⎢⎢⎣

6484.7 263.5 −2287.4 −3161.9 3195.9

263.5 2320.7 −2.5 −2860.5 −259.6

−2287.4 −2.5 2323.5 361.7 −1669.9

−3161.9 −2860.5 361.7 5263.6 −352.7

3195.9 −259.6 −1669.9 −352.7 3088.9

⎤

⎥⎥⎥⎥⎦
.

The eigenvector w1, which corresponds to the mini-
mal eigenvalue of matrix G, is

λ1 = 0.2695, J = (λ1)0.5 = 0.519,

w1 = [0.429, 0.634, 0.163, 0.575,−0.236]T .

The eigenvector w2, which corresponds to the maximal
eigenvalue of G, is

λ2 = 11208, J = (λ2)0.5 = 105.86,

w2 = [0.7187, 0.173,−0.272,−0.503, 0.355]T .

The inverse corresponding to the above Gram matrix has
the form

G−1

=

⎡

⎢⎢⎢⎢⎣

0.6721 0.9930 0.2561 0.9010 −0.3706

0.9930 1.4687 0.3785 1.3320 −0.5473

0.2561 0.3785 0.0983 0.3434 −0.1408

0.9010 1.3320 0.3434 1.2084 −0.4966

−0.3706 −0.5473 −0.1408 −0.4966 0.2049

⎤

⎥⎥⎥⎥⎦
.

Seven specially chosen vectors η will represent the
standard transfer function normalizations. For these vec-
tors the optimal parameters from (12) and the minimal
value of the index J (13) will be derived. Note that all
chosen vectors η will have unit length, and therefore, the
comparison of different J is allowed.

Vectors η

η1 = w1 will yield the optimal and the best identification
of parameters and results will be compared with G1,

η2 = [0, 1, 0, 0, 0]T will yield the optimal identification
of parameters and results will be compared with G2,

η3 = [0, 0, 0, 1, 0]T will yield the optimal identification
of parameters and results will be compared with G3,

η4 = [1, 0, 0, 0, 0]T will yield the optimal identification
of parameters and results will be compared with G4,

η5 = [0, 0, 0, 0, 1]T will yield the optimal identification
of parameters and results will be compared with G5,

η6 = [0, 0, 1, 0, 0]T will yield the optimal identification
of parameters and results will be compared with G6,

η7 = w2 will give optimal but the worst identification of
parameters and results will be compared with G1.

For the vectors η2, . . . , η6 the calculation of the solu-
tion of optimal parameters Θ2, . . . , Θ6 from (12) is very
easy, as from the formula

Θo =
G−1η

ηT G−1η
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it follows that, e.g., while assuming η as the vector η2 =
[0, 1, 0, 0, 0]T in the numerator of Θ there appears the
second column of G−1 and in denominator we see the
real number from the diagonal of G−1 (second column–
second row). Adequately, assuming η as the vector η4 =
[1, 0, 0, 0, 0]T , in the numerator the first column of G−1

appears and in denominator we have the real number from
the diagonal of G−1 (first column-first row). Generally,
for any standard normalization of the transfer function
from G2 to G6, the solution of identification, is directly
visible in the columns of G−1. Hence so is the perfor-
mance index J (13) which is equal to the inverse of the
square root of a suitable diagonal number of G−1. The
final results of identification are presented in Table 1.

Table 1. Optimal parameters for different ηi.
����ηi

Θ
a0 a1 a2 b0 b1 Ji

η1 0.429 0.634 0.163 0.575 -0.236 0.519

η2 0.676 1.000 0.257 0.906 -0.373 0.825

η3 0.745 1.102 0.284 1.000 -0.411 0.909

η4 1.000 1.477 0.381 1.340 -0.551 1.220

η5 -1.809 -2.672 -0.687 -2.424 1.000 2.209

η6 2.605 3.850 1.000 3.493 -1.432 3.189

w2 0.719 0.173 -0.272 -0.503 0.355 105.8

For comparison of results and to see the differences,
let us normalize the parameters in Case 1 to a2 = 1. From

Table 2. Normalized optimal parameters.
������ηi

Θ
a0 a1 a2 b0 b1

W1 2.889 3.890 1.000 3.527 -1.447

η6 2.605 3.850 1.000 3.493 -1.432

Table 1 we can see that for different vectors η different
parameters Θ are identified. The last column presents the
different values of the performance index (13), which rep-
resents the equation error for each chosen η,

min
Θ

J = min
Θ

√∫ T

h

ε2(t) dt =
[√

ηT G−1η
]−1

.

The minimal value of J is given by the minimal
eigenvector w1 (first row of Table 1). The other normal-
ization with unit parameter ai = 1 gives worse results.
The worst case is for the maximal eigenvector w2 (last
row of Table 1).

It is easy to compare the obtained results with perfect
theoretical results visible in transfer functions G1 to G6.

Extra experiments. For each identified model one can
calculate the value of another performance index based

on the least squared differences between the identified pa-
rameters and real parameters of normalized models Gj

(parameters error),

Jj =

√√√√
5∑

i=1

(pj
ir − pj

im)
2
, j = 1, 2, . . . , 6,

where pj
ir is the i-th real parameter of the Gj transfer func-

tion and pj
im is the i-th identified parameter of the j model

from Table 1.
The results of the parameter error are given in Ta-

ble 3. Table 3 also confirms the different quality of iden-

Table 3. Parameter error.

ηj w1 η2 η3 η4 η5 η6 w2

Jj 0.022 0.051 0.052 0.062 0.235 0.216 1.410

tification Jj for different ηi. From Table 1 (equation er-
ror) and 3 (parameter error) it follows that the very com-
mon assumption of constraint η6 (an = 1) gives one
of the worst results. Hence, the model form like G6(s)
should not be used for identification purposes; however,
this model is almost always used in the discrete type of
identification (Gauss method of LSI).

For testing the quality of the proposed optimal identi-
fication solutions (with optimal constraint η = w1), other
six experiments were conducted with a different level of
measurement noise variance δ2. Six different Gram ma-
trices G will give six different sets of optimal parameters.
The results of experiments and the index J (13) are given
in Table 4.

One can see that the same high level of error J ∼= 3
occurs for the vector η6 under low noise δ2 = 0.01 (used
in the experiments in Table 1) and optimal vector η1 under
as many as ten times greater noise δ2 = 0.1 (Table 4).

Table 4. Optimal parameters Θ = w1 and noisy measurements.
δ2 a0 a1 a2 b0 b1 J

0 0.424 0.649 0.167 0.566 -0.225 0.027

0.01 0.429 0.634 0.163 0.575 -0.236 0.519

0.05 0.424 0.668 0.165 0.560 -0.180 2.780

0.1 0.410 0.649 0.205 0.576 -0.190 3.383

0.5 0.531 0.412 0.121 0.500 -0.533 6.218

1 0.472 0.514 0.131 0.633 -0.306 7.445

Conclusion. For the linear continuous system the use of
the Equation Error Method (EEM) and the optimal choice
of the linear constraint for the parameters guarantee much
better results of parameter identification than other stan-
dard normalizations.
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5. Output error method for identification of
a continuous LTI system

In this section we will derive formulas which follow from
the output error method, and we will prove that the same
results can be obtained from the above discussed general
EE method as its special case (η4) for a special coefficient
vector η = [1, 0, . . . , 0]T , which represents the commonly
assumed constraint for only one parameter a0 = 1.

Let us consider the LTI system with the parameter
a0 = 1,

G(s) =
bmsm + · · · + b1s + b0

ansn + · · · + a1s + 1
, (17)

and the corresponding output model differential equation,

y(t) +
n∑

i=1

aiy
(i)(t) =

m∑

j=0

bju
(j)(t).

Minimization of the error only between the real output
measurements y(t) and the rest of the model and not the
whole sides of the equation is the substance of the output
error method,

εr(t) = y(t)−
⎡

⎣−
n∑

i=1

aiy
(i)(t) +

m∑

j=0

bju
(j)(t)

⎤

⎦ . (18)

Having used the convolution transformation with a
proper function ϕ in (18), we obtain

ε(t) = y0(t) −
⎡

⎣−
n∑

i=1

aiyi(t) +
m∑

j=0

bjuj(t)

⎤

⎦ .

We assume the performance index of identification as the
norm of the output error function,

J = ‖ε‖

=
∥∥∥y0(t) −

⎛

⎝−
n∑

i=1

aiyi(t)+
m∑

j=0

bjuj(t)

⎞

⎠
∥∥∥

L2[to+h,T ]
.

(19)

Denoting by c(t) the shortened vector of convolu-
tions ỹ(t) and ũ(t) and by Θ the shortened vectors of pa-
rameters

ΘT = [a, b] = [a1, . . . , an, b0, . . . , bm] ,

we get

ε(t) = y0(t) − cT (t)Θ
= y0(t) − [−ỹ(t), ũ(t)]Θ = y0(t)

− [−y1(t), . . . ,−yn(t), u0(t), . . . , um(t)]
[

a
b

]
.

The statement of the minimization problem takes the
form (t0 = 0):

min
Θ

J2 = min
Θ

‖ε(t)‖2
L2[h,T ]

= min
Θ

∥∥y0(t) − cT (t)Θ
∥∥2

L2[h,T ]
,

where

J2 =
〈
y0(t) − cT (t)Θ, y0(t) − cT (t)Θ

〉

= 〈y0(t), y0(t)〉 − 2
〈
cT (t)Θ, y0(t)

〉
+ ΘT GΘ.

There exists an optimal and nontrivial solution for Θ with-
out any extra constraint for the parameters,

G =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎣

〈y1, y1〉 · · · 〈y1, yn〉
...

. . .
...

〈yn, y1〉 · · · 〈yn, yn〉
− 〈u0, y1〉 · · · − 〈u0, yn〉

...
. . .

...
−〈um, y1〉 · · · − 〈um, yn〉

− 〈y1, u0〉 · · · − 〈y1, um〉
...

. . .
...

−〈yn, u0〉 · · · − 〈yn, um〉
〈u0, u0〉 · · · 〈u0, um〉

...
. . .

...
〈um, u0〉 · · · 〈um, um〉

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (20)

The real matrix G is a symmetric Gram (n + m +
1)× (n+m+1) matrix of the inner products of functions
which are elements of the vector c(t). From the necessary
condition for a minimum it follows that

∂J2

∂Θ
= −2 〈c(t), y0(t)〉 + 2GΘ = 0,

where

Θo = G−1 〈c(t), y0(t)〉 = G−1

⎡

⎢⎣
−〈y1(t), y0(t)〉

...
〈um(t), y0(t)〉

⎤

⎥⎦

= G−1

⎡

⎢⎢⎢⎢⎢⎢⎣

−
T∫

h

[y1(t)y0(t)] dt

...
T∫

h

[um(t)y0(t)] dt

⎤

⎥⎥⎥⎥⎥⎥⎦
.

(21)

This is a continuous version of the Least Squares
(LS) estimator for optimal parameter identification. A
suitable version is well known for discrete systems,

Θo =
[
CT C

]−1
CT Y.
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Here the vector Y of discrete measurements of y(t) rep-
resents the continuously filtered output function y0(t) in
(21) and the vector inner product CT Y is substituted by
its continuous version. The regression matrix CT C is a
discrete version of the Gram matrix G.

As mentioned above, the same result as in the for-
mula (21) can be obtained directly from the general equa-
tion error method and the formula (12) after the assump-
tion of a specific vector η, η = [1, 0, 0, . . . , 0]. In such a
sense the EE method with a general linear constraint and
an arbitrarily chosen vector η is the most general method
for identification which also includes different output
methods. For instance, assuming η = [0, 1, 0, . . . , 0]
(a1 = 1) means that error minimization will pertain to the
best fit of the first derivatives only, i.e., to the difference
between the first derivative of output y(1)(t) taken from
continuous measurements and the first derivative of output
obtained from the model. Of course, if such a measure-
ment of the first derivative is impossible, it will concern
the function y1(t) obtained after the convolution transfor-
mation of y(t).

6. Conclusions

In the paper the method of convolution transformation
of the linear continuous dynamical model was presented.
After the transformation an algebraic model is obtained
which is suitable for identification. This model is valid
for any initial conditions. However, for different initial
conditions the different new functions yi(t) and uj(t) are
generated and hence different Gram matrices are obtained,
while the solution (12) will always give the optimal pa-
rameters to best satisfy the model (1).

The important role of the proper choice of parame-
ter constraints in the optimal identification procedure was
explained. It was shown that the common assumption of
the parameter an = 1 or a0 = 1 and the standard form
of the transfer function, e.g., (4), is not always optimal
for the identification procedure. Along with the handling
of this problem, a discussion of connections between two
different approaches to identification is performed in the
paper. The first approach is based on the analysis of the
equation error and the second on the analysis of the output
error method. A proper choice of the normalization vector
η enables the minimization of the error between any of the
measurable state variables from the real system and from
the model or any of their linear combinations. The new
version of continuous LS method for output error with the
use of modulating functions was presented.

In the publication by Byrski and Fuksa (1996), the
EE type of filter was used in an on-line identification pro-
cedure which co-operates with an adaptive stabilizing LQ
state controller. State stabilizing control is proportional to
the transformed state x(t) = f [yi(t)] concurrently gen-
erated by the parameter identifier. Hence such a type of

identifier can work as a special type of state observer.
Numerical experiments showed good performance of this
kind of linear adaptive controller. In the paper by Byrski
and Fuksa (2001), the mathematical proof of the asymp-
totic stability of such simultaneous co-operation of the
state and parameters estimators and feedback control was
presented.
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