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NONLINEAR MODEL PREDICTIVE CONTROL OF A BOILER UNIT:
A FAULT TOLERANT CONTROL STUDY
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This paper deals with a nonlinear model predictive control designed for a boiler unit. The predictive controller is realized
by means of a recurrent neural network which acts as a one-step ahead predictor. Then, based on the neural predictor, the
control law is derived solving an optimization problem. Fault tolerant properties of the proposed control system are also
investigated. A set of eight faulty scenarios is prepared to verify the quality of the fault tolerant control. Based of different
faulty situations, a fault compensation problem is also investigated. As the automatic control system can hide faults from
being observed, the control system is equipped with a fault detection block. The fault detection module designed using the
one-step ahead predictor and constant thresholds informs the user about any abnormal behaviour of the system even in the
cases when faults are quickly and reliably compensated by the predictive controller.
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1. Introduction

Due to the increasing requirements for high levels of sys-
tem performance and reliability in the presence of unex-
pected changes of system functions, Fault Tolerant Con-
trol (FTC) systems have received increased attention in
the last years (Blanke et al., 2006; Noura et al., 2009;
Ducard, 2009; Zhang, 2007; Staroswiecki et al., 2007;
Theillol et al., 2008; Sourander et al., 2009; Bonivento
et al., 2004). Sensor or actuator faults, product changes
and material consumption may affect the controller per-
formance (Korbicz et al., 2004; Blanke et al., 2006). In
safety-critical systems there are always defined require-
ments for a safe back-up in the case of failures. FTC sys-
tems may be a more effective alternative for providing the
system back-up than equipment redundancy (e.g., dupli-
cation of even triplication of actuators). The demand of
fault tolerant control comes also from economics. The
costs of production losses due to a fault can be enormous,
just like the costs of unnecessary energy consumption.
From that point of view there is a strong encouragement
to prolong production plant operation despite faults until
a scheduled maintenance date.

The main objective of an FTC system is to maintain
the current performance of the system as close as possi-
ble to the desirable one, and to preserve stability condi-

tions in the presence of faults. The existing FTC meth-
ods can be divided into two groups: passive and active
ones (Zhang, 2007). Passive approaches are designed to
work with presumed failure modes. This means that they
are robust against a known set of faults and their perfor-
mance tends to be conservative, especially in the case of
unanticipated faults. Such strategies need the existence of
neither a fault detection system nor controller reconfigu-
ration mechanisms. On the other hand, active methods re-
act to the occurrence of system faults online and attempt
to maintain the overall system stability and performance
even in the case of unanticipated faults. In this case, a
mandatory element is a fault diagnosis system, which pro-
vides the information about the presence of a fault, its lo-
calization and size. Additionally, the active fault toler-
ant control requires a reconfigurable controller and a con-
troller reconfiguration mechanism.

An active control method that seems to be suit-
able for FTC is Model Predictive Control (MPC), ear-
lier known as receding horizon control. Indeed, in MPC,
the representation of both fault and control objectives is
relatively simple. Some faults can be represented by
modifying constraints in the MPC algorithm while other
faults can be handled through modification of a system
model (Joosten and Maciejowski, 2009; Camacho and
Bordóns, 2004). MPC is a control method in which the
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current control signal is achieved by solving online, at
each sampling instant, a finite horizon optimal control
problem. The optimization yields an optimal control se-
quence, while the first element of this sequence is used as
the current control. The increasing popularity of model
predictive control is due mainly to its versatility regarding
coping with constraints imposed on the state and input.

Recently, FTC systems for a boiler unit were pro-
posed by Patan (2009a; 2009b). These approaches are
based on the so-called online fault approximator realized
by means of a locally recurrent neural network. Con-
sequently, using a signal representing the evolution of a
fault, the control law is reconfigured in such a way as to
compensate the fault effect. Unfortunately, the main dif-
ficulty related to such an approach is proper derivation of
the augmented control law. The problem is especially ob-
servable in the case of nonlinear systems.

This paper presents an alternative approach where
fault tolerance is achieved through a predictive control
scheme. As motivated by Maciejowski (1998), predictive
control has an inherent “daisy-chaining” property which
allows adapting the control law to changing working con-
ditions of the plant. Contrary to a majority of papers on
fault tolerant control, which assume linear models, this
manuscript uses a nonlinear model of the plant designed
by means of a recurrent neural network. As significant
faults push the system far from equilibrium conditions, the
application of a nonlinear model is highly recommended.
Furthermore, a common assumption in the academic FTC
literature is that actuator and sensor faults are treated as
additive disturbances on inputs and outputs. In fact, many
abnormal situations cannot be modelled in this way. In
the present study different types of faults are examined,
not only additive ones.

The paper is organized as follows. In Section 2, ba-
sics about model predictive control and its neural network
representation are described. Boiler unit specification and
a set of simulated faulty scenarios are given in Section 3.
Experiments including the selection of a neural model,
training data and controller parameters as well as fault de-
tection and fault compensation are provided in Section 4.
Section 5 includes conclusions and final remarks.

2. Model predictive control

Model predictive control is one of the modern ad-
vanced control strategies (Maciejowski, 2002; Camacho
and Bordóns, 2004). This class of control techniques
has succeeded in many practical applications (Camacho
and Bordóns, 2004; Breger and How, 2006; Chilin et al.,
2010). As a result, predictive control has received con-
siderable attention in the last years. Predictive control
algorithms are able to consider constraints imposed on
both controls and process outputs (Mayne et al., 2000).
Moreover, the actual control is derived taking into ac-
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Fig. 1. Block scheme of nonlinear model predictive control with
a fault diagnosis block.

count internal changes and interactions in the controlled
process. This ability can be used to obtain a fault tol-
erance property of the control system. Indeed, there
are many examples of fault tolerant behaviour of MPC
(Maciejowski, 1998; Joosten and Maciejowski, 2009).

MPC is a specific control strategy which uses a
model of the process to derive the control signal by mini-
mizing some objective function over a finite receding hori-
zon. The process model is used to predict future plant out-
puts based on past and current outputs as well as future
control signals. These are calculated through the min-
imization of the cost function taking into account con-
straints. In order to design MPC for a given problem,
two elements are of crucial importance: the model of a
process working in normal operating conditions and the
robust optimization procedure. The block scheme of a
nonlinear model predictive control is shown in Fig. 1.
As this scheme uses a process model, it can be easily
equipped with the Fault Detection and Isolation (FDI)
block. Model-based fault diagnosis methods are widely
described in the literature, (e.g., Korbicz et al., 2004; Is-
ermann, 2006; Patan, 2008). The information provided by
the FDI block (localization and size of faults) can be used
during the optimization procedure in order to redefine the
constraints imposed on the state and inputs.

In the following sections the components of the non-
linear model predictive control scheme shown in Fig. 1 are
portrayed.

2.1. Optimization criterion. The predictive control
considered in this work is a modification of Generalized
Predictive Control (GPC) (Clark et al., 1987). The idea
behind GPC is to minimize, et each iteration, the follow-
ing criterion:

J =
N2∑

i=N1

(r(k + i)−ŷ(k + i))2 + ρ

Nu∑

i=1

(Δu(k + i − 1))2

(1)
with respect to Nu future controls,

u(k) =
[

u(k) . . . u(k + Nu − 1)
]T

, (2)
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and subject to the constraints

Δu(k + i) = 0, Nu ≤ i ≤ N2 − 1, (3)

where r(k + i) is the future reference signal, ŷ(k + i)
is the prediction of future outputs, Δu(k + i − 1) =
u(k + i − 1) − u(k + i − 2), N1 is the minimum pre-
diction horizon, N2 is the prediction horizon, Nu is the
control horizon, and finally ρ represents a factor penaliz-
ing changes in the control signal. For nonlinear systems
the optimization problem (1) has to be solved at each sam-
ple time giving a sequence of future controls u(k), where
the first element is taken to control the process. The dis-
tinct characteristic of MPC is the receding horizon. The
control signal is derived in such a way as to achieve the
desired behaviour of the control system in the subsequent
N2 time steps. Another important property is the control
horizon Nu < N2. Only the first Nu future controls are
determined. From that point the control is assumed to be
constant. For practical reasons, taking into account the
computation burden, Nu is kept as small as possible, e.g.,
equal to 1 or 2.

2.2. Neural modelling. In the criterion (1), ŷ(k+i) de-
notes the minimum variance i-step ahead prediction. The
predictor can be obtained in two ways:

(i) by instantaneous linearization of a nonlinear model
of a plant,

(ii) by successive recursion of a one-step ahead nonlinear
model.

In the first case a unique solution of (1) exists and the
future control signals can be calculated directly. Unfor-
tunately, the instantaneous linearization technique suffers
from some drawbacks. It relies on the linearized model,
which may have a limited validity in certain regimes of
the operating range. In the second case the control sys-
tem uses a nonlinear model of the plant, thus the mini-
mization of the objective function (1) has to be carried
out through an iterative procedure. This kind of control
system is called Nonlinear Predictive Control (NPC). The
one-step ahead prediction is described by the formula

ŷ(k + 1) = f(y(k), . . . , y(k − n + 1),
u(k), . . . , u(k − m + 1)), (4)

where n and m are numbers representing past outputs and
inputs, respectively. The i-step ahead prediction of the
plant output is then calculated by successive recursion ac-
cording to

ŷ(k + i) = f(y(k + i − 1), . . . , y(k + i − n),
u(k + i − 1), . . . , u(k + i − m)).

(5)

It is assumed that the measurement of the output is
available up to time k. Therefore, one should substitute
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Fig. 2. Dynamic model realization: using a feedforward net-
work (a), using a recurrent network (b).

predictions for actual measurements since these do not ex-
ist,

y(k + i) = ŷ(k + i), ∀i > 1. (6)

A nonlinear function f can be realized by an arti-
ficial neural network. Artificial neural networks provide
an excellent mathematical tool for dealing with nonlinear
problems (Haykin, 1999; Patan, 2008). They have an im-
portant property according to which any continuous non-
linear relation can be approximated with arbitrary accu-
racy using a neural network with a suitable architecture
and weight parameters. Another attractive property is the
self-learning ability. A neural network can extract the sys-
tem features from historical training data using the learn-
ing algorithm, requiring little or no a priori knowledge
about the process. This provides the modelling of non-
linear systems with great flexibility (Haykin, 1999).

The most frequently used neural network to model
dynamic nonlinear mappings is the multilayer percep-
tron with tapped delay lines. This kind of neural net-
work, which is the direct realization of (4), is depicted in
Fig. 2(a). The training of such a network leads to the so-
called serial-parallel identification model (Patan, 2008).
The use of real plant outputs avoids many of the analyt-
ical difficulties encountered, assures neural model stabil-
ity and simplifies the identification procedure. However,
in order to design the i-step ahead predictor, one needs to
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feed the network with past predicted outputs according to
(5) and (6), and the feedforward network trained using the
series-parallel identification model may be insufficient.

The neural realization of (5) is presented in Fig. 2(b).
In this case the neural network is of the recurrent type and
the training is carried out through the parallel identifica-
tion model (Patan, 2008). However, recurrent networks
suffer from stability problems as well as quite complicated
training algorithms and, in general, designing an accept-
able recurrent neural model is not an easy task. In the
case when i > n, the neural network structure is some-
thing inbetween the feedforward and recurrent networks
presented in Fig. 2, as it uses both measured past out-
puts (up to time k) and predicted outputs (for time instants
k + 1, . . . , k + i). However, from the practical point of
view, the training of such a hybrid structure is carried out
in the same way as for the recurrent network depicted in
Fig. 2(b).

2.3. Control law update. When a nonlinear neural
network is applied as a process model, output predictions
are nonlinear in the control inputs. This constitutes a
complex nonlinear programming problem, which should
be solved in real-time while the optimization procedure
should assure fast convergence and numerical robustness.
In general, the control law update at each sample time i is
represented as follows:

u(i+1) = u(i) + η(i)h(i), (7)

where u(i) is the current iterate of the future control in-
puts sequence, η(i) represents the step size and h(i) is
the search direction. The numerical algorithm suitable
to solve the problem should be characterized by fast con-
vergence, real-time processing and numerical robustness.
From this point of view, gradient based methods suffer
from very slow convergence. On the other hand, global
optimization techniques are too complex to satisfy real-
time processing. Hence, second-order optimization algo-
rithms seem to be a reasonable choice. The standard New-
ton based algorithm cannot be applied due to problems
with assuring positive definiteness of the Hessian. In turn,
the popular Levenberg–Marquardt method cannot guaran-
tees rapid convergence as it is not a small residual problem
(Nørgaard et al., 2000). In this paper a modification of the
Newton and Levenberg–Marquardt methods proposed by
Nørgaard et al. (2000) is applied. The search direction
h(i) at the i-th sample time is derived in the following
way:

h(i) = −H̃
−1

g(i), H̃ = H(i) + λ(i)I, (8)

where H(i) is the Hessian calculated as

H(i) =
∂2J

∂u2

∣∣∣∣
u=u(i)

, (9)

g(i) is the gradient vector represented as

g(i) =
∂J

∂u

∣∣∣∣
u=u(i)

, (10)

and λ(i)I is the term proposed in the framework of the
Levenberg–Marquardt algorithm. The parameter λ should
be selected in such a way as to assure H̃ to be positive def-
inite. If H̃ is not positive definite, λ should be increased
until it is. A detailed description of the algorithm can be
found in the work of Nørgaard et al. (2000).

3. Boiler unit

The object considered in this work is a laboratory instal-
lation developed at the Institute of Automatic Control and
Robotics of the Warsaw University of Technology. The
installation is dedicated for the investigation of diagnostic
methods of industrial actuators and sensors (Patan, 2009a;
2009b). The whole system consists of a boiler, a storage
tank, a control valve with a positioner, a pump and trans-
ducers to measure process variables. The boiler has the
form of a horizontally placed cylinder, which introduces
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Fig. 3. Boiler unit and possible faults placement.

Table 1. Specification of process variables.

Variable Specification Range

CV control value 0–100 %
dP pressure difference on valve V1 0–275 kPa
P pressure before valve V1 0–500 kPa
F1 flow (electromagnetic flowmeter) 0–5 m3/h
F2 flow (Vortex flowmeter) 0–5 m3/h
L water level in boiler 0–0.5 m
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Table 2. Specification of faulty scenarios.

Fault Description Type

f1 leakage from boiler additive (−0.05)
f2 outflow choking partly closed (50%)
f3 loss of internal pipe diameter partly closed (50%)
f4 leakage from pipe additive (−1)
f5 level transducer failure additive (−0.05)
f6 positioner fault multiplicative (0.7)
f7 valve head or multiplicative (0.8)

servo-motor fault
f8 pump productivity reduction multiplicative (0.8)

strong nonlinearity into the static characteristic of the sys-
tem. The scheme of the boiler unit with process variables
marked is presented in Fig. 3. In turn, the specification
of process variables is shown in Table 1. The objective
of the control system is to keep the required level of the
water in the boiler. During experiments, three reference
signals were used:

1. the constant value

r(k) = 0.25, (11)

2. the sinusoidal signal of the form

r(k) =

⎧
⎨

⎩

0 for k < 120,
1
20

sin
(

2πk

600

)
+

1
4

otherwise,

(12)

3. random steps with levels from the interval (0, 0.5)
(each step lasts 240 seconds).

The boiler unit together with the control system was
implemented in Matlab/Simulink. Simulations are per-
formed with the sample time equal to 0.05. The simula-
tion model of the boiler unit renders it possible to generate
a number of faulty situations. The specification of faults is
presented in Table 2. Faults in different parts of the instal-
lation are proposed, including sensor, actuator and com-
ponent faults (see Fig. 3 for faults placement). Moreover,
the scenarios considered are different, including additive
as well multiplicative faults. Thus, the proposed set of
faults makes it possible to examine fault tolerance proper-
ties of the investigated predictive controller in the widest
range possible. The purpose of this paper is twofold: to
develop the control scheme for the boiler unit based on
NPC and to examine fault tolerant properties of the con-
troller.

4. Experiments

4.1. Training data. The first step in the controller de-
sign is the process modelling. To build a proper model,

the training data describing the process under normal op-
erating conditions the required. The input signal should be
as much informative as possible. It means that it should
be persistently exciting of a certain order, i.e., it should
contain sufficiently many distinct frequencies. The train-
ing data was collected in the open loop control, and the
following input signals were used:

1. random steps with levels from the interval (0, 100)
(each step lasted 240 seconds),

2. PseudoRandom Binary Signal (PRBS), simulated as
a sum of five sinusoids with large amplitudes limited
to the range (0, 100),

3. the sum of sinusoids with the frequencies
0.00066Hz, 0.0008Hz, 0.0016Hz, 0.002Hz and
0.005Hz with the amplitude equal to 0.05 each, and
with the mean value of 0.25.

Each signal was analysed using the Discrete Fourier
Transform (DFT). DFT spectral distributions of analysed
inputs, 100000 samples each, are presented in Figs. 4(a)–
(c). The boiler unit is a process with slow dynamics. Fill-
ing the boiler to the level equal to 0.25 m using maximal
input flow lasts approximately 300 seconds. On this basis
one can guess that distinct frequencies are lower than 0.02
Hz (i.e., components with the period greater than 50 sec-
onds). Comparing spectra of these three input signals it is
evident that the most informative one is the signal in the
form of random steps. The DFT can be also used to spec-
ify the length of the training sequence. The DFT spectrum
of random steps containing 10000 samples is shown in
Fig. 4(d). This result clearly shows that a sequence of the
length 10000 is not informative enough to be used as the
training one (cf. Fig. 4(a)), and much longer sequences
should be selected. On the other hand, taking into account
training time, training sequences should be as short as pos-
sible. Then, the selection of the training sequence is only
a compromise between the number of samples and persis-
tent excitation properties. Taking into account these con-
siderations, the random step sequence containing 50000
samples was selected as the training input signal.

4.2. Process modelling. In order to build a model
of the process, two neural models were tried: NNARX
(Neural Network AutoRegressive with eXogenous input),
shown in Fig. 2(a), and the NNOE (Neural Networks Out-
put Error) model, portrayed in Fig. 2(b). The model input
was the control value (CV ) and the model output was the
level in the boiler (L). Preliminary experiments showed
that NNARX was easier to train (i.e., the training error
reached a low value), but the generalization properties
were poor taking into account the prediction quality. In
turn, the training process of the NNOE was more difficult
to carry out but the prediction quality achieved acceptable.
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Fig. 4. DFT spectra of training signals: random steps (100000 samples) (a), PRBS (100000 samples) (b), sum of sinusoids (100000
samples) (c), and random steps (10000 samples) (d).

The testing quality of sample neural models are listed
in Table 3. Both models had the same number of hid-
den neurons (5) and the same number of input and output
delays (m = 2, n = 2). The training sequence was in
the form of random steps (50000 samples). The NNARX
model achieved better quality for the random steps testing
sequence containing 300000 samples, but for other test-
ing sequences its performance was worse than in the case
of the NNOE model. Particularly, significant differences
are observable for the constant signal. Therefore, the final
model of the system was designed by means of NNOE.

The structure of the model (the number of hidden
neurons, the number of past inputs and outputs) was se-
lected experimentally using the “trial and error” method
with the final prediction error information criterion to dis-
card too complex models. The final settings are as fol-
lows: one input, one output, five hidden neurons with

Table 3. Testing of neural models for inputs.
Model Sum of squared errors

Random
steps

Sum of
sinusoids

Constant
value

NNARX 127.7 231.12 654.03

NNOE 157.59 204.51 313.31

hyperbolic tangent activation function, one linear output
neuron, the number of past inputs m = 2 and the num-
ber of past outputs n = 2. The modelling was carried
out in open loop control in normal operating conditions.
As the input signal, the random step function was se-
lected in order to provide persistent excitation of the ob-
ject (see Section 4.1). Using this signal, a training set con-
taining 50000 samples was formed. The training process
was carried out off-line for 100 steps with the Levenberg–
Marquardt algorithm. The quality of the obtained model
was checked using a testing set containing 300000 sam-
ples. The one-step ahead prediction of the selected neu-
ral model fed with random steps signal is presented in
Fig. 5. The model output mimics the behaviour of the
process pretty well. The sum of squared errors between
the model and process outputs is equal to 157.59, and the
mean squared error equal to 5.2 · 10−4. In turn, the one-
step ahead prediction of the neural model feeding with the
sum of sinusoids described in Section 4.1 is depicted in
Fig. 6. Once again it is observable that the model fol-
lows the process output almost immediately, which proves
pretty good generalization abilities of the model. In this
case, the sum of squared errors between the model and
process outputs is equal to 204.52, and the mean squared
error equal to 6.8 · 10−4.
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4.3. Control. In order to design model predictive con-
trol for the boiler unit using a neural model, the values
of control parameters should be properly selected. These
parameters are as follows:

1. The minimum prediction horizon N1: As the funda-
mental model of the controlled process is defined in
the form of the one-step ahead predictor, this param-
eter is usually set to 1 and this value was used during
the experiments.

2. The prediction horizon N2: Taking into account the
computation burden this value should be kept as
small as possible. Taking into account “slow dynam-
ics” of the process, through the “trail and error” pro-
cedure, a value equal to 15 was selected as quite a
good compromise.

3. The control horizon Nu: Following the reasons pre-
sented in Section 2.1, the value of the control horizon
was set to 2.

4. The penalty factor ρ: This is the crucial parameter
penalizing changes in the control signal. It signif-
icantly influences the optimization process. Many
values were tried from the interval [0, 10]. The best
control results were observed for ρ = 0.0003.

5. The maximum number of iterations: For each time
instant the algorithm calculated the optimum value
of the control signal. Taking into account real-time
processing, the maximum number of iterations was
set to 5. It was observed that such a value is sufficient
to solve the optimization problem (1) with acceptable
quality.

6. Constraints: For the problem considered, the only
constraint is imposed on the value of the control sig-
nal. The control signal should have a value from the
interval [0, 100].
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Fig. 5. Testing of the neural model on random steps.
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Fig. 6. Testing of the neural model on the sum of sinusoids.
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Fig. 7. Control of the boiler unit. Tracking of the sinusoidal
signal (upper panel) and the control signal (lower panel).

The performance of the proposed predictive control is
shown in Figs. 7 and 8. First, let us consider the behaviour
of the control system in the case of the reference (12) (see
Fig. 7). As the reference signal changes from 0 to 0.3,
the optimization procedure calculates the control signal
of a high value equal to its maximum. Then, due to de-
creasing the cost criterion, the control signal is decreased
and, after approximately 170 seconds, the plant starts to
follow the reference almost immediately (Fig. 7, the up-
per panel). The lower panel in Fig. 7 presents the control
signal. When the output of the process reaches the ref-
erence after some decreasing oscillations, the control be-
comes a signal of sinusoidal character. There are small
changes visible in the control signal, but the optimization
procedure keeps the signal as close as possible to the si-
nusoidal, while tracking the reference is carried out with
a pretty high quality.
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Fig. 8. Control of the boiler unit. Tracking of random steps (up-
per panel) and the control signal (lower panel).

In turn, the performance of the control system in the
case of the reference signal in the form of random steps is
presented in Fig. 8. Once again, one can clearly observe
the performance of the predictive controller. Every time
the reference changes, the controller adapts the control
signal to these changes (Fig. 8, the upper panel). When
the reference is increased, the predictive control works
similarly as in the previously analyzed case. When the
reference is significantly decreased, the controller gener-
ates the control signal of a high value, and then after some
oscillations the control sets up at a certain value (see the
lower panel of Fig. 8). Such behaviour is more clearly
observable when reference changes are larger. This be-
haviour can be explained as a direct consequence of the
optimization procedure, which adapts the control to the
changing operating point, based on the nonlinear multi-
modal cost function. In general, the quality of the pro-
posed predictive controller is much better than in the case
of the classical PID one (Patan, 2009a; 2009b).

4.4. Fault tolerance. The fault tolerance property of
the proposed predictive controller was investigated intro-
ducing several faults listed in Table 2 and observing the
control quality. Each fault was simulated at the 3000-th
second as a permanent fault.

Fault tolerant control results are presented in Table
4, where Δe = ‖eF

l (k)‖2 − ‖eN
l (k)‖2, eN

l (k) and eF
l (k)

are tracking errors in normal operating conditions and a
faulty situation, respectively, the tracking error is defined
as el(k) = L(k)−r(k). All faults were properly compen-
sated excluding the fault f3. In this case, even the maxi-
mum inflow cannot compensate the fault effect in any way.

Fault tolerant control in the case of the fault f8 is
presented in Figs. 9 and 10. As one can see in the up-
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Fig. 9. Fault tolerant control: fault f8 and the constant value as
the reference.

per part of Fig. 9, the fault effect is not observable in the
system output. Even if the reference is changing in time
(e.g., sinusoidal signal), the fault is hidden from being ob-
served (the upper panel of Fig. 10). This is due to a very
fast reaction of the predictive controller to pump produc-
tivity reduction, which immediately increased and opti-
mally adapted the control signal to the changing working
conditions of the plant (see the lower panels of Figs. 9
and 10).

In turn, fault tolerant control results in the case of
the fault f5, for different reference signals, are presented
in Figs. 11 and 12. Here, effects caused by the fault are
clearly observable in both cases (see the upper parts of
Figs. 11 and 12). Fortunately, due to flow transducer fail-
ure, the predictive controller increased the control signal
fast and after some time the fault was completely compen-
sated (see the lower panels of Figs. 11 and 12).

In most cases, the norm of the tracking error in-
creases, a little bit contrary to normal operation condi-
tions. This means that the predictive controller works
pretty well and the fault effect is not observable taking
into accout the process output. The highest difference be-

Table 4. Fault tolerance quality measures.
Fault ‖el(k)‖2 SEE Δe

no fault 0.0381 0.0014 –
f1 0.0381 0.0014 0

f2 0.0733 0.0054 0.0352

f3 12.1116 146.6907 12.0735

f4 0.0843 0.0071 0.0462

f5 2.2123 4.8941 2.1742

f6 0.0692 0.0048 0.0311

f7 0.0570 0.0053 0.0189

f8 0.0395 0.0016 0.0014
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Fig. 10. Fault tolerant control: fault f8 and the sinusoidal signal
as the reference.
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Fig. 11. Fault tolerant control: fault f5 and the constant value
as the reference.

tween norms of the tracking error calculated for normal
operating conditions and a faulty situation is observable
for the fault f5 (excluding the fault f3, which cannot be
compensated). This is a sensor fault of a additive charac-
ter. However, after some time the controller handled this
fault in order to maintain the control objectives.

An interesting situation is observed for the fault f1.
The quality indexes calculated for this fault are exactly the
same as for normal operating conditions (see the first two
rows of Table 4). The explanation of this phenomenon
is that the fault f1 has a neglecting impact on the control
system, i.e., the leakage from the boiler is of a very small
value. The fault effect caused by f1 is also discussed in
Section 4.6.
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Fig. 12. Fault tolerant control: fault f5 and the sinusoidal signal
as the reference.

4.5. Fault compensation. To evaluate the fault com-
pensation property of the proposed predictive controller, a
tolerance region around the reference was defined. The
tolerance region was determined taking into account a
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Fig. 13. Illustration of compensation time derivation: fault f3.
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Fig. 14. Illustration of compensation time derivation: fault f5.
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±5% tolerance around the reference, and thus the toler-
ance interval was assumed to be

[0.95r(k), 1.05r(k)]. (13)

On this basis, fault compensation time was calculated as a
difference between the time in which the system response
is inside the interval (13) and the time of fault occurrence.
An illustration of fault compensation time derivation for
the fault f3 is presented in Fig. 13. In this case the fault
effect was not compensated. The output of the process
exceeded the tolerance region permanently. This is due
to the fact that after f3 occurred in the system the max-
imal inflow to the boiler was lower than the outflow. In
turn, fault compensation time derivation for the fault f5 is
shown in Fig. 14. This time the fault effect was compen-
sated after 154.75 seconds.

Fault compensation times for each fault considered
are presented in the 3-rd column of Table 5 for the refer-
ence (12), and the 5-th column of Table 5 for the reference
(11), where tc represents fault compensation time in sec-
onds, and NC (Not Compensated) means that a fault was
not compensated. As one can observe, almost all faults
were immediately compensated.

4.6. Fault detection. The automatic control system
can hide faults from being observed (see Table 5, the third
column, positions with tc = 0, or Figs. 9 and 10). There-
fore, to diagnose a system condition, a fault detection and
isolation algorithm is required. The previously designed
one-step ahead predictor can be easily used to construct
model-based fault detection system. Comparing the sys-
tem output with that of the one-step ahead predictor, the
so-called residual signal can be generated.

To carry out fault detection, a decision making tech-
nique based on constant thresholds is used. If the residual
is smaller than a certain threshold value, a process is con-
sidered healthy, otherwise it is considered faulty. In gen-
eral, two thresholds can be used to detect both increasing
and decreasing trends in the residual. Thus, the thresholds
can be calculated as

Tu = tαv + m, Tl = tαv − m (14)

Table 5. Fault detection and fault compensation measures.
Reference (12) Reference (11)

Fault td [s] tc[s] td[s] tc[s]

f1 ND – ND –
f2 5.9 0 1.15 0

f3 19.45 NC 3.55 NC
f4 12.35 0 9.1 0

f5 0.05 154.75 0.05 64.55

f6 69.65 0 7.7 0

f7 42.15 0 5.7 0

f8 33.85 0 7.7 0

where Tu and Tl represent the upper and lower threshold
value, respectively, tα is N (0, 1) tabulated value assigned
to 1 − α confidence interval, v represent standard devia-
tion of the residual and m is mean value of the residual
(Patan, 2008). The decision making of the fault f5 us-
ing constant thresholds in the case of the reference (11) is
illustrated in Fig. 15. The statistics of the residual were
as follows: m = −0.0333, v = 3.5 · 10−4. Assuming
α = 0.01, the threshold values are Tu = −0.0324 and
Tl = −0.0342. Before the time of fault occurrence (be-
fore the 3000-th time instant), the residual is inside the
uncertainty region determined by upper and lower thresh-
olds. When the fault occurred in the plant, the residual
changed its value. In the case considered here the fault
was immediately detected as it was a sensor fault chang-
ing significantly the measured value of the boiler level.

Figure 16 shows a similar study for the sinusoidal
reference (12). In this case, the residual has larger stan-
dard deviation (m = −0.0202, v = 0.002) then the uncer-
tainty region is wider (Tu = −0.0155 and Tl = −0.0249).
In spite of that, the fault was reliably detected. Results of
fault detection in the form of detection time td for the en-
tire set of faults are presented in the 2-nd and 4-th columns
of Table 5. The abbreviation ND (Not Detected) means
that a fault was not detected by the fault diagnosis block.
Detection time is defined as a period of time needed for
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Fig. 15. Residual signal for the constant reference (11): fault
f5.
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Fig. 16. Residual signal for the reference (12): fault f5.
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Fig. 17. Residual signal the constant reference (11): fault f8.
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Fig. 18. Residual signal for the reference (12): fault f8.

the detection of a fault measured from the fault start-up
time to a permanent, true decision about the fault, i.e., a
fault is signalled only if the residual permanently exceeds
the uncertainty region. In this way, the occurrence of false
alarms is minimized.

It is obvious that almost all faults were detected (ex-
cluding f1) even in the situations when the fault effect was
not observable (entries with tc equal to zero). The only
fault f1 was not detected. This fault is of additive char-
acter but with a very small value. In fact, the fault does
not affected the residual in a significant way, so it was im-
possible to observe the time of fault occurrence. Only a
more exact model of the system makes it possible to de-
tect this fault. Figures 17 and 18 present the residual sig-
nal for the faulty scenario f8 in the cases of the constant
and sinusoidal references, respectively. The fault f8 is of
multiplicative character, so residual changes its value not
as quickly as in the case of f5, which is the additive sce-
nario. In general, analysing the results, it is observable
that the system needs more time to detect multiplicative
faults than additive ones.

Decision making about faults can be much more re-
liable when adaptive thresholds are applied. There are
plenty of methods available, including the CUSUM algo-
rithm, set-membership identification or model error mod-
elling. This problem, however, is out of the scope of this
paper. Another problem not raised in this work is fault

isolation and identification, which is very important tak-
ing into account redefining the constraints imposed on
both the system state and control. Moreover, sensor faults
should be compensated differently than actuator faults.
For example, in the case of the fault f5, the control signal
value should be kept the same as before fault occurrence,
because such a fault does not change the water level in
the boiler. Unfortunately, the control system immediately
reacts to the change in the system output, which was a
direct consequence of the wrongly measured water level
in the boiler. Fault isolation and identification block will
render it possible to compensate the measured level in the
boiler without changing the control. Our further research
directions will focus on these issues.

5. Concluding remarks

The paper describes the realization of nonlinear model
predictive control for a boiler unit. The predictive con-
troller was constructed using the model of the process
based on the recurrent neural network while the control
law was optimized using a modified version of the Newton
algorithm. The proposed controller works pretty well, but
some problems with selecting the proper control parame-
ters can be encountered. Especially the penalty parameter
ρ seems to be very important from the point of view of
control quality. Other parameters may significantly influ-
ence the computational burden.

The proposed predictive control system possesses
very good fault tolerant properties. Almost all faults con-
sidered were properly compensated, so the control system
tried to maintain the performance of the system as close
as possible to the desirable one. However, the predictive
controller can hide faults from being observed. Therefore,
the fault detection block was designed giving information
about abnormal working conditions of the plant. Then,
the engineer can perform proper preventing and mainte-
nance actions. Unfortunately, the sensor fault f5 should
be treated in a different way than, for example, actuator
faults. To cope with this problem, fault isolation and iden-
tification should be carried out. Based on the information
provided by the fault isolation and identification block,
the value wrongly measured by the transducer could be
changed to a proper one without affecting the control sig-
nal. Future research will be focused on these aspects as
well as on searching for an automatic procedure for select-
ing the parameter ρ and on stability issues of the control
system in the case of faults.
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