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1. Introduction

Knowledge Discovery in Databases (KDD) is the non-
trivial extraction of valid, implicit, potentially useful and
understandable information from data. Recently, lattice
theory under the framework of Formal Concept Analy-
sis (FCA) has brought mathematical thinking for knowl-
edge representation and discovery of knowledge (Ven-
ter et al., 1997; Wille, 2001). FCA aims at discover-
ing conceptual clusters (called formal concepts) in the
data which are described in the form of formal context,
discovering the data dependencies (called attributed im-
plications), and visualizing them by a single conceptual
structure called the concept lattice (Belohlavek and Vy-
chodil, 2009). FCA organizes the information through
concept lattices, which fundamentally comprises a par-
tial order, modeling the subconcept–superconcept hierar-
chy (Jamil and Deogun, 2001). Unlike other partial or-
der structures like trees, concept lattices allow multiple
inheritances (Stumme, 2009). With their lattice structures
and attribute implications, concept lattices support KDD.
The crucial issue towards the discovery of knowledge us-
ing FCA is knowledge reduction while maintaining struc-
ture consistency (Aswani Kumar and Srinivas, 2010a; Be-
lohlavek and Vychodil, 2010; Elloumi et al., 2004, Wu et
al., 2009). Hence the goal is to minimize the input data
before applying FCA. The literature has witnessed com-
putationally expensive techniques like Singular Value De-

composition (SVD) (Aswani Kumar and Srinivas, 2010b;
Pattison and Breiger, 2002; Snasel et al., 2008).

Random Projections (RPs) have received significant
attention from data mining and machine learning research
communities for Dimensionality Reduction (DR) (Bing-
ham and Mannila, 2001). RP devised under the conditions
of orthonormality projects the given high dimensional
data onto a lower dimensional subspace using a random
matrix of unit length with normalized columns (Aswani
Kumar, 2011). However, to the best of our knowledge, no
analysis has been reported so far in the literature on RP
based lattice reduction for a KDD task. The motivation
behind the current paper is to make such an attempt by
proposing an RP based lattice reduction method. The or-
ganization of the paper is as follows. Section 2 provides a
brief background on FCA, RP and related work. Section
3 proposes an RP based FCA. Experimental results of the
proposed method are reported in Section 4. Analysis and
discussion of the results are presented in Section 5. Sec-
tion 6 provides concluding remarks followed by acknowl-
edgements and references.

2. Background

2.1. Formal concept analysis. Data analysis using
FCA always starts with a formal context defined as a triple
(G, M, I) where G is a set of formal objects, M is a set of
formal attributes and I is the relation between G and M
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(i.e., I ⊆ G × M). A formal context is generally repre-
sented as a binary incidence table in which the crosses rep-
resent the binary relation between the object set and the at-
tribute set. For the formal context, operators↑: 2G → 2M

and ↓: 2M → 2G are defined for every A ⊆ G and B ⊆
M by A↑ = {m ∈ M/for each g ∈ A :〈g, m〉 ∈ I},
B↓ = {g ∈ G/for each m ∈ B : 〈g, m〉 ∈ I }. The oper-
ators ↑ and ↓ are known as concept forming operators. A
formal concept of a formal context is defined as an ordered
pair (A, B) with A ⊆ G and B ⊆ M such that A↑ = B
and B↓ = A. We call A and B respectively an extent
and intent of the formal concept (A, B). A formal concept
(A, B) of the context (G, M, I) is defined to a be subcon-
cept of the formal concept (C, D) of (G, M, I) and (C, D)
a superconcept of (A, B) if the extent A is contained in the
extent C and, equivalently, if the intent B contains the in-
tent D. The set of all concepts of a context (G, M, I) with
the order relation ≤ is always a complete lattice called the
concept lattice. Graphically represented concept lattices
have proven to be useful in discovering and understand-
ing conceptual relationships in given data (Wille, 2001).

The process of concept formation in FCA is con-
sidered a knowledge discovery task, and constructing the
concept set constitutes the mining phase (Valtchev et al.,
2004; Poelmans et al., 2010). There is a wealth of foun-
dations available in the literature. For a detailed expla-
nation of the basics of FCA and its mathematical proper-
ties, we refer the readers to a few authoritative references
(Carpineto and Romano, 2004; Ganter and Wille, 1999;
Stumme, 2009; Wille, 2008). Over the years, FCA has
witnessed several applications in a wide variety of dis-
ciplines. Priss (2006) has given an exhaustive overview
of FCA applications in information science. For require-
ments of real world scientific applications, different fla-
vors of FCA have been proposed which generalize the
classical concept lattice given by Ganter and Wille (1999).
Currently, FCA has been extended to fuzzy concept lat-
tices based on fuzzy theory, the rough formal concept
based on rough set theory, the triadic concept, the mono-
tone concept and the variable threshold concept lattice
(Ghosh et al., 2010).

FCA offers a compact mode of knowledge represen-
tation called attribute implications which are closely asso-
ciated with functional dependencies in the database field
and hence made their way into Association Rules Min-
ing (ARM) in data mining (Aswani Kumar and Srinivas,
2010b). Approximative associations are implications with
confidence less than 100% and exact associations are the
valid implications with 100% confidence. The basis for
the rules with 100% confidence is called the Duquenne–
Guigues basis and the basis for the rules with confidence
less than 100% is called the Luxenburger basis (Stumme,
2009). In contrast to other KDD techniques where queries
or highly iterative approaches are followed, FCA allows
graphical representation of the knowledge space that can

be navigated by the user. The main inconvenience of FCA
is the size of the formal context. The number H of nodes
in a concept lattice has linear complexity with the num-
ber n of objects, H = O(n · 2k), where k denotes the
maximum number of attributes see the work of Aswani
Kumar and Srinivas (2010a) and the references therein.
The number of nodes and edges of a concept lattice can
be reduced significantly by deriving equivalence relations
between nodes of the lattice. Attribute implications are
vulnerable to noise in the data. Scalability and compu-
tational tractability of FCA is another major concern in
lattice based applications. Reducing the data to a lower
dimension could help us in solving these problems.

Several interesting investigations are reported in the
literature for reducing the concept lattice using different
techniques including rough set theory by Liu et al. (2007),
matrix rank reduction techniques like SVD and NMF by
Snasel et al. (2008), Iceberg concept lattices by Stumme
et al. (1998). Very recently, Aswani Kumar and Srinivas
(2010b) have analyzed mining associations rules derived
from SVD based reduced contexts. Though SVD provides
the best approximation of the matrix with regard to the
Frobenius norm, its computational complexity makes it
impractical to apply over large size matrices (Aswani Ku-
mar and Srinivas, 2006). For a dense matrix X of size
t × d, the complexity of computing SVD is O(td2), and
for a sparse matrix with average c non-zero entries per
data item the complexity is O(tdc) (Aswani Kumar, 2009;
Divya et al., 2011). A very recent interesting investigation
by Aswani Kumar and Srinivas (2010a) shows that FKM
clustering can successfully be applied for concept lattice
reduction.

2.2. Random projections. In RP, DR can be achieved
by projecting the data matrix through the origin onto a
lower dimensional subspace formed by a set of random
vectors. Thus, given a data matrix X of size t × d, where
d is the original dimensionality of data and t is the total
number of points, the dimensionality of X can be reduced
by projecting it onto a k dimensional subspace (k < d) as

D = Xt×dRd×k, (1)

where Rd×k is a random projection matrix (Bingham and
Mannila, 2001). The RP idea stems from the Johnson–
Lindenstrauss lemma, which states that, if points in a vec-
tor space are randomly projected onto a lower dimensional
subspace, R

d → R
k, then the Euclidean distance among

the set of n points is preserved for any 0 < ε < 1.

Theorem 1. (Johnson–Lindenstrauss lemma) For any
0 < ε < 1 and any integer n, let k be a positive integer
such that

k ≥ 4
[
(ε2/2)− (ε3/3)

]−1 ln n. (2)
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Then for any set W of n points in R
d there is a map f ,

f : R
d → R

k, such that, for all u, v ε W ,

(1 − ε) ‖u−v‖2 ≤ ‖f(u)−f(v)‖2

≤ (1 + ε) ‖u−v‖2
. (3)

Further this map f can be found in randomized poly-
nomial time (Achilioptas, 2003). The choice of random
matrix R is a crucial design decision and different ap-
proaches are suggested for the generation of random ma-
trices. The elements of R are often Gaussian distributed.
Unlike other matrix decomposition methods like SVD,
RP does not require computationally expensive calcula-
tions like eigenvalue decompositions. Several applica-
tions of RP such as information retrieval, handwritten
text recognition, image compression, face recognition,
etc. are reported in the literature (Aswani Kumar, 2011;
Varmuza et al., 2010).

3. Proposed method

In this section we propose to apply an RP based FCA
method for KDD. Then we apply FCA on the reduced
context for a knowledge discovery task. The following
is the proposed method:

1. From the given formal context, construct the binary
object-attribute incidence matrix of size t × d with a
dimensionality d. Normalize the columns of the data
matrix to unit length.

2. Choose a lower dimension value k (k ≤ d). Create a
random matrix R of size d × p.

3. Apply an RP over the original matrix to obtain the
reduced dimensionality matrix D as given in Eqn. (1).

4. Compute the reduced dimensionality matrix Dk of
the original data matrix X as Dk = DZ∗, where Z∗

is given as Z∗ = (DT D−1DT X.

5. The reduced matrix Dk does not contain binary val-
ues. Hence choose a threshold value t, 0 ≤ t ≤ 1, for
discriminating between 1s and 0s. Then construct the
reduced rank binary matrix.

6. Construct the reduced formal context from the re-
duced binary incidence matrix. Apply FCA to the
reduced context.

Thus with the proposed method, the formal context
reduces to a lower dimension which can lead to minimiz-
ing the input data to handle the scalability and computa-
tional tractability of FCA. The entire operation of the RP
on a data matrix of size t×d to a reduced dimensionality k
is O(tdk) (cf. Achilioptas, 2003; Aswani Kumar, 2010).

4. Experimental results

In this section we report experimental results of the pro-
posed method on two healthcare datasets. These datasets
are obtained from a healthcare informatics project of
the Medical Research Council of South Africa (Horner,
2007). The diseases studied in the project are tuberculo-
sis (TB), chronic bronchitis (CB) and hypertension (HP).
However, in our analysis we focus on TB and HP datasets
due to the fact that the CB dataset does not contain test
data. Experiments on TB and HP datasets are conducted
in three phases. In the first phase, we applied FCA and RP
based FCA over the training dataset. In the second phase,
we tested the quality of the derived knowledge, described
in the form of rules, with domain experts’ knowledge and
a test dataset. In the third stage, we compared RP-FCA
with SVD-FCA. Performance is measured by identifying
the number of times that rules from FCA, RP-FCA and
SVD-FCA have the same conclusion as the treating doc-
tor.

4.1. Experiments on tuberculosis data. The tubercu-
losis dataset contains details of 21 patients for 12 symp-
toms related to TB. Table 1 lists various TB symptoms.
Table 2 lists domain experts’ knowledge, in the form of
rules, in determining TB using the symptoms listed in Ta-
ble 1. Table 3 shows the formal context. The last column
of the matrix indicates the presence or absence of TB. Fig-
ure 1 shows the concept lattice obtained by applying FCA
over the TB context given in Table 3. Each node of the
lattice structure represents a concept. The concept lattice
shown in Fig. 1 is of height 11 with 101 concepts and 253
edges. Along with the concept lattice, FCA also produced
33 implications in the DG basis. However, implications
which describe TB are of interest in this study. Table 4
lists all such implications.

Table 1. TB symptoms.

No. Symptom Abbreviation

1 Persistent cough PC
2 Sputum production SP
3 Sputum produced is muco-purulent MC
4 Bloody sputum BS
5 Clear sputum CS
6 Weight loss WL
7 Extreme night sweats NS
8 No appetite NA
9 Chest pain CP
10 Shortness of breath SB
11 Tuberculosis contact TC
12 Tiredness TN

If the antecedent of an implication which has the tar-
get attribute in its consequent is a subset of the antecedent
of an expert rule, then we can consider the expert rule to
be subsumed by the implication. It is clear from Table 4
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that the antecedents of implications 4–9 are subsets of the
antecedents of expert rules. Implications 1–3 are not part
of expert rules. None of the implications in the DG basis
is overlapped exactly with any of the expert rules. From
Table 4 we can also observe that implications 4–9 make
the diagnosis of the disease with fewer symptoms. Table 5
shows how expert rules are subsumed using implications
from FCA and RP-FCA with different values of k and t,
which we will explain later.

Table 2. Expert rules for TB.

Sl. no Expert rules for tuberculosis

1 PC SP BS WL −→ TB
2 PC SP BS NS −→ TB
3 PC WL NS −→ TB
4 PC SP BS TC −→ TB
5 PC SP BS CP NA −→ TB
6 PC SP BS SB −→ TB
7 PC WL CP SB −→ TB
8 PC SP BS CP TN −→ TB

Fig. 1. Concept lattice of the TB training context.

Next we applied the proposed RP based FCA on the
TB training incidence matrix, which is of size 21×13 with
rank 12. RP with k = 6 and a binary threshold t = 0.5 is
applied over the incidence matrix. An entry in the reduced
matrix is considered to be 1 if it is higher than the chosen t
value, and 0 otherwise. We applied FCA over the reduced
context. Figure 2 shows the concept lattice containing a
concept count of 67 with 152 edges and a height of 9. RP-
FCA with k = 6 and t = 0.5 produced 28 implications
in the DG basis. Implications concluding TB are shown

Table 4. Implications obtained from TB training data using
FCA.

No. Implication
No. of objects
implication holds

Implications NOT part of expert rules
1 NS CP→ TB 8
2 WL TN → TB 11
3 PC SP MC CS CP TN → TB 0

Implications part of expert rules
4 NA CP → TB 9
5 BS → TB 1
6 PC SP NS →TB 6
7 WL NS → TB 10
8 WL CP → TB 10
9 TC → TB 3

in Table 6. New implications 4–8 are part of expert rules.
Hence they are used in subsuming all the expert rules as
shown in Table 5. We also studied the influence of dis-
cretization parameter t by choosing t = 0.8. FCA on the
reduced context with k = 6 and t = 0.8 produced a con-
cept lattice of height 8 with 51 concepts and 115 edges
as shown in Fig. 3. New implications obtained from this
analysis are shown in Table 7. It is clear that implications
4–12 are part of expert rules and hence they are used in
subsuming expert rules as shown in Table 5.

For further analysis we conducted experiments using
different values of k and t. FCA on the reduced context
with k = 3 and t = 0.5 produced 18 implications in DG
basis. Table 8 lists 8 implications inferring TB. Implica-
tions 6–8 are part of expert rules and hence they are used
in subsuming expert rules as shown in Table 5. It is in-
teresting to note that none of the newly produced impli-
cations subsumed the expert rule PC WL CP SB → TB.
The lattice structure obtained from this analysis has 42
concepts with 80 edges and a height of 10.

Table 6. Implications obtained from TB training data with RP
k = 6 and t = 0.5.

Sl. no. Implication
No. of objects for which

the implication holds
Implications NOT part of expert rules

1 NS CP→ TB 8
2 WL TN → TB 13
3 CS → TB 2

Implications part of expert rules
4 NA CP → TB 9
5 BS → TB 0
6 WL NS → TB 11
7 WL CP → TB 10
8 TC → TB 1

FCA on the RP based reduced context with k = 3
and t = 0.8 produced a lattice structure of height 8 with
42 concepts and 88 edges. FCA also produced 19 im-
plications in the DG basis, among which 10 implications
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Table 3. Incidence matrix of the TB training dataset.

PC SP MC BS CS WL NS NA CP SB TC TN TB

Obj 1 × × × × × × ×
Obj 2 × × × × × × × ×
Obj 3 × × × × × × × × × ×
Obj 4 × × × × × ×
Obj 5 × × × × × × ×
Obj 6 × × × × × × × × ×
Obj 7 × × × × × × × × ×
Obj 8 × × × ×
Obj 9 × ×
Obj 10 × × × × × × × × ×
Obj 11 × × × × × ×
Obj 12 × × × × ×
Obj 13 × × × × ×
Obj 14 × × × × × × × × ×
Obj 15 ×
Obj 16 × × × × × × × × × ×
Obj 17 × × × × × × × ×
Obj 18 × × × × × × ×
Obj 19 × × × ×
Obj 20 × × × × ×
Obj 21 × ×

Table 5. Subsuming expert rules.

Expert rule
number

Implication
number in FCA

Implication
number in
RP-FCA

k = 6, t = 0.5

Implication
number in
RP-FCA

k = 6, t = 0.8

Implication
number in
RP-FCA

k = 3, t = 0.5

Implication
number in
RP-FCA

k = 3, t = 0.8

1 5 5 4 6 5
2 6 5 4 6 5, 7
3 7 6 5,7 7 7
4 5, 9 5, 8 4,11 6,8 5, 6
5 4, 5, 9 5 4 6 5, 8
6 5, 9 5 4,10 6 5, 9
7 8 7 9, 10 – 8, 9
8 5 5 4, 12 6 5, 8

infer TB as shown in Table 9. Implications 5–10 are
used in subsuming expert rules as shown in Table 5. We
compared the performance of RP based FCA with SVD
based FCA (Aswani Kumar and Srinivas, 2010b). Table
10 summarizes the number of concepts, edges, implica-
tions in the DG basis, new rules, the height of the con-
cept lattice and the number of expert rules subsumed us-
ing FCA, RP-FCA and SVD-FCA. From this summary
we can understand that, even with fewer concepts, RP-
FCA, except (k = 3, t = 0.8), is able to subsume all
the expert rules and produce new implications similarly
to SVD-FCA.

The next step of our analysis is to verify the quality
of the new implications obtained using RP-FCA and com-
pare them with that of SVD-FCA. Table 11 shows the test
dataset which contains symptoms of 10 patients and treat-
ing doctors’ conclusion on the presence of TB for each of

the patient. Expert rules and implications produced from
FCA, RP-FCA and SVD-FCA with different values of k
and t are compared on the test dataset, and their perfor-
mance results are summarized in Table 12. From Table 11
we can identify that, among 10 patients, treating doctors
confirmed TB for 9 patients (23 to 31). However, expert
rules confirmed the disease for 7 patients and did not con-
firm the disease for 1 patient (Patient 22). Expert rules
failed to confirm TB for Patients 30 and 31. Hence the
diagnosis accuracy of expert rules is 80%.

Next we analyzed the implications obtained by ap-
plying FCA, RP-FCA and SVD-FCA. From Table 12 we
can understand that FCA, RP-FCA (excluding k = 3,
t = 0.8) and SVD-FCA correctly identified the presence
or absence of TB for 9 patients. Patient 30 has only one
symptom—weight loss. However, for this patient, doc-
tors’ diagnosis revealed TB. Rules produced from FCA,
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Table 10. Summary of FCA results on TB data.

Concepts Edges No. of implications
in the DG basis

Height of the
lattice

No. of new
implications

No. of expert
rules subsumed

FCA 101 253 33 11 9 8
RP-FCA k = 6, t = 0.5 67 152 28 9 8 8
RP-FCA k = 6, t = 0.8 51 115 21 8 12 8
RP-FCA k = 3, t = 0.5 42 80 18 10 8 7
RP-FCA k = 3, t = 0.8 42 88 19 8 10 8

SVD-FCA k = 6, t = 0.5 98 247 31 11 9 8
SVD-FCA k = 6, t = 0.3 74 177 28 8 8 8
SVD-FCA k = 3, t = 0.5 44 89 18 9 6 8
SVD-FCA k = 3, t = 0.8 32 62 19 7 9 7

Table 11. Incidence matrix of TB test data.

PC SP MC BS CS WL NS NA CP SB TC TN TB

Obj 22 × × ×
Obj 23 × × × × × × × × ×
Obj 24 × × × × × × × × × ×
Obj 25 × × × × × × × × × ×
Obj 26 × × × × × × × × ×
Obj 27 × × × × × × × × × ×
Obj 28 × × × × × × × ×
Obj 29 × × × × × ×
Obj 30 × ×
Obj 31 × × × ×

Table 12. Performance comparisons of FCA, RP-FCA and SVD-FCA on TB test data.

Patient
Doctors’
assess-
ment

Expert
rules

FCA
RP-FCA
k = 6,
t = 0.5

RP-FCA
k = 6,
t = 0.8

RP-FCA
k = 3,
t = 0.5

RP-FCA
k = 3,
t = 0.8

SVD-
FCA

k = 6,
t = 0.5

SVD-
FCA

k = 6,
t = 0.8

Obj 22 – – – – – – TB – –
Obj 23 TB TB TB TB TB TB TB TB TB
Obj 24 TB TB TB TB TB TB TB TB TB
Obj 25 TB TB TB TB TB TB TB TB TB
Obj 26 TB TB TB TB TB TB TB TB TB
Obj 27 TB TB TB TB TB TB TB TB TB
Obj 28 TB TB TB TB TB TB TB TB TB
Obj 29 TB TB TB TB TB TB TB TB TB
Obj 30 TB – – – – – – – –
Obj 31 TB – TB TB TB TB TB TB TB

Performance 80% 90% 90% 90% 90% 80% 90% 90%

Table 14. Incidence matrix of HP training data.

OH BV DZ NU NB OW FH LR HP

Obj 1 × × × × ×
Obj 2 × × × × × ×
Obj 3 × × × × × ×
Obj 4 × × × × ×
Obj 5 × × × × × ×
Obj 6 × × × × × × ×
Obj 7 × X × × ×
Obj 8 × × × × × × ×
Obj 9 × × ×

Obj 10 × × × ×
Obj 11 × × × ×
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Table 7. Implications obtained from TB training data with RP
k = 6 and t = 0.8.

Sl. no. Implication
No. of objects for which

the implication holds
Implications NOT part of expert rules

1 CS → TB 0
2 NS CP → TB 6
3 WL TN → TB 4

Implications part of expert rules
4 BS → TB 0
5 PC NS → TB 4
6 SP NS → TB 4
7 WL NS → TB 7
8 NA CP → TB 6
9 WL CP → TB 7

10 SB → TB 1
11 TC → TB 0
12 SP TN → TB 2

Table 8. Implications obtained from TB training data with RP
k = 3 and t = 0.5.

Sl. no. Implication
No. of objects for

which the
implication holds

Implications NOT part of expert rules
1 CS → TB 0
2 NS CP → TB 10
3 WL NA TN → TB 11
4 NS TN → TB 12
5 PC WL CP SB TN → TB 4

Implications part of expert rules
6 BS → TB 0
7 WL NS → TB 11
8 TC → TB 2

Table 9. Implications obtained from TB training data with RP
k = 3 and t = 0.8.

Sl. no. Implication
No. of objects

implication holds
Implications NOT part of expert rules

1 CS → TB 0
2 WL TN → TB 6
3 NA TN → TB 6
4 PC SP MC WL NA → TB 2

Implications part of expert rules
5 BS → TB 0
6 TC → TB 0
7 NS → TB 6
8 CP → TB 6
9 SB → TB 0

10 SP TN → TB 2

RP-FCA and SVD-FCA failed to confirm the disease for
this patient. Implication from RP-FCA (k = 3, t = 0.8)
confirmed TB for Patient 22 wrongly. From this analysis
we can infer that, with the reduced context, implications
from RP-FCA are able to subsume all the expert rules and

Fig. 2. Concept lattice of the TB training context with RP k =
6, t = 0.5.

Fig. 3. Concept lattice of the TB training context with RP k =
6, t = 0.8.

diagnose TB better than expert rules and similarly to FCA
and SVD-FCA.

4.2. Experiments on hypertension data. The hyper-
tension dataset includes training data of 11 patients and
testing data of 10 patients for various symptoms of HP
listed in Table 13. However, expert rules are not available
for this disease. Table 14 shows the formal context of HP
training data. Figure 4 shows the concept lattice structure
obtained by applying FCA on the training context.

The lattice structure is of height 7 and contains 24
concepts with 42 edges. FCA also produced 11 implica-
tions in the DG basis, out of which we considered 4 impli-



752 Ch. Aswani Kumar

Table 13. HP symptoms.

No. Symptom Abbreviation

1 Persistent occipital headache OH
2 Blurred vision BV
3 Dizziness DZ
4 Nausea NU
5 Nose bleed NB
6 Overweight OW
7 Family hypertension FH
8 Lifestyle risk LR

cations, listed in Table 15, that infer HP. The HP training
binary incidence matrix shown in Table 14 is of size 11×9
with rank 9. We applied RP on this matrix choosing the
number of projections k to be 3 and the binary threshold
limit t to be 0.5 and obtained a reduced context. FCA on
this reduced context produced a lattice structure, shown in
Fig. 5, having a height of 7 and containing 17 concepts
with 26 edges.

Fig. 4. Concept lattice of the HP training context.

FCA also produced 12 implications in the DG basis
out of which 4 implications listed in Table 15 infer HP. For
further analysis we applied RP with k = 3 and t = 0.8 on
the HP training binary incidence matrix. Six implications
that infer HP are listed in Table 15. For comparative study
we applied SVD on the HP training matrix with different
values the number of projections (k) and binary threshold
limits (t). Table 16 summarizes the number of concepts,

Table 15. Implications from HP training data.

Sl. no. Implication
No. of objects

implication holds

Implications from FCA on HP training data
1 DZ → HP 10
2 NU → HP 3
3 NB → HP 3
4 OW → HP 3
Implications from RP-FCA k = 3, t = 0.5

1 BV → HP 4
2 DZ → HP 9
3 NB → HP 3
4 NU → HP 2
Implications from RP-FCA k = 3, t = 0.8

1 OH → HP 5
2 BV → HP 1
3 DZ → HP 6
4 NU → HP 2
5 NB → HP 0
6 OW → HP 1

Fig. 5. Concept lattice of the HP training context with RP k = 3
t = 0.5.

edges, the height of lattice structures, the number of im-
plications in the DG basis and the number of new impli-
cations that make positive conclusions about HP, obtained
by applying FCA on the original and reduced contexts.

The next step of our analysis is to verify the qual-
ity of the new knowledge in the form of rules produced
from FCA, RP-FCA and SVD-FCA based reduced con-
texts. Table 17 lists the binary formal context of HP test



Knowledge discovery in data using formal concept analysis and random projections 753

Table 16. Summary of the implications from HP data.

Concepts Edges Implications in the
DG basis

Height of the
lattice

No. of new
rules

FCA 24 42 11 7 4
RP-FCA k = 3, t = 0.5 17 26 12 7 4
RP-FCA k = 3, t = 0.8 8 10 11 4 6

SVD-FCA k = 3, t = 0.5 13 19 11 5 5
SVD-FCA k = 3, t = 0.8 12 16 9 6 5

Table 17. Incidence matrix of HP test data.

OH BV DZ NU NB OW FH LR HP

Obj 12 × × × × × ×
Obj 13 × × × × ×
Obj 14 × × ×
Obj 15 × × × × × ×
Obj 16 × × × ×
Obj 17 × × × × × × × ×
Obj 18 × × × ×
Obj 19 ×
Obj 20 × ×
Obj 21 × × × × ×

Table 18. Performance comparisons of FCA and SVD-FCA on HP test data.

Patient
Doctors’

assessment
FCA

RP-FCA
k = 3,
t = 0.5

RP-FCA
k = 3,
t = 0.8

SVD-FCA
k = 3,
t = 0.5

SVD-FCA
k = 3,
t = 0.8

Obj 12 HP HP HP HP HP HP
Obj 13 HP HP HP HP HP HP
Obj 14 HP HP – HP HP HP
Obj 15 HP HP HP HP HP HP
Obj 16 HP HP HP HP HP HP
Obj 17 HP HP HP HP HP HP
Obj 18 HP HP HP HP HP HP
Obj 19 HP – – – – –
Obj 20 – HP HP HP HP HP
Obj 21 HP – HP HP HP HP

Performance 70% 70% 80% 80% 80%

Table 19. TB and HP datasets results.

True Positive
(TP)

True Negative
(TN)

False Positive
(FP)

False Negative
(FN)

Outcomes from the TB dataset
Expert rules 7 1 0 2

FCA 8 1 0 1
RP-FCA k = 6, t = 0.5 8 1 0 1
RP-FCA k = 6, t = 0.8 8 1 0 1
RP-FCA k = 3, t = 0.5 8 1 0 1
RP-FCA k = 3, t = 0.8 8 0 1 1

SVD-FCA k = 6, t = 0.5 8 1 0 1
SVD-FCA k = 6, t = 0.8 8 1 0 1

Outcomes from the HP dataset
FCA 7 0 1 2

RP-FCA k = 3, t = 0.5 7 0 1 2
RP-FCA k = 3, t = 0.8 8 0 1 1

SVD-FCA k = 3, t = 0.5 8 0 1 1
SVD-FCA k = 3, t = 0.8 8 0 1 1
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Table 20. Specificity and sensitivity analysis of results on TB data.

Expert
rules

FCA
RP-FCA
k = 6,
t = 0.5

RP-FCA
k = 6,
t = 0.8

RP-FCA
k = 3,
t = 0.5

RP-FCA
k = 3,
t = 0.8

SVD-FCA
k = 6,
t = 0.5

SVD-FCA
k = 6,
t = 0.8

Specificity 100% 100% 100% 100% 100% 0% 100% 100%

Sensitivity 78% 89% 89% 89% 89% 89% 89% 89%

No. of new im-
plications

– 3 3 3 5 4 4 4

Table 21. Specificity and sensitivity analysis of results on HP data.

FCA
RP-FCA
k = 3,
t = 0.5

RP-FCA
k = 3,
t = 0.8

SVD-FCA
k = 3,
t = 0.5

SVD-FCA
k = 3,
t = 0.8

Specificity 0% 0% 0% 0% 0%
Sensitivity 78% 78% 89% 89% 89%

data containing different symptoms and treating doctors’
conclusion about the presence or absence of HP for a set
of 10 patients. It is clear from Table 17 that, out of 10
patients, 9 have the disease, HP. Table 18 summarizes the
performance of new implications derived from FCA, RP-
FCA and SVD-FCA. It is clear from Table 18 that impli-
cations produced from FCA correctly diagnosed the pres-
ence or absence of the disease for 7 patients. Rules dis-
covered from RP-FCA (k = 3, t = 0.8) produced 80%
accuracy, similarly to SVD-FCA. We can observe from
Table 18 that RP-FCA (k = 3, t = 0.8) failed to give
correct diagnosis for Patients 19 and 20. Though treat-
ing doctors concluded the presence of HP for Patient 19,
implications from FCA, RP-FCA and SVD-FCA failed to
confirm the presence of HP due to the fact that the patient
does not have any symptoms listed in Table 13.

An interesting result can be observed for Patient 20
who has persistent occipital headache and dizziness symp-
toms, and doctors’ diagnosis did not conclude the dis-
ease. However, implications from FCA on the original
context confirmed the disease for Patient 20. Though this
False Positive (FP) result remains with RP-FCA (k = 3,
t = 0.8), the number of False Negative (FN) outcomes
decreased, similarly as in SVD-FCA. From Table 18 we
can also observe that implications from FCA on the orig-
inal context fail to detect HP for Patient 21. Implications
derived from RP-FCA and SVD-FCA confirmed the dis-
ease. It is interesting to observe that RP-FCA (k = 3,
t = 0.5) correctly identified the presence or absence of the
disease for 7 patients. Similarly to FCA, RP-FCA (k = 3,
t = 0.5) produced one false positive and two false nega-
tive conclusions. To conclude, FCA on the RP based re-
duced context with k = 3, t = 0.8 performed better than
FCA and similarly to FCA on the SVD based HP reduced
context.

5. Analysis

This paper has proposed an RP based FCA for
a KDD task. Experiments are conducted on
healthcare data using Matlab 6.5 and ConExp
(http://conexp.sourceforge.net/). Dur-
ing the entire analysis, our focus was on the implications
with 100% confidence and support of zero due to the
fact that the data are related to healthcare. A low support
implication in DG basis can still be valid if it does not
contradict any example of the context. Though the entire
analysis of FCA, RP-FCA on TB data produced the
implication BS → TB with low support, it was observed
by treating doctors that bloody sputum is a very serious
symptom of TB. The analysis may result in false positive
outcomes when the implications with low support are
used. However in the case of healthcare, the ethical
challenge is that false negative outcomes are of greater
risk than FP outcomes. Table 19 summarizes the number
of True Positive (TP), True Negative (TN), false positive
and false negative outcomes obtained on TB and HP
datasets using different methods. It is clear from Table
19 that, on the HP data, the number of FN outcomes is
decreased and that of TP outcomes is increased by using
implications from RP-FCA (k = 3, t = 0.8). On the TB
dataset it is clear that RP-FCA performed similarly to
FCA and SVD-FCA.

For further investigations we tested the specificity
and sensitivity of the results obtained in Table 19. Speci-
ficity measures the proportion of the TNs which are cor-
rectly classified. Sensitivity indicates the proportion of
the TPs which are correctly classified. Tables 20 and 21
present the specificity and sensitivity of the results shown
in Table 19. Specificity analysis on the TB test data re-
sults indicate that expert rules and implications from FCA,
RP-FCA (except k = 3, t = 0.8) and SVD-FCA are suc-

http://conexp.sourceforge.net/
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cessful in diagnosing all healthy people as healthy. Since
implications from RP-FCA (k = 3, t = 0.8) did not cor-
rectly diagnose the only available healthy patient (Patient
22), its specificity is zero. However, on HP test data, the
specificity of all methods is zero since Patient 20 is the
only healthy person and implications from FCA, RP-FCA
and SVD-FCA wrongly diagnosed him as an HP patient.
Sensitivity analysis on TB test data shows that RP-FCA
identified more TPs than expert rules, similarly to FCA
and SVD-FCA. Sensitivity analysis on HP test data indi-
cates that RP-FCA (k = 3, t = 0.8) identified more TPs
than FCA, similarly to SVD-FCA.

From Table 10 it is clear that, on the TB dataset,
the numbers of implications generated by FCA, RP-FCA
(k = 6, t = 0.8; k = 3, t = 0.8), SVD-FCA (k = 6,
t = 0.5; k = 3, t = 0.8) are greater than the number
of rules given by experts. From Table 16 we can observe
that, on HP data, RP-FCA (k = 3, t = 0.8) and SVD-FCA
produced more implications than FCA. From the impli-
cation tables we can understand that all the implications
produced from RP-FCA used a smaller number of symp-
toms for diagnosis while expert rules about TB used more
symptoms. On the TB dataset, implications produced by
RP-FCA (except k = 3, t = 0.5) subsumed all the expert
rules. This can be considered another significant result as
the rules suggested by experts are part of accepted medi-
cal knowledge. Table 10 lists also the number of new im-
plications produced by FCA, RP-FCA and SVD-FCA on
the TB dataset. None of these implications match expert
rules, hence they are considered new knowledge about
the disease. However, on the HP dataset, since no ex-
pert rules are available, all the implications produced by
FCA, RP-FCA and SVD-FCA are considered new knowl-
edge. Future work may concentrate on mining indirect
associations using FCA (Kazienko, 2009) and mining as-
sociations with background knowledge and priorities of
the attributes (Belohlavek and Vychodil, 2009) with other
reduction methods (Aswani Kumar, 2009; Aswani Kumar
and Srinivas, 2010c).

6. Conclusions

A central issue in FCA based KDD is the size of the
formal context. To address this issue, we proposed an
RP based FCA. Experiments were conducted on two real
world healthcare datasets. Knowledge derived in the form
of attribute implications from the RP based FCA reduced
context was analyzed and compared with that of SVD
based FCA. A summary of the findings is as follows:

• RP based FCA is computationally less costly than
SVD based FCA.

• Knowledge derived from the RP-FCA based reduced
TB context is able to subsume all the expert rules

and diagnose TB similarly to FCA and SVD-FCA
but better than expert rules.

• Knowledge derived from the RP-FCA based reduced
HP context (k = 3, t = 0.8) diagnosed the disease
similarly to SVD-FCA but better than FCA.

• Specificity and sensitivity analysis on the results ob-
tained confirmed the above observations.
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