
Int. J. Appl. Math. Comput. Sci., 2011, Vol. 21, No. 4, 717–731
DOI: 10.2478/v10006-011-0057-3

EVOLVING SMALL–BOARD GO PLAYERS USING COEVOLUTIONARY
TEMPORAL DIFFERENCE LEARNING WITH ARCHIVES

KRZYSZTOF KRAWIEC, WOJCIECH JAŚKOWSKI, MARCIN SZUBERT
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We apply Coevolutionary Temporal Difference Learning (CTDL) to learn small-board Go strategies represented as weighted
piece counters. CTDL is a randomized learning technique which interweaves two search processes that operate in the
intra-game and inter-game mode. Intra-game learning is driven by gradient-descent Temporal Difference Learning (TDL),
a reinforcement learning method that updates the board evaluation function according to differences observed between
its values for consecutively visited game states. For the inter-game learning component, we provide a coevolutionary
algorithm that maintains a sample of strategies and uses the outcomes of games played between them to iteratively modify
the probability distribution, according to which new strategies are generated and added to the sample. We analyze CTDL’s
sensitivity to all important parameters, including the trace decay constant that controls the lookahead horizon of TDL, and
the relative intensity of intra-game and inter-game learning. We also investigate how the presence of memory (an archive)
affects the search performance, and find out that the archived approach is superior to other techniques considered here and
produces strategies that outperform a handcrafted weighted piece counter strategy and simple liberty-based heuristics. This
encouraging result can be potentially generalized not only to other strategy representations used for small-board Go, but
also to various games and a broader class of problems, because CTDL is generic and does not rely on any problem-specific
knowledge.
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1. Introduction

Despite having been a subject of artificial intelligence
research for more than 40 years, the game of Go re-
mains a great challenge as the best computer players con-
tinue to yield to professionals. This is a result of the
huge combinatorial complexity, which is much higher for
this game than for other popular two-player determinis-
tic board games—there are about 10170 board states and
the game tree has an average branching factor of around
200. These figures, together with other specific features
of Go, make it impossible to directly adopt techniques
that proved successful in other board games, like chess
or checkers (Mechner, 1998; Johnson, 1997).

Many of canonical Go-playing programs are pre-
cisely tuned expert systems founded on a thorough human
analysis of the game. Such programs typically employ a
multitude of rules elicited from professional Go players in
order to recognize particular board patterns and react to
them. However, this knowledge-based approach is con-
strained by the extent and quality of the available knowl-

edge, and by the designer’s ability to articulate it in a play-
ing program. These shortcomings, which manifest them-
selves when applying the knowledge-based methodology
to most games, turn out to be particularly painful for Go.

No wonder that some computer Go researchers aban-
don this cognitive perspective, which aims at mimicking
expert reasoning, in favor of a behavioral perspective that
does not care much whether the player’s perception of
the game state and internal strategy representation exhibit
analogies to human players. Approaches that belong to
the latter group typically assume that a player has no ini-
tial knowledge about game specifics (apart from the game
definition) and involve some form of learning to automati-
cally harvest it from the outcomes of games played against
opponents. The major differences between the representa-
tives of this trend consist in when (in the course of learn-
ing) the outcomes of such interactions are transformed
into knowledge and how it is done.

Such a learning task can be formalized as maximiza-
tion of the expected outcome of the game (or the probabil-
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ity of winning for binary-outcome games), which is some
function of strategy parameters. The form of that func-
tion is unknown to the learner and, for nontrivial games
like Go, very complex, which precludes any attempts at
solving this problem analytically. Also, the sheer size
of the domain of that function (the search space) is im-
mense even for simple representations of the game strat-
egy. Thus, some form of random sampling of the search
space becomes inevitable, which explains the popularity
of Monte Carlo (MC) techniques in this context (see, e.g.,
Müller, 2009).

The primary contribution of this paper is a method
that assumes the aforementioned behavioral perspective
and employs a randomized search simultaneously in two
different modes: local (intra-strategy) and global (inter-
strategy). To conduct the search in the former mode, we
employ gradient-based temporal difference learning that
works with a single strategy at a time and trains it by a
randomized self-play. For the inter-strategy mode, our
method relies on coevolutionary learning which maintains
a population of strategies, makes them play against each
other, and uses the outcomes of games to guide the process
of random sampling of the search space in subsequent it-
erations. The proposed approach, termed Coevolutionary
Temporal Difference Learning (CTDL), hybridizes thus
two radically different techniques that complement each
other in terms of exploration and exploitation of the search
space.

This paper is organized as follows. In Section 2,
we shortly present the game of Go and its customiza-
tion adopted for this study. In Section 3, we detail the
CTDL approach, starting from describing its constituents:
temporal difference learning and coevolutionary learn-
ing. Section 5 presents the results of an extensive com-
putational experiment and their analysis. In Sections 6
and 7, we discuss the results and conclude this contribu-
tion. Where appropriate, we refer to and review the related
work; a comprehensive review of all AI methods applied
to computer Go can be found in the work of Bouzy and
Cazenave (2001).

2. Game of Go

The game of Go is believed to have originated about 4000
years ago in Central Asia, which makes it one of the old-
est known board games. Although the game itself is very
difficult to master, its rules are relatively simple and com-
prehensible. For this reason the famous chess player, Ed-
ward Lasker summarized Go in the following way: The
rules of Go are so elegant, organic and rigorously logical
that if intelligent life forms exist elsewhere in the universe
they almost certainly play Go (Lasker, 1960).

2.1. Original game rules. Go is played by two play-
ers, black and white, typically on a 19 × 19 board. Play-

ers make moves alternately, blacks first, by placing their
stones on unoccupied intersections of the grid formed by
the board. The player who is to move may pass his/her
turn. The game ends if both players pass consecutively.

In a broad sense, the objective of the game is to con-
trol more territory than the opponent at the end of the
game. This can be achieved by forming connected stone
groups enclosing as many vacant points and the oppo-
nent’s stones as possible. A stone group is a set of stones
of the same color adjacent to each other; empty intersec-
tions adjacent to a group constitute its liberties. When a
group loses its last liberty, i.e., becomes completely sur-
rounded by the opponent’s stones or edges of the board,
then it is captured and removed.

A legal move consists in placing a piece on an
empty intersection and capturing enemy groups which are
left without liberties. Additional restrictions on making
moves concern suicides and the ko rule. A suicide is a po-
tential move that would reduce the number of liberties of
the player’s own group to zero. Moves leading to suicides
are illegal. The ko rule states that a move that recreates
a previous board state (i.e., the arrangement of stones on
the board) is not allowed either.

The winner is the player who scores more points at
the end of the game. The scores are determined using a
scoring system agreed upon before the game. The two
popular systems include area counting (Chinese) and ter-
ritory counting (Japanese). Both ways of calculating the
score of a player take into consideration the number of
empty intersections surrounded by the player (the player’s
territory). This figure is augmented by the number of the
player’s stones on the board in the area counting system,
or by the number of captured stones (prisoners) in the
territory counting system. Throughout this study we as-
sume using the Chinese scoring scheme with no komi (i.e.,
points given in advance to one of the players). The reader
interested in a more detailed description of Go rules is re-
ferred to the book by Bozulich (1992).

2.2. Adopted computer Go rules. There are a few
noteworthy issues about the rules of Go that make devel-
oping computer players particularly difficult. For this rea-
son, we restrict our research to the following, simplified
version of Go.

First of all, the immense cardinality of the state space
and the large branching factor mentioned in Introduction
render the 19 × 19 board Go intractable for many algo-
rithms. Fortunately, the game rules are flexible enough to
be easily adapted to smaller boards without loss of the un-
derlying ‘spirit’ of the game, so in a great part of studies
on computer Go the board is downgraded to 9×9 or 5×5.
Following Lucas and Runarsson (2006) as well as Lub-
berts and Miikkulainen (2001), we consider playing Go
on a 5 × 5 board (see Fig. 1). Although the small-board
version is significantly different from the original, it can
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the still be used for educational purposes and to demon-
strate basic concepts of the game.

Fig. 1. Small-board version of Go.

A more subtle difficulty in adopting Go rules to com-
puter programs concerns the fact that human players end a
game after they agree that they can gain no further advan-
tages. In such situations they use a substantial amount of
knowledge to recognize particular intersections as implic-
itly controlled. According to the game rules, if it is impos-
sible to prevent a group from being captured, it is not nec-
essary to capture it explicitly in order to gain its territory.
Such a group is considered dead and it is removed at the
end of the game when both players decide which groups
would inevitably be captured. Because determining which
stones are dead is nontrivial for computer Go players, we
assume that all groups on the board are alive and that cap-
turing is the only way to remove the opponent’s group. As
a consequence, games are continued until all intersections
are explicitly controlled and, thus, are much longer than
those played by humans.

Finally, in some rule sets (including Chinese rules
that we employ), the ko rule is superseded by super-ko
that forbids repetition of board states across a single game.
Recurrently appearing states imply cycling and, theoreti-
cally, an infinite game. However, strict implementation of
super-ko requires storing all previous board configurations
and comparing each of them to the current state. Since
most of possible cycles are not longer than 3, we use a
reasonable approach in which we remember just two pre-
vious board configurations. However, longer cycles can
still occur, so to ensure that the game ends, an upper limit
of 125 on the total number of moves is additionally im-
posed. Exceeding this limit results in declaring the game’s
result as a draw (Lubberts and Miikkulainen, 2001).

3. Methods

All players considered in the remaining part of this paper
rely on the Weighted Piece Counter (WPC) to represent
their strategies. The WPC is a matrix (unrolled here to a
vector for brevity) that assigns a weight wi to each board
intersection i and uses a scalar product to calculate the
utility f of a board state b:

f(b) =
s×s∑

i=1

wibi, (1)

where s is the board size and bi is +1, −1, or 0 if, re-
spectively, intersection i is occupied by the black player
or the white player, or remains empty. This means that
we employed the simplest form of the direct coding of the
board state termed Koten board representation by Mayer
(2007), in which exactly one input for each intersection is
provided for the evaluation function f . Although such an
input signal does not carry information about the states
of neighboring intersections, which seems to be essen-
tial in Go, the direct board encoding is frequently used
in related studies (Runarsson and Lucas, 2005; Schrau-
dolph et al., 2001). While the Go board has eight axes of
symmetry and the WPC could be simplified to cover just
1/8 of the board, we do not reveal this fact to the learn-
ers and let them learn WPC for the entire board, follow-
ing the behavioral perspective mentioned in Introduction.
The players interpret the values of f in a complementary
manner: the black player prefers moves leading to states
with larger values, while smaller values are favored by the
white player. Alternatively, the WPC may be viewed as an
artificial neural network comprising a single linear neuron
with inputs connected to board intersections.

The fact that the WPC weighs the occupancy of
each board intersection independently makes it probably
the least sophisticated strategy representation for board
games. One can also argue whether the WPC is appropri-
ate for the rather weakly-positional game of Go (as com-
pared to, e.g., Othello). Therefore, in objective terms, we
do not anticipate the strategies elaborated in the follow-
ing experiment to beat the top-ranked computer players.
However, in the context of this study, this should not be
perceived as a hindrance, as our primary goal is to inves-
tigate the interplay between coevolutionary learning and
TDL in the hybridized approach, and the potential impact
it has on the player’s performance as measured against the
constituent strategies, with a hope that at least some of
the conclusions can be generalized to more sophisticated
strategy representations.

Still, the WPC’s simplicity and its positional charac-
ter bring substantial advantages, fast board evaluation be-
ing the most prominent one. WPC strategies can also be
easily interpreted and compared by inspecting the weight
values. For instance, Table 1 presents the weight matrix
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Table 1. WPC strategy of the heuristic player.

−0.10 0.20 0.15 0.20 −0.10
0.20 0.25 0.25 0.25 0.20
0.10 0.30 0.25 0.30 0.10
0.20 0.25 0.25 0.25 0.20

−0.10 0.20 0.15 0.20 −0.10

of a sample player for 5 × 5 Go that clearly aims at occu-
pying the center of the board while avoiding the corners.

3.1. Temporal difference learning. Since the influen-
tial work of Tesauro (1995) and the success of his TD-
Gammon player learned through a self-play, Temporal
Difference Learning (TDL) has become a well-known ap-
proach for elaborating game strategies with little or no
help from human knowledge or expert strategies given
a priori. TDL is a method proposed by Sutton (1988),
but its origins go back to the famous checkers playing
program by Samuel (1959) (although Bucci (2007) sug-
gests that it was rather the first example of coevolu-
tion). Impressive results obtained by Temporal differ-
ence (TD) methods applied to Reinforcement Learning
(RL) problems have triggered off a lot of research in-
cluding their applications to computer Go (Schraudolph
et al., 2001; Lubberts and Miikkulainen, 2001; Lucas and
Runarsson, 2006; Mayer, 2007).

The use of RL techniques for learning game strate-
gies stems from modeling a game as a sequential decision
problem, where the task of the learner is to maximize the
expected reward in the long run (game outcome). The es-
sential feature of this scenario is that the actual (true) re-
ward is not known before the end of the game, so some
means are necessary to propagate that information back-
wards through the series of states, assign credit to partic-
ular decisions, and guide intra-game learning.

Though the two most popular RL approaches, Monte
Carlo and temporal difference methods (particularly the
TD(0) algorithm) represent two extremities in implement-
ing this process (Sutton and Barto, 1998), they share the
underlying idea of estimating chances of winning for par-
ticular states i.e., finding the state value function) using
the sample of experience. In MC-based methods it is in-
dispensable to wait until the end of the game when its
exact outcome is known and can be back-propagated to
contribute to the predictions made for encountered states.
TD(0), on the contrary, looks only one step ahead, ana-
lyzes the differential information about the values of both
states (the error between temporally successive predic-
tions), and uses it to update the estimate of the current
state’s value.

TD(λ) is an elegant umbrella that embraces the above
special cases of TD(0) and MC (which is equivalent to

TD(1)). It makes it possible to smoothly adjust the looka-
head ‘horizon’ by tuning the parameter λ, which refers
to the so-called eligibility trace and can be interpreted
as a trace decay factor. Since the acquired knowledge
should be generalized across the space of possible states,
the function approximation in a gradient-descent TD(λ)
algorithm is used to predict state values. Technically, the
prediction of the game outcome Pt at a certain time step
t can be considered a function of two arguments: the cur-
rent state of the game and the vector of modifiable weights
w, which are arbitrary parameters modified in the process
of learning. In each step, the weights are updated using
the following rule:

Δwt = α(Pt+1 − Pt)
t∑

k=1

λt−k∇wPk, (2)

where the gradient ∇wPt is the vector of the partial
derivatives of Pt with respect to each weight. The param-
eter α is the learning rate, while the trace decay λ ∈ [0, 1]
determines the rate of ‘aging’ of past gradients, i.e., the
rate at which their impact on current update decays when
reaching deeper into history. This general formulation of
TD takes into account the entire sequence of states and
the corresponding predictions that appeared in the single
game. In the case of TD(0), the weight update is deter-
mined only by its effect on the most recent prediction Pt:

Δwt = α(Pt+1 − Pt)∇wPt. (3)

In this case, Pt takes the form of a board evaluation
function f computed as a dot product of the board state
vector bt and the WPC weights vector w (see Eqn. (1)).
The value returned by f is subsequently squeezed to the
interval [−1, 1] using the hyperbolic tangent. This map-
ping is necessary to obtain the same binary outcome of
the game for multiple, linearly independent final states of
the board. Eventually, Pt is calculated using the following
equation:

Pt = tanh(f(bt)) =
2

exp(−2f(bt)) + 1
− 1. (4)

By applying (4) to the TD(0) update rule (3) and
calculating the gradient, we obtain the desired correction
of weight wi at time step t:

Δwi,t = α(Pt+1 − Pt)(1 − P 2
t )bi. (5)

If the state observed at time t + 1 is terminal, the ex-
act outcome of the game is used instead of the prediction
Pt+1. The outcome is +1 if the winner is black, −1 if it
white, and 0 when the game ends in a draw.

The process of learning consists in applying the
above formula to the WPC vector after each move. The
training data for that process, i.e., a collection of games,
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each of them being a sequence of states b1, b2, . . ., is ac-
quired via a self-play, as such a technique does not require
anything besides the learning system itself.

Go is a deterministic game and therefore the course
of the game between a particular pair of deterministic
players is always the same. This feature reduces the num-
ber of game trees to be explored and makes learning inef-
fective. To remedy this situation, at each turn, a random
move is forced with a certain probability. Thanks to ran-
dom moves, players are confronted with a wide spectrum
of possible behaviour of their opponents, including quite
unexpected ones, which makes them more robust and ver-
satile.

3.2. Coevolutionary learning. The temporal differ-
ence learning approach presented above is a gradient-
based local search method that maintains a single model
of the learned phenomenon and, as such, has no built-in
mechanisms for escaping from local minima. Evolution-
ary computation, a global search neo-Darwinian method-
ology of solving learning and optimization problems, has
completely opposite characteristics: it lessens the problem
of local minima by maintaining a population of candidate
solutions (individuals), but has no means for calculating
individually adjusted corrections for each solution param-
eter. Therefore, it seems an attractive complementary al-
ternative for TD for learning game strategies.

However, one faces substantial difficulty when de-
signing a fitness function, an indispensable component of
an evolutionary algorithm that drives the search process,
for the task of learning game strategies. To properly guide
the search, the fitness function should objectively assess
the utility of the evaluated individual, which, in the case
of games, can be done only by playing against all possible
opponents strategies. For most games such an approach
is computationally intractable. Considering instead only
a limited sample of opponents lessens the computational
burden but biases the search. For this reason, a much more
appealing alternative from the viewpoint of game learning
is coevolution, where the individual’s fitness depends on
the results of interactions with other individuals from the
population. In learning game strategies, such an interac-
tion consists in playing a single game, and its outcome
increases the fitness of the winner while decreasing the
fitness of the loser. This evaluation scheme is typically
referred to as competitive coevolution (Angeline and Pol-
lack, 1993; Azaria and Sipper, 2005).

CoEvolutionary Learning (CEL) of game strategies
follows the competitive evaluation scheme and typically
starts with generating a random initial population of
player individuals. Individuals play games with each
other, and the outcomes of these confrontations determine
their fitness values. The best performing strategies are se-
lected, undergo genetic modifications such as mutation or
crossover, and their offspring replace some of (or all) for-

mer individuals. In practice, this generic scheme is sup-
plemented with various details, some of which relate to
evolutionary computation (population size, variation oper-
ators, selection scheme, etc.), while others pertain specif-
ically to coevolution (the way the players are confronted,
the method of fitness estimation, etc.). CEL embraces
a broad class of algorithms that have been successfully
applied to many two-person games, including backgam-
mon (Pollack and Blair, 1998), chess (Hauptman and Sip-
per, 2007), checkers (Fogel, 2002), Othello (Lucas and
Runarsson, 2006), NERO (Stanley et al., 2005), black-
jack (Caverlee, 2000), PONG (Monroy et al., 2006), and
Ant Wars (Jaśkowski et al., 2008a; 2008b). In particular,
Runarsson and Lucas (2005) used (1 + λ) and (1, λ) evo-
lution strategies to learn a strategy for the game of small-
board Go.

3.3. Coevolutionary learning with archives. As the
set of opponent strategies that an individual faces is lim-
ited by the population size, the evaluation scheme used in
pure CEL is still only a substitute for the objective fitness
function. The advantage of this approach when compared
with evolution with a fitness function based on a fixed
sample of strategies is that the set of opponents changes
with time (from one generation to another), so that in-
dividuals belonging to a particular lineage can together
face more opponents. In this way, the risk of biasing the
search towards an arbitrary direction is expected to be re-
duced. However, without some extra mechanisms, there
is no guarantee that the population will change in the de-
sired direction(s) or change at all. The latter scenario, lack
of progress, can occur when, for instance, the player’s
opponents are not challenging enough or much too dif-
ficult to beat. These and other undesirable phenomena,
jointly termed coevolutionary pathologies, were identified
and studied in the past (Watson and Pollack, 2001; Fi-
cici, 2004).

In order to deal with coevolutionary pathologies, co-
evolutionary archives that try to sustain progress were
introduced. A typical archive is a (usually limited in
size, yet diversified) sample of well-performing strategies
found so far. Individuals in a population are forced to play
against the archive members, who are replaced occasion-
ally, typically when they prove inferior to some popula-
tion members. Of course, an archive still does not guaran-
tee that the strategies found by evolution will be the best
in the global, objective sense, but this form of long-term
search memory enables at least some form of historical
progress (Miconi, 2009).

In this study we use Hall of Fame (HoF, cf. Rosin
and Belew, 1997), one of the simplest archive forms. HoF
stores all the best-of-generation individuals encountered
so far. The individuals in the population, apart from play-
ing against their peers, are also forced to play against ran-
domly selected players from the archive. In this way, an
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individual’s fitness is partially determined by confronta-
tion with past ‘champions.’ Additionally, we use the
archive as a source of genetic material: parent solutions
used to breed a new generation come either from the pop-
ulation or from the archive, with equal probability.

Most of the work referred to above involves a sin-
gle homogenous population of players, a setup called
one-population coevolution (Luke and Wiegand, 2002)
or competitive fitness environment (Angeline and Pol-
lack, 1993; Luke, 1998). It is worth pointing out that the
latest work on coevolution indicates that, even if the game
itself is symmetric, it can be beneficial to maintain in par-
allel two types of strategies: candidate solutions, which
are expected to improve as evolution proceeds, and tests,
whose main purpose is to differentiate solutions by defeat-
ing some of them. Recent contributions (Ficici and Pol-
lack, 2003; de Jong, 2005; 2007) demonstrate that such
design can improve search convergence, give better in-
sight into the structure of the search space, and in some
settings even guarantee monotonic progress towards the
selected solution concept.

3.4. Coevolutionary temporal difference learning.
The past results of learning WPC strategies for small-
board Go (Runarsson and Lucas, 2005) and Othello
(Lucas and Runarsson, 2006) demonstrate that TDL and
CEL exhibit complementary features. TDL learns much
faster and converges within several hundreds of games,
but then it stucks, and, no matter how many games it
plays, eventually fails to produce a well-performing strat-
egy. CEL progresses more slowly, but, if properly tuned,
outperforms TDL in the long run. Therefore, it sounds
reasonable to combine these approaches into a hybrid al-
gorithm exploiting advantages revealed by each method.

To benefit from the complementary advantages of
TDL and CEL we propose a method termed coevolution-
ary temporal difference learning. It maintains a popula-
tion of players and alternately performs TD learning and
coevolutionary learning. In the TD phase, each player is
subject to a TD(0) self-play. Then, in the CEL phase, indi-
viduals are evaluated on the basis of a round-robin tourna-
ment. Finally, a new generation of individuals is obtained
using standard selection and variation operators, and the
cycle repeats.

We reported our first results with CTDL in the work
by Szubert et al. (2009), where it was applied to learn
strategies of the game of Othello. The overall conclusion
was positive for CDTL, which produced strategies that,
on average, defeated those learned by TDL and CEL. En-
couraged by those results, we wondered whether CTDL
would prove beneficial also for other purposes, and de-
cided to apply it to the more challenging game of small-
board Go. Preliminary results of these efforts were pre-
sented in the paper by Krawiec and Szubert (2010), which
provides a complete account of this endeavor.

Other hybrids of TDL and CEL were occasionally
considered in the past. Kim et al. (2007) trained a pop-
ulation of neural networks with TD(0) and used the re-
sulting strategies as an input for a typical genetic al-
gorithm with mutation as the only variation operator.
Singer (2001) showed that reinforcement learning may
be superior to random mutation as an exploration mech-
anism. His Othello-playing strategies were 3-layer neu-
ral networks trained by interlacing reinforcement learn-
ing phases and evolutionary phases. In the reinforcement
learning phase, a round robin tournament was played 200
times with network weights modified after every move
using a backpropagation algorithm. The evolutionary
phase consisted of a round-robin tournament that deter-
mined each player’s fitness, followed by recombining the
strategies using feature-level crossover and mutating them
slightly. The experiment yielded a strategy that was re-
ported to be competitive with an intermediate-level hand-
crafted Othello player. However, no comparison with pre-
existing methods was presented. Also, given the propor-
tions of reinforcement learning and evolutionary learning,
it seems that Singer’s emphasis was mainly on reinforce-
ment learning, whereas in our CTDL it is quite the reverse:
reinforcement learning serves as a local improvement op-
erator for evolution.

4. Experimental setup

In order to evaluate the idea of hybridizing coevolution
with temporal difference learning, several experiments
comparing CTDL, CEL, TDL, and their extensions with
HoF were conducted. All algorithms were implemented
using our coevolutionary algorithms library called cECJ
(Szubert, 2010) built upon the Evolutionary Computation
in Java (ECJ) framework (Luke, 2010). It was assumed
that the uttermost element influencing the time of training
is the time required to play a game, so the time consumed
by such operations as selection, mutation, evaluation was
neglected. In other words, our unit of computational ef-
fort is a single game. To provide fair comparison, all runs
were stopped when the number of games played reached
2000000. For statistical confidence, each experiment was
repeated 25 times.

4.1. Algorithms and setup. For experiments, five
methods were prepared, each being a combination of
techniques described in the previous section: CEL, TDL
and HoF. Wherever possible, parameters taken directly
from our previous comparison of the same set of methods
(Szubert et al., 2009) were used. Detailed settings follow.

4.1.1. Basic coevolution (CEL). CEL uses a genera-
tional coevolutionary algorithm with a population of 50
individuals, each being a 5 × 5 WPC matrix initialized
randomly from the [−1, 1] range. In the evaluation phase,
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a round-robin tournament is played between all individ-
uals (including self-plays), with wins, draws, and losses
rewarded by 3, 1, and 0 points, respectively. For each pair
of individuals, two games are played, with players swap-
ping the roles of the black and the white player. The eval-
uated individuals are subject to tournament selection with
tournament size 5, and then, with probability 0.03, their
weights undergo Gaussian mutation (σ = 0.25). Next, in-
dividuals mate using one-point crossover, and the result-
ing offspring form the subsequent generation. As each
generation requires 50 × 50 games, each run lasts for 800
generations to get the total of 2000000 games.

4.1.2. Coevolution with an archive (CEL + HoF).
This setup extends the previous one with the HoF archive.
Each individual plays games with all 50 individuals from
the population and with 50 randomly selected individu-
als from the archive, so that its fitness is determined by
the outcomes of 100 games scored as in CEL. After each
generation, the individual with the highest fitness joins the
archive. The archive serves also as a source of genetic ma-
terial, as the first parent for crossover is randomly drawn
from it with probability 0.2. For this algorithm, 2000000
games translates into 400 generations.

4.1.3. Temporal difference learning (TDL). TDL is
an implementation of the gradient-descent temporal dif-
ference algorithm TD(λ) described in Section 3.1. The
weights are initially set to 0 and the learner is trained
solely through a self-play, with random moves occur-
ring with probability 0.1. The learning rate was set to
α = 0.01, which is a standard value for this method; the
value of trace decay λ will be determined in Section 5.

4.1.4. Coevolutionary temporal difference learning
(CTDL = TDL + CEL). CTDL combines CEL and
TDL as described in Section 3.4, with the CEL phase pa-
rameters described in 4.1.1 and the TDL phase parame-
ters described in 4.1.3. It alternates the TDL phase and
the CEL phase until the total number of games reaches
2000000. The individuals are initialized randomly like in
CEL. Note that TD(λ) is executed for all individuals in
the population. The exact number of generations depends
on the TDL–CEL ratio, which we define as the number of
self-played TDL games per one generation of CEL. For
example, if the TDL–CEL ratio is 8 (default), there are
50 × 50 + 8 × 50 = 2900 games per generation, which
leads to 690 generations.

4.1.5. Coevolutionary temporal difference learning
with an archive (CTDL + HoF = TDL + CEL + HoF).
This setup combines 4.1.2 and 4.1.4 and does not involve
any extra parameters.

4.2. Performance measures. It is widely known that
monitoring the progress of learning in the interactive do-
main is hard since, generally (and for Go in particu-
lar), there is no precise or easily computable objective
performance measure. A fully objective assessment re-
quires playing against all possible opponents, but their
sheer number of makes this option impossible. Previ-
ous researches used mainly external players as the ref-
erence strategies (Silver et al., 2007; Runarsson and Lu-
cas, 2005).

In this study, to monitor the progress, 50 times per
run (approximately every 40000 games), we appoint an
individual with the highest fitness (i.e., the subjectively
best strategy) as the best-of-generation individual and as-
sess its performance (for TDL, the single strategy main-
tained by the method is the best-of-generation by defini-
tion). This individual plays then against two opponents: a
predefined, human-designed WPC strategy, and a simple
non-WPC strategy. In both cases, the best-of-generation
plays 1000 games against the opponent strategy (500 as
black and 500 as white), and the resulting probability
of winning becomes our estimate of its absolute perfor-
mance. The third performance measure introduced below
gauges the relative progress of particular methods via a
round-robin tournament of representative individuals.

It should be emphasized that the interactions taking
place in all assessment methods do not influence the learn-
ing individuals.

4.2.1. Performance against the WPC heuristic. This
performance measure is the probability of winning with
the WPC heuristic, a fixed player encoded as a WPC vec-
tor shown in Table 1. This strategy was loosely based on
a player found by Runarsson and Lucas (2005).

All WPC-based players are deterministic. Thus, in
order to estimate the probability of winning of a given
trained player against the WPC heuristic, we forced both
players to make random moves with probability ε = 0.1;
this allowed us to take into account a reacher repertoire
of the players’ behaviors and make the resulting estimates
more continuous and robust. The same technique was ap-
plied by Lucas and Runarsson (2006).

4.2.2. Performance against the Liberty Player. To
provide another, qualitatively different from WPC bench-
mark for the developed methods we created a simple
game-specific heuristic strategy based on the concept of
liberties (c.f. Section 2). This strategy, called here the Lib-
erty Player, focuses on maximizing the number of its own
liberties and minimizing the number of the opponent’s lib-
erties at the same time. It looks 1-play ahead and evaluates
a position by subtracting the number of opponent liberties
from the number of its own liberties. Ties are resolved
randomly. As with the WPC heuristic, both players are
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forced to make random moves with probability ε = 0.1.

4.2.3. Round-robin tournament between teams of the
best individuals. A handcrafted heuristic strategy, even
if randomized, cannot be expected to represent in full the
richness of possible behavior of Go strategies. In order to
get a more realistic performance estimate, we recruit sets
of diverse opponents composed of best-of-generation indi-
viduals representing particular methods. Technically, each
team embraces all best-of-generation strategies found by
25 runs of a particular method. Next, we play a round-
robin tournament between the five teams representing par-
ticular methods, where each team member plays against
all 4 × 25 = 100 members from the opponent teams for a
total of 200 games (100 as white and 100 as black). The
final score of a team is determined as the sum of points
obtained by its players in overall 5000 games, using the
scoring scheme presented in Section 4.1.1, thus the maxi-
mum number of points possible to get by a team in a single
tournament is 5000 × 3 = 15000.

Let us notice that the round robin tournament of-
fers yet another advantage: there is no need to randomize
moves (as was the case when playing against a single ex-
ternal player), since the presence of multiple strategies in
the opponent team provides enough behavioral variability.

5. Results

5.1. Finding the best trace decay λ for TD-based
methods. In order to assure a fair comparison with other
methods, the best value of trace decay λ was first deter-
mined by running TDL with various settings of this pa-
rameter and testing the resulting strategies using the ab-
solute performance measures introduced in Section 4.2.
Technically, because the randomized self-play makes the
performance of the TDL learner vary substantially with
time, we decided not to rely on the final outcome of the
method alone. To make the estimates more robust, we
sampled each run every 40000 games for the last 800000
games and averaged the performances of strategies (thus,
the performance of each run was estimated using 20 indi-
viduals).

Table 2 shows the results averaged over 25 runs (this
holds for all experiments, unless stated otherwise). For
the WPC heuristic, the winning rate is maximized for
λ = 0.98, while for the Liberty Player, this happens for
λ = 0.95. Because the influence of λ for the Liberty
Player is much smaller than for the WPC heuristic and
the differences for λ ∈ [0.6, 0.99] are very small for the
Liberty Player, we chose 0.98 as the optimal value for λ
to be used in all further experiments.

5.2. Comparison of coevolutionary temporal differ-
ence learning with other methods. In this experiment,
our CTDL and CTDL+HoF were compared with their

Table 2. Probability of winning against the WPC heuristic and
the Liberty Player for a player found by TD(λ) for dif-
ferent trace decays λ. Means and standard deviations
calculated over last 20 sample points of all 25 runs.

λ
Against the WPC
heuristic

Against the Liberty
Player

0 0.420 ± 0.129 0.496 ± 0.116
0.2 0.444 ± 0.123 0.532 ± 0.102
0.4 0.465 ± 0.125 0.547 ± 0.104
0.6 0.483 ± 0.130 0.559 ± 0.102
0.8 0.497 ± 0.134 0.560 ± 0.098
0.9 0.543 ± 0.131 0.564 ± 0.093
0.95 0.599 ± 0.140 0.567 ± 0.089
0.96 0.597 ± 0.143 0.557 ± 0.089
0.97 0.613 ± 0.133 0.563 ± 0.086
0.98 0.630 ± 0.148 0.557 ± 0.084
0.99 0.617 ± 0.157 0.554 ± 0.094
1.0 0.545 ± 0.195 0.548 ± 0.109

constituent methods: CEL, CEL+HoF and TDL. Figure 2
shows the progress of the methods measured by the per-
formance against the fixed external players: the WPC
heuristic and the Liberty Player. It can be observed that
the relative courses of the methods’ performance are sim-
ilar for both plots. Both measures agree that, in the long
run, pure coevolution is worst, producing players that win
only about 50% of games. Moreover, CEL learns much
slower than TDL-based methods. Adding the Hall of
Fame archive to CEL makes it learn even slower, and, sur-
prisingly, does not lead to better results.

As expected, the quality of individuals produced by
the TDL-based algorithms in early stages of the run is
higher than that of those produced by methods that do not
involve TDL. In particular, CTDL or CTDL+HoF look su-
perior, as they quickly achieve good performance and are
best in the long run. Interestingly, pure TDL seems as
good as other TDL-based methods when playing with the
WPC heuristic, but it is significantly worse than CTDL
or CTDL+HoF when crossing swords with the Liberty
Player. The best of CTDL and CTDL+HoF players at-
tained around a winning rate of 65% with both players.

Though the performance of all methods in absolute
terms is rather moderate, this should be attributed, in the
first place, to the simplicity of WPC representation, which
is not suited for the non-positional game of Go. Note also
that the performance of the optimal1 WPC-represented Go
strategy is unknown, so judging the above probabilities as
objectively good or bad would be inconsiderate.

The comparison with external players demonstrates
that the fusion of coevolution with local search can be
beneficial. However, the results presented in Fig. 2 do
not allow stating whether there is any advantage of adding

1The ‘optimality’ may be defined in many ways, but here the maxi-
mal expected utility solution is a reasonable choice (c.f. Ficici, 2004).
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Fig. 2. Comparison of learning methods. Average performance of the best-of-generation individuals measured as the probability of

winning against the WPC heuristic (a) and the Liberty Player (b).

the coevolutionary archive technique to CTDL, but the
comparison with just two external strategies may not be
enough. In order to gain additional insight in the course
of learning of the methods, every 40000 games we run the
round-robin tournaments between best-of-generation rep-
resentatives of each run, as described in Section 4.2.3. The
points earned in the tournaments are plotted in Fig. 3.
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Fig. 3. Relative comparison of learning methods. Points ob-
tained by teams of the best-of-generation players in the
round-robin tournaments that were played 50 times dur-
ing the run. The maximum possible number of points to
obtain by a team in a single tournament was 15000.

This time, CTDL alone is also good in comparison
to other methods, but CTDL armed with the Hall of Fame
archive performs clearly better, and its superiority over
any other method is undeniable. The TDL compound of
CTLD+HoF makes it very fast, and though it learns slower
than TDL or CTDL, it needs only about 100000 games to
outperform TDL and another 300000 to gain advantage
over CTDL.

Not all our previous conclusions were confirmed

in the relative performance assessment. Most notably,
though TDL was found to be clearly better than CEL
when gauged using the absolute performance measures, it
is now the worst method in the long run, worse even than
basic coevolution. It may be also observed that adding the
archive to CEL is still profitable.

Generally, all three performance measures used in
this study are just estimations of the true performance.
Computing the value of this function is computationally
infeasible for even such a small game as 5 × 5 Go, since
it requires playing with all possible strategies. Despite
the conceptual advantages of using the round-robin tour-
nament as a performance measure (c.f. Section 4.2.3), it is
hard to absolutely state which estimate of the true perfor-
mance measure is the best one. Therefore, we do not claim
any statistical difference between CEL and TDL. On the
other hand, in the light of all three evaluation measures,
CTDL+HoF is superior to other methods.

Table 3 presents detailed results of a round-robin
tournament of teams the best-of-run individuals, that is,
the best-of-generation individuals found in the last gen-
eration, after 2000000 games. We interpret the pairwise
match between individuals from different teams as the
result of direct comparison between two methods; thus
obtaining more points in a direct match means that one
method is more likely to be better than the other one.
Using this interpretation, the round-robin tournament or-
ders the methods linearly: CTDL+HoF > CEL+HoF >
CTDL > TDL > CEL, and there are no cycles between
them. Note that, although CEL+HoF got more points than
CTDL in total, CTDL was slightly better in the direct
match (49.2% to 48.8%).

We also analyzed in detail the results of the round-
robin tournament and determined the best individual strat-
egy evolved in CTDL+HoF, i.e., the one that obtained the
highest number of points when playing with other strate-
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Table 3. Results of the round-robin tournament for the teams of individuals from the last generations. Each number is the percentage
of points obtained in the tournament; the values may not total 100% since there were 3 points for win and 1 for draw.

CTDL+HoF CTDL CEL+HoF CEL TDL Total

CTDL+HoF – 64.3% 60.4% 64.3% 66.0% 63.8%
CTDL 34.3% – 49.2% 56.5% 57.0% 49.3%

CEL+HoF 37.9% 48.8% – 54.4% 57.5% 49.7%
CEL 34.5% 42.5% 44.0% – 53.0% 43.5%
TDL 31.5% 41.0% 40.7% 45.5% – 39.7%

Table 4. Weighted piece counter vector of the best player
evolved by CTDL+HoF.

0.46 −0.05 0.66 1.15 −1.42
0.4 1.54 2.29 1.06 1.67

0.11 1.16 1.44 0.85 0.02
2.02 0.69 1.39 0.54 0.89

−0.51 1.02 −0.22 0.66 −0.22

gies during the tournament. This strategy, presented in
Table 4, achieved 478 points out of 600 possible (79.7%).
Although the center of the board is generally preferred to
corners, it is surprising that this strategy exhibits no clear
axes of symmetry.

5.2.1. Determining the best TDL–CEL ratio. The
number of TDL games per each evolutionary generation
(the TDL–CEL ratio) seems to be potentially an impor-
tant parameter of CTDL and CTLD+HoF methods (we
used eight TDL games per generation in the experiments
reported hitherto). We investigated this issue by running
our best algorithm, CTDL+HoF, for different TDL–CEL
ratios. The probability of the best-of-generation indi-
vidual winning against the external players for different
TDL–CEL ratios is presented in Fig. 5, whereas the rel-
ative performance measured by the round-robin tourna-
ment is given in Fig. 4. Notice that ‘0 games’ is equiv-
alent to CEL+HoF. Apart from this extreme setting, the
plots do not reveal any substantial differences as far as
the final performance is concerned. Despite the fact that
having more TDL games (see ‘8 games’ and ‘16 games’ in
Fig. 4) speeds up the learning, the difference, initially sub-
stantial, becomes rather negligible after several hundreds
of thousands of training games. Based on these results,
we conclude that CTDL+HoF is moderately sensitive to
the TDL–CEL ratio and recommend values greater than 8
for this parameter, which confirms our earlier findings for
Othello (Szubert et al., 2009).

5.2.2. Changes observed in genotypic traits. The ag-
gregate results of multiple runs let us draw sound con-
clusions about the superiority of some approaches to oth-
ers, but say little about the actual dynamics of the learn-

ing process. Figure 6 presents genotypes of best-of-
generation individuals taken every 40000 games from a
single CTDL+HoF run. The sequence of genotypes starts
in the top-left corner of the figure and should be read row-
wise. Colors correspond to WPC weights (white = −1,
black = 1).

Despite the fact that CTDL+HoF does not seem to
qualitatively improve against our two external players af-
ter 200000 training games (c.f. Fig. 2), the explorative
forces of coevolution apparently continue to substantially
change the genotype. It is striking how qualitatively dif-
ferent the best genotypes discovered by evolution in par-
ticular stages are. It is also surprising that the central
symmetry, which was found beneficial in various stages of
evolution, was eventually abandoned in favor of traces of
axial symmetry or no clear symmetry at all. Although the
final WPC bears some resemblance to our heuristic WPC
player presented in Table 1, the asymmetry makes its
genotype much more different than intuitively presumed.
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Fig. 5. Comparison of CTDL+HoF using different TDL–CEL ratios. Plots present average performance of the best-of-generation
individuals measured as the probability of winning against the WPC heuristic (a), the Liberty Player (b).

6. Discussion

An in-depth conceptual analysis of the interplay between
intra-game learning (temporal difference) and inter-game
learning (coevolution) in CTDL reveals that it is more
intricate and sophisticated than it may appear at a first
glance.

Though TDL and CEL employ the WPC in exactly
the same way when playing a game, they attach a funda-
mentally different interpretation to WPC weights during
learning. TDL attempts to modify the weights so as to
faithfully model the true value function describing win-
ning chances for each game state. It does so because its
training formula (3), when applied to the terminal state,
substitutes the actual game outcome (+1, 0, or −1) in
place of the learner’s estimate Pt+1. CEL, on the con-
trary, does not refer to any such absolute values, so only
the ordering of state values is relevant for it. In effect,
TDL is trying to solve a bit different, more constrained
(and thus presumably more difficult) problem. Techni-
cally, for each local minimum wmin of the error func-
tion that the gradient-descent TDL aims at (including the
global minima), there are infinitely many other WPCs that
produce identical behavior of the player against any strat-
egy.2 Each of such strategies is equally desirable from the
viewpoint of CEL, but many of them would be considered
completely worthless by TDL (e.g., because of overesti-
mating the true state values).

With TDL and CEL guiding the search process in
different directions, their efforts can happen to cancel
each other and render CTDL ineffective. However, the
experimental results clearly demonstrate that this is not
the case, most probably because, in a highly dimensional
search space (25 elements of the WPC), it is very unlikely

2Such strategies can be generated by, e.g., scaling all elements of
wmin by the same factor.

for TDL and CEL to adopt strictly opposite search di-
rections. TDL, at least on average, benefits from distur-
bances introduced by CEL, which force it to consider so-
lutions that it would not come upon otherwise, and prob-
ably helps it escape local minima. This is parallel to ob-
servations in the field of optimization, where the search
algorithm can benefit from being allowed to consider in-
feasible solutions that do not meet some of the assumed
constraints, as this opens new ‘shortcuts’ in the search
space (Michalewicz, 1996).

It might also be the case that the loss of performance
resulting from the incompatibility discussed here is com-
pensated by synergy of other features of both methods.
For that instance, TDL, as a gradient-based technique, is
able to link the outcome P of its actions independently to
each parameter of the solution (element of the WPC ma-
trix) and calculate the desired correction vector (cf. Eq. 3).
It is also capable to simultaneously update all strategy pa-
rameters (weights). With this skill, it complements evolu-
tion, which is devoid of such an ability.

7. Conclusion

There are at least two general lessons that can be learned
from this study. Firstly, we can conclude that different
modes of adopting the Monte Carlo methodology in a
learning algorithm may lead to fundamentally different
dynamics of the learning process and final outcomes. Sec-
ondly, using qualitatively different modes of randomiza-
tion can be synergetic, leading to substantially better per-
formance when compared with the constituent methods
(and randomization modes).

Although our evolved WPC players would most
probably yield to other contemporary strategies that use
more sophisticated representations, we need to empha-
size that our primary objective was to hybridize two al-
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Fig. 6. Genotypic changes observed in the best-of-generation individuals of an example CTDL+HoF run sampled every 40000 games
(the first generation in the upper-left corner, arranged row-wise). Individuals are illustrated as 5× 5 Go boards colored accord-
ingly to the corresponding WPC weights (white = −1, black = 1). WPCs were scaled using the maximum absolute weight.
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gorithms that learn fully autonomously and study the rel-
ative gains that result from their synergy. To quote Arthur
Lee Samuel’s declaration, The temptation to improve the
machine’s game by giving it standard openings or other
man-generated knowledge of playing techniques has been
consistently resisted (Samuel, 1959, p. 215).

This result confirms our former observations
(Szubert et al., 2009), when we demonstrated that hy-
bridizing coevolution with TD(0) proves beneficial when
learning the strategy of the game of Othello. Here, we
come to similar conclusions for the game of small-board
Go, and additionally note that extending the lookahead
horizon by using TD(λ) with λ close to 1 can boost the
performance of CTDL even further. Adding a simple co-
evolutionary archive to this mixture makes it even better.
Thus, there is growing evidence to support our claim that
hybridizing coevolution with temporal difference learning
can be beneficial.

In the context of games, this result is still prelim-
inary due to the small board size, and claiming that
CTDL scales well with the board size would be prema-
ture. Evolving an effective strategy for larger boards is
much more challenging, in particular for the game of Go,
where absolute positions are of minor importance com-
pared to the ‘topology’ of the board state. Approaching
such a problem using the WPC for strategy representa-
tion would not make sense. Note, however, that CTDL is
a generic coevolutionary metaheuristic: none of its con-
stituent methods is aware of strategy encoding, as they
simply process vectors of numbers (strategy parameters).
Thus, CTDL can be applied to other strategy representa-
tions that can be encoded by vectors, including represen-
tations that already proved successful on selected games
(like n-tuples). We look forward to investigate such sce-
narios, presuming that for problems and representations
on which TDL and CEL alone perform well, CTDL could
act in a synergetic way.

Apart from being encouraging from the practical
viewpoint, CTDL seems to rise also interesting theoretical
issues that deserve further research. One of them pertains
to the way CTDL performs the local search. In essence,
by relying on a randomly perturbed self-play, TD serves
only as a substitute for local search, as it has no access to
the objective fitness function. Nevertheless, it positively
contributes to our hybrid. Thus, it turns out that we can do
a kind of local search without objective information about
solution performance. This sounds both puzzling and ap-
pealing, as normally an objective quality measure is an
indispensable prerequisite for local search. By analogy to
the terms memetic algorithms and Lamarckian evolution
that are usually used to refer to various hybrids of evo-
lution and local search, which typically alternate genetic
search for the population and local search for individ-
ual solutions, this paradigm can be termed coevolutionary
memetic algorithm or Lamarckian coevolution. We plan

to elaborate on this observation in further research and hy-
pothesize that some findings from the memetic algorithms
literature are potentially applicable to our approach.
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