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In this paper, an extension of the Lafferriere–Sussmann algorithm of motion planning for driftless nilpotent control systems
is analyzed. It is aimed at making more numerous admissible representations of motion in the algorithm. The representations
allow designing a shape of trajectories joining the initial and final configuration of the motion planning task. This feature
is especially important in motion planning in a cluttered environment. Some natural functions are introduced to measure
the shape of a trajectory in the configuration space and to evaluate trajectories corresponding to different representations of
motion.
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1. Introduction

Many systems of contemporary robotics (mobile plat-
forms and robots, free-floating robots, underactuated ma-
nipulators) are subordinated to constraints in the Pfaff
form. For most of them, the constraints (coupling velo-
cities and configurations into a single relationship) cannot
be integrable. In control practice it is more pleasant to deal
with admissible actions rather than inadmissible ones. As
a consequence, driftless nonholonomic systems arise from
the constraints. Driftless systems have a smaller number
of controls than the dimensionality of the configurations
space and, therefore, a motion planning task for the sys-
tems is difficult even in obstacle free environments.

In the robotic literature, a lot of methods of steering
driftless nonholonomic systems were designed (cf. refe-
rences in the book LaValle (2006)). Methods planning a
motion for general driftless systems are usually based on
graph-searching techniques, where graphs are prepared by
suitably exploring properties of the model and its control
space. For very special structures of driftless systems (a
unicycle robot, chained form systems, flat systems and
their extensions (Rouchon, 2001)), dedicated methods we-
re developed exploiting the structure of the model. Howe-
ver, there is still a need for analytic methods of motion
planning that work for a relatively wide class of nonholo-
nomic systems.

One of the most prominent methods of motion plan-

ning for nilpotent nonholonomic systems was introduced
by Lafferriere and Sussmann (Lafferriere, 1991; Lafferrie-
re and Sussmann, 1990; 1991) and reported also by Kous-
soulas and Skiadas (2001) as well as LaValle (2006). Its
basic version has been already implemented in the Ma-
thematica package (Koussoulas and Skiadas, 2004). There
are two possible ways to extend the Lafferriere–Sussmann
(LS) algorithm. The first one is either to transform any
nonholonomic system into a nilpotent system and then to
use the LS algorithm, or to split a motion planning task
into small pieces and apply the LS algorithm for each sub-
task compensating a small error due to an unnecessary nil-
potent controlled system (Sussmann, 1991). Several au-
thors developed techniques to transform a general system
into its nilpotent equivalent (Bellaiche et al., 1993; Stru-
emper, 1998; Vendittelli et al., 2004). However, those ap-
proximations are local in nature, very complicated and nu-
merically costly.

Another way to extend the LS algorithm is to mo-
dify its components fixed at its original version. In the
past, the impact of a reference trajectory, i.e., a curve jo-
ining the initial point and final one (Dulęba and Jagodziń-
ski, 2008a), on the performance of the LS algorithm was
investigated. It was shown that the reference trajectory
has no influence on the trajectory performed by the con-
trolled system. The original Campbell–Baker–Hausdorff–
Dynkin (CBHD) formula generating piecewise-constant
controls was replaced by its generalized version (gCBHD)

{ignacy.duleba,jacek.jagodzinski}@pwr.wroc.pl
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(Strichartz, 1987) to extend the class of admissible con-
trols. Usually, to generate controls with the gCBHD for-
mula, a Ph. Hall basis of a free Lie algebra is used. In our
previous works, special attention was paid to vary the re-
presentation of motion for the LS algorithm because the
original LS algorithm admitted only two representations
called the backward and forward ones. It was shown how
to algorithmically determine the Chen–Fliess–Sussmann
(CFS) equation for each representation (Dulęba and Ja-
godziński, 2008b), and how many representations can be
generated (Dulęba, 2009).

In this paper, all results on motion representations
will be gathered and extended by checking their impact
on the shapes of generated trajectories. The paper is orga-
nized as follows. In Section 2 a model of the controlled
system and some preliminary Lie algebraic terms are in-
troduced and defined. In Section 3, consecutive steps of
the LS algorithm are recalled, with special attention paid
to selection of motion representation. In Section 4, quality
measures to evaluate trajectories are introduced. In Sec-
tion 5, the impact of representations on the shape of re-
sulting trajectories for the Brockett integrator and the four
dimensional chain system is verified via simulations. Sec-
tion 6 concludes the paper.

2. Preliminaries

A driftless nonholonomic system is described by the equ-
ation

q̇̇q̇q =
m∑

i=1

gggi(qqq)ui, dimuuu = m < n = dimqqq, (1)

where qqq = (q1, . . . , qn)T is a configuration, ui, i =
1, 2, . . . , m are control inputs and ggg1, ggg2, . . . , gggm are smo-
oth vector fields called generators of the system (1).
A motion planning task is to find controls uuu(t) =
(u1(t), . . . , um(t))T that steer the system from a given in-
itial configuration qqq0 to the final one qqqf . Sometimes some
extra requirements can be imposed on the task (restric-
tions on the admissibility of configurations, a class of con-
trol, the optimality of motion).

With each generator, its formal counterpart (Lie mo-
nomial) can be associated. This mapping can be named
formalization. In the formal setting, a formal Lie bracket
can be defined. This operation assigns two Lie monomials
another Lie monomial and satisfies the Jacobi identity and
the antisymmetry property (Reutenauer, 1993). To avoid
redundancy (due to the properties), a basis is introduced in
the space spanned by Lie monomials. The most frequently
used basis is due to Ph. Hall (an efficient way to genera-
te the basis was described by Dulęba (1998)). To any Lie
monomial, its degree is also assigned. The generators have
degree 1, while compound Lie monomials have a degree
that is the sum of its components. The formal Lie mono-

mials transforming back (via inverse mapping to forma-
lization) to the vector fields domain define a Lie algebra
of vector fields when the formal Lie bracket is substitu-
ted with its coordinate dependent form. The Lie bracket
assigns any pair of vector fields aaa,bbb assigns other vector
fields [aaa,bbb] = ∂bbb

∂qqqaaa− ∂aaa
∂qqqbbb. The Lie algebra of vector fields

is a nilpotent one with the order of nilpotency equal to k if
all vector fields with degrees higher than k vanish. A con-
trollability requirement is quite natural to plan the motion
of a nonholonomic system. According to the Chow the-
orem (Chow, 1939), the system (1) is small time locally
controllable if its Lie algebra is of the full rank (= n) at
each point in the configuration space. In Table 1, dimen-
sionalities of the maximal controllable space are collected
for the number of generators and nilpotency degree varied
(it was assumed that each element of the Ph. Hall basis is
also independent of the other when projected to the space
of vector fields).

Table 1. Possible values of Ph. Hall basis elements for the de-
gree of nilpotency and the number of generators varied.

degree of nilpotency
m 2 3 4 5 6

2 3 5 8 14 23
3 6 14 32 80 196
4 10 30 90 294 964
5 15 55 205 829 3409
6 21 91 406 1960 9695

3. LS algorithm

The algorithm was designed to plan a motion for nilpotent
(controllable) nonholonomic control system (1) between
two given configurations qqq0 and qqqf in a collision free envi-
ronment. The algorithm is composed of three major steps.

3.1. Calculation of extended controls. First, a smooth
reference trajectory λλλ(t) = (λ1(t), . . . , λn(t))T is selec-
ted joining the initial point qqq0 = λλλ(0) with the final one
qqqf = λλλ(T ), where T denotes the prescribed time horizon.
After generating the Ph. Hall basis based on generators
of the system (1) and projecting it onto the vector fields
domain, an extended system is formulated,

q̇̇q̇q =
r∑

i=1

gggi(qqq)vi, (2)

where vi, i = 1, 2, . . . , m are (virtual) extended control
inputs, ggggen is a set of generators, gggadd = {gggm+1, . . . , gggr}
are all non-zero vector fields with degrees higher than 1.
Because it was assumed that the system is controllable (it
satisfies the Lie algebra rank condition), for every qqq we
have rank(GGG)(qqq) = n with GGG = (ggggen, gggadd).
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Then, the reference trajectory λλλ(t) is substituted for
qqq to compute extended controls,

vvv(t) = GGG#(λλλ(t))
dλλλ

dt
(t), ∀t ∈ [0, T ] (3)

using the Moore–Penrose generalized matrix inverse
GGG# = GGGT

(
GGGGGGT

)−1
.

3.2. Chen–Fliess–Sussmann equation and its solution.
The extended system (2) has its formal counterpart descri-
bed by the equation

ṠSS(t) = SSS(t)(v1BBB1 + v2BBB2 + · · · + vr−1BBBr−1 + vrBBBr),
(4)

where BBBi are Ph. Hall basis elements (formal counterparts
of vector fields from Eqn. (2)), and SSS(t) is a designed mo-
tion operator initialized with SSS(0) = III (III denotes the
identity operator). Lafferriere and Sussmann considered
in their original works (Lafferriere and Sussmann, 1991)
only two possible representations: the backward one,

SSS(t)(GGG) = ehr(t)BBBrehr−1(t)BBBr−1 · · · eh2(t)BBB2eh1(t)BBB1 ,
(5)

and the forward one,

SSS(t)(GGG) = eh1(t)BBB1eh2(t)BBB2 · · · ehr−1(t)BBBr−1ehr(t)BBBr ,
(6)

where hi(t), i = 1, . . . , r are functions to be determined.
The exponential mapping e : BBB → eBBB used in Eqns. (5)
and (6) sends an element of a Lie algebra into a Lie group.
The mapping (interpreted in terms of vector fields) has a
clear physical interpretation: given a velocity BBB (an ele-
ment of the Lie algebra) and a given state qqq, it is possible
to determine its future state eBBB(qqq) (an element of a Lie
group). Here ea(t)BBB means that BBB is scaled with the func-
tion a(t), depending on controls.

Let us generalize the motion representations (5)
and (6). A minimal requirement to preserve full motion
abilities is to have the number of functions hhh describing
the motion equal to r at least. On the other hand, to avoid
redundancy (and reduce computational complexity whi-
le working with a redundant representation), this number
must be equal to r exactly. Consequently, consider a quite
general family of representations,

SSS(t) =
r̄∏

i=1

e〈ρρρi�hhh(t),BBB〉, (7)

where hhh(t) = (h1(t), . . . , hr(t))
T , BBB = (BBB1, . . . ,BBBr)

T

are Ph. Hall basis elements, 〈·, ·〉 is the inner product, r̄
(1 ≤ r̄ ≥ r) describes how many elementary actions e(·)

are used to generate SSS(t), ρρρi = (ρ1, . . . , ρr)
T is the i-th

selection vector, where ρj ∈ {0, 1}, which switches on
(1), or off (0) components of the vector BBB. The operation

� : R
n � R

n → R
n is coordinate-wise argument multi-

plication. Additionally, each representation described by
Eqn. (7) has to satisfy the following condition:

r̄∑

i=1

ρρρi = (1, . . . , 1)T . (8)

The condition (8) forces that any element of the ba-
sis BBB occurs only once in the representation. Because as
a basis for a free Lie algebra the Ph. Hall basis was selec-
ted, the family of representations (7) and (8) will be cal-
led Ph. Hall representations. The concatenation of expo-
nents in Eqns. (5)–(7) should be read from left to right. For
example, SSS(t) = eh1XXX+h2YYY eh3[XXX,YYY ] means that the state
is moved by the action of eh1XXX+h2YYY and as a result, acts
eh3[XXX,YYY ]. In general, actions of exponents do not commu-
te. Selection vectors for this example are ρρρ1 = (1, 1, 0)T ,
ρρρ2 = (0, 0, 1)T (r = 3, r̄ = 2). There exists one special
representation, called canonical, which has one selection
vector composed of ones only (r̄ = 1). It is not difficult

Table 2. Number of F (r) for r varied.
r 1 2 3 4 5 6 7

F (r) 1 3 13 75 541 4683 47293

to determine selection vectors for the forward and bac-
kward representation. The vectors are composed of ze-
roes with a single 1; for the backward representation it
lies on the (r − i)-th coordinate, while for the forward
representation—on the i-th coordinate. Using combinato-
rial arguments, it was established (Dulęba, 2009) that the
number of representation, for a given r, is given by the
following formula:

F (r) =
r∑

k=1

r∑

i=1

(−1)k−i

(
k

i

)
ir. (9)

This number grows rapidly as r increases, cf. Table 2.
Now, the formal equation (4) with a selected motion

representation (7), (8) must be solved. Using the Taylor
expansion formula

e±hkPPP k =
∑

i=0

(±1)i h
i
kPPP

i
k

i!
, (10)

which is finite, due to the nilpotency of the system,
each term e(·) is expanded with Eqn. (10). Then, non-
commutative multiplications are performed and coeffi-
cients in front of the same terms Bi compared. In this
way, the Chen–Fliess–Sussmann equation is obtained in
the form

ḣhh(t) = MMM(hhh(t))vvv(t), (11)

with the initial condition hhh(0) = 000 (resulting from SSS(0) =
III) and vvv(t) given by Eqn. (3). For a given representation,
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the process of deriving the CFS equation can be algori-
thmized (Dulęba and Jagodziński, 2009), and the calcula-
tions are to be performed in off-line mode. It appears that
MMM(hhh) is a lower triangular matrix of size r × r, with the
ones on the main diagonal and all elements of the matrix
are polynomials in hhh variables. It is not difficult to solve
the differential CFS equation (11), although a numerical
integration is required because vvv(t), t ∈ [0, T ] is usually
not in an analytical form. Finally, Ph. Hall coefficients hhh
at the final time hhh(T ) are obtained. The last step of the LS
algorithm is to generate with controls assumed as SSS(t) at
t = T using hhh(T ).

3.3. Generating S(T ) with controls. In order to pro-
duce SSS(T ), its components of the form e

∑s
i=1 hi(T )BBBi

must be generated, where hi(T ) are some real constants
while Bi are Lie monomials and s ≥ 1. When s = 1
and BBBi is just a generator, there is no problem to produ-
ce it with controls. The control corresponding to the ge-
nerator is switched on while all others switched off. To
generate either single items or linear combinations inc-
luding Lie monomials with degrees higher than 1, more
sophisticated control scenarios must be used. There are
two methods to cope with this case. The first one is to use
the Campbell–Baker–Hausdorff–Dynkin (CBHD) formu-
la which says that concatenation of eAAA followed by eBBB

(where AAA,BBB are generators) equals

eAAAeBBB = eAAA+BBB+ 1
2 [AAA,BBB]+ 1

12 [AAA,[AAA,BBB]]− 1
12 [BBB,[AAA,BBB]]+..., (12)

i.e., switching on AAA and then BBB, a Lie series is obtained (in
fact, the series is finite as we work with nilpotent systems).
Applying (12) many times, one can extract only one term
from the series annihilating the others. It is worth noticing
that this scenario requires piecewise constant controls to
switch on and off generators, and to generate Lie mono-
mials with higher degrees many switching actions are per-
formed. For example, to generate [AAA,BBB] with the order of
nilpotency equal to 2, the scenario eAAAeBBBe−AAAe−BBB can be
applied.

The CBHD formula offers a conceptually simple
method to generate higher degree Lie monomials with
controls. However, piecewise constant controls are dif-
ficult to generate with technical means and the number
of switching actions can be quite large. More flexibility
in generation of vector fields with controls is offered by
the generalized version of the CBHD formula (gCBHD)
(Strichartz, 1987). The gCBHD formula applied to the
system (1) describes locally its solution initialized at a gi-
ven configuration in the form of Lie series with control-
dependent coefficients. The series is finite as nilpotent
systems are considered. (A detailed presentation of the
gCBHD formula and its impact on motion planning of
nonholonomic systems can be found in the work of Du-
lęba and Khefifi (2006).) To generate the required Lie mo-

nomial or polynomial, a class of controls should be assu-
med. Usually, harmonic controls (sinusoids with different
frequencies) are selected. After that, the controls are sub-
stituted into the Lie series resulting from the gCBHD for-
mula. Finally, having known required coefficients of the
series, a set of algebraic equations on parameters of har-
monics is obtained. Solving the set analytically (in sim-
ple cases) or numerically (in more demanding situations),
controls that generate required terms are obtained.

4. Quality measures to evaluate trajectories

In order to examine the influence of a representation on
a trajectory leading to the goal configuration of the sys-
tem (1), some evaluation tools are to be introduced. As
the simplest trajectory joining the initial point with the
target one is the straight line, it is natural to define me-
asures relating an examined trajectory with this reference
trajectory. It should be noted that for nonholonomic sys-
tems a straight line trajectory is hardly ever admissible,
i.e., realizable with admissible controls.

Before defining some quality measures for trajecto-
ries, a preliminary step is performed. First, the shift of co-
ordinates is performed q̂qq = qqq−qqq0 to convert the initial po-
int of the planning qqq0 into the origin of a new coordinate
frame. Thus, the new target is q̂qqf = qqqf −qqq0) and points of
trajectory are transformed appropriately. Then, canonical
versors of the new coordinate frame eeen

k , k = 1, . . . , n, are
rotated in such a manner that the new versor êeen

1 is co-linear
with q̂qqf and equal to (1, 0, . . . , 0), while the remaining
versors êeen

k , k = 2, . . . , n are selected according to the mo-
dified Gramm–Schmidt method (Golub and Loan, 1996).
Initialized with the set of versors {q̂qqf/||q̂qqf ||, eeen

2 , . . . , eeen
n},

the Gramm–Schmidt algorithm produces an orthonormal
basis êeen

k , k = 1, . . . , n. In this basis the examined trajec-
tory is expressed as q̂qq(t), t ∈ [0, T ], and its target point is
q̃qqf = (||q̂qqf ||, 0, . . . , 0).

In the new coordinate frame, the first coordinate na-
turally parametrizes a straight line motion toward the goal.
When the coordinate transformations are performed in an
obstacle cluttered environment, also obstacles are trans-
formed appropriately to preserve their relationship with a
trajectory. In a multidimensional case, having a small re-
dundancy in selecting êeen

2 , it may be desirable to point the
versor toward the nearest obstacle from the line joining 000
with q̃qqf .

To get an insight into the shape of the trajectory q̂qq(·)
in the new coordinate frame, two types of measures will be
defined. The positional function measures the Euclidean
distance of q̂qq(t) from the straight line,

dist(t) = dist(q̂qq(t), line(000, q̂qqf )) =

√√√√
n∑

i=2

q̂2
i (t). (13)

A fixed value of the measure (13) has a lot of points placed



Motion representations for the Lafferriere–Sussmann algorithm for nilpotent control systems 529

on the (n − 1)-dimensional sphere. Therefore, an angular
measure is to be defined to locate the point q̂qq(t) more pre-
cisely. Because in the new coordinate frame versors êeen

i are
canonical, angles between (n − 1) versors and the vector
q̂qq(t) (the first angle is not considered as it does not carry
any significant angular information),

anglei(t) = 〈 q̂qq(t)
||q̂qq(t)|| , eee

n
i+1〉, i = 1, . . . , n − 1. (14)

Taking a reduced vector q̃qqc as qqqc with its first coordinate
left, one can also use the generalized spherical coordinates
(θ1, . . . , θn−1) as an angular measure. The spherical coor-
dinates are related to the coordinates q̃qqc = (qc2, . . . , qcn)T

as follows:

qc2 = ||q̃qqc|| cos θ1,

qci = ||q̃qqc|| cos θi

i−1∏

j=1

sin θj , i = 3, . . . , n − 1,

qcn = ||q̃qqc||
n−1∏

j=1

sin θj .

(15)

From Eqn. (15), the spherical coordinates can be retrieved
according to the formula

θn−1 = atan2(qcn, qc(n−1)),
θi = atan2(qc(i+1), qci cos θi+1), i = n − 2, . . . , 1,

(16)

where a standard numeric function atan2 was used to
avoid division by ‘zero’ while getting consecutive angles
θi. In the three dimensional space case n = 3, there
is only one angle to determine, and the angular measu-
res (14) and (16) are equivalent. The presented measu-
res (13) and (14) evaluate the local aspect of a trajectory
at a given time stamp. Based on the measures, a global
behavior of a trajectory can be highlit. For the positional
measure, two functions are defined. The first one,

dist∑ =
∫ T

0

dist(t)dt, (17)

averages the trajectory, while the second,

distmax = max
t∈[0,T ]

dist(t), (18)

checks its extremal amplitude over the time horizon.

5. Simulation results

In the first experiment, the LS algorithm was applied to
compute trajectories of the Brockett integrator described
by the equations

q̇qq =

⎡

⎣
q̇1

q̇2

q̇3

⎤

⎦ = XXX(qqq)u1 +YYY (qqq)u2 =

⎡

⎣
1
0

−q2

⎤

⎦u1 +

⎡

⎣
0
1
q1

⎤

⎦u2.

(19)

Table 3. P.H. representations of motion (for m = 2 and order of
nilpotency 2) and the types of their CFS equations.

No. P.H. representation, SSS(t) type

1 eh1X+h2Y +h3[X,Y ] #1

2 eh1X+h2Y eh3[X,Y ] #1

3 eh3[X,Y ]eh1X+h2Y #1

4 eh1X+h3[X,Y ]eh2Y #2

5 eh2Y eh1X+h3[X,Y ] #3

6 eh2Y +h3[X,Y ]eh1X #3

7 eh1Xeh2Y +h3[X,Y ] #2

8 eh1Xeh2Y eh3[X,Y ] #2

9 eh1Xeh3[X,Y ]eh2Y #2

10 eh2Y eh1Xeh3[X,Y ] #3

11 eh2Y eh3[X,Y ]eh1X #3

12 eh3[X,Y ]eh1Xeh2Y #2

13 eh3[X,Y ]eh2Y eh1X #3

The motion planning task was to move the state from
the initial configuration qqq0 = (0, 0, 0)T to the goal one
qqqf = (1, 2, 3.2)T in the time horizon T = 1. The Brockett
integrator is an example of a controllable nilpotent system
with the order of nilpotency equal to 2, thus r = 3. Ac-
cording to Table 2, 13 motion representations, gathered in
Table 3, can be defined for the system (19). For each repre-
sentation, the corresponding Chen–Fliess–Sussmann equ-
ation described by (11) was calculated. The equations can
be divided into three groups (enumerated as in Table 3),

type #1⎧
⎪⎨

⎪⎩

ḣ1 = v1,

ḣ2 = v2,

ḣ3 = 1
2 (h1v2 − h2v1) + v3,

type #2 type #3⎧
⎪⎨

⎪⎩

ḣ1 = v1,

ḣ2 = v2,

ḣ3 = −h2 v1 + v3,

⎧
⎪⎨

⎪⎩

ḣ1 = v1,

ḣ2 = v2,

ḣ3 = h1 v2 + v3,

all initialized with hhh(0) = 000. In the last step of the LS
algorithm, for a given representation (with its parame-
ters hi(T ), i = 1, . . . , r, already determined) the gCBHD
formula (Dulęba and Khefifi, 2006) was applied to ge-
nerate controls. In each of r̄ time intervals of the length
T ′ = T/r̄, the controls were taken in the form u1(s) =
p1 +p2 sin(2πs/T ′), u2(s) = p3 +p4 cos(2πs/T ′), whe-
re s ∈ [0, T ′] and ppp = (p1, . . . , p4)T were parameters
to be found. The parameters were computed using a ver-
sion of the Newton algorithm to solve the inverse task
fff(ppp) = hhh(T ) with hhh(T ) known and the function fff(ppp)
determined by the gCBHD formula for given controls.

In Fig. 2, graphs of the distance measure (13) were
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presented for different representations (no angle characte-
ristics were drawn as being less informative than positio-
nal ones). In each figure, a family of characteristics was
shown with the goal point given as qqqf (ξ) = qqq0+ξ(qqqf−qqq0)
with ξ ∈ (0, 1] varied. In Table 4, values of the global po-
sitional measures (17) and (18) were collected, while in
Fig. 1, control signals were depicted for selected repre-
sentations. It is clearly visible, cf. Fig. 2, that the selection
of a motion representation plays a key role in shaping a
trajectory directed to the goal point. For the selected set
of boundary points, the best representation (#1) gives the
maximal distance from the straight line qqq0qqqf about 15 ti-
mes smaller than the worst representation (#10).

Frequently, for a single representation there are ma-
ny optima in function dist(t) and the maximal values are
attained for various t (so at different locations along the
line joining qqq0 with qqqf (ξ)). From Fig. 2 and Table 4 one
can conclude that trajectories (for any representation) ha-
ve smaller and smaller amplitudes when the goal point is
closer and closer to the initial one. This fact is crucial in
using the LS algorithm in an obstacle cluttered environ-
ment. This means that if only any trajectory (not neces-
sarily realizable with admissible controls) obtained with
a holonomic method (potential field method, Voronoi dia-
gram or any other) is open (i.e., its closest neighborhood
is composed of obstacle-free points only), the trajectory
can be approximated (realized) with the nonholonomic LS
method and this trajectory will also be obstacle free.

The controls shown in Fig. 1 are composed of one,
two and three equi-length time intervals (their number
equals r̄), and their amplitudes differ significantly. It appe-
ars that representations with a smaller number of segments
are more energy efficient than those with more segments.
One can also conclude that the first, canonical represen-
tation seems to be best within the whole family of repre-
sentations. Moreover, representations found in the robo-
tic literature (forward and backward) are likely among the
worst ones as they are composed of the maximal number
of control segments.

Results of the sample task provided visual informa-
tion on differences among the representations. However,
the task cannot be considered an attributive one. There-
fore, a set of tasks were run to gain statistically relevant
data. The initial state for all tasks was set to (0, 0, 0)T

and a time horizon T = 1 was fixed. In spherical coor-
dinates (R, α, β)T , goal points were located on a sphere
with the radius R = 1 and α ∈ {i · 10◦}, i = 0, . . . , 35,
β ∈ {j · 10◦}, j = −9, . . . , 9. Two factors were evalu-
ated: an energy expenditure on controls energy(uuu(·)) =∫ T

t=0(u
2
1 +u2

2) dt and the maximal distance dmax given by
Eqn. (18).

For all 13 representations, a mean value
(mean =

∑s
i=1 vi/s) and an unbiased standard de-

viation (std dev =
√∑s

i=1(vi − mean)2/(s − 1)) of an

evaluated factor with its data gathered from the tasks
vvv = (v1, . . . , vs)T are presented in Table 5. It appears
that observations made for the single task are also valid
for a set of tasks. Moreover, relatively large values of
the standard deviation of the energy show that there are
energy cheap and expensive directions of motion.

The last example will cover a four dimensional con-
trollable, nilpotent chain system with two inputs and order
of nilpotency equal to 3. The system is described by the
equations

q̇qq =

⎡

⎢⎢⎣

q̇1

q̇2

q̇3

q̇4

⎤

⎥⎥⎦ = XXX(qqq)u1 + YYY (qqq)u2 =

⎡

⎢⎢⎣

1
0
q2

q3

⎤

⎥⎥⎦u1 +

⎡

⎢⎢⎣

0
1
0
0

⎤

⎥⎥⎦u2.

(20)
Besides XXX,YYY , only vector fields [XXX,YYY ] = (0, 0,−1, 0)T ,
[XXX, [XXX,YYY ]] = (0, 0, 0, 1)T do not vanish. In particular,
[YYY , [XXX,YYY ]] = (0, 0, 0, 0)T . As too many representations
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Fig. 1. Controls to reach the goal qqqf for selected representa-
tions.
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Table 4. Values of positional measures for the goal point (controlled by the coefficient ξ) and a motion representation varied.
Positional measure (17) Positional measure (18)

rep ξ ξ
no. 0.2 0.4 0.6 0.8 1.0 0.2 0.4 0.6 0.8 1.0

1 0.40 0.40 0.41 0.43 0.45 0.65 0.65 0.68 0.73 0.82
2 0.35 0.68 1.14 1.75 2.52 0.64 1.65 3.12 5.14 7.80
3 0.30 0.45 0.56 0.64 0.69 0.56 0.90 1.15 1.30 1.33
4 0.28 0.38 0.47 0.54 0.61 0.50 0.75 0.92 1.03 1.12
5 0.26 0.37 0.51 0.69 0.91 0.40 0.63 0.87 1.25 1.76
6 0.37 0.68 1.05 1.49 1.99 0.68 1.56 2.64 3.94 5.46
7 0.31 0.53 0.76 1.01 1.26 0.59 0.97 1.42 1.88 2.35
8 0.32 0.55 0.74 0.88 0.95 0.84 1.64 2.31 2.77 2.90
9 0.30 0.48 0.64 0.76 0.86 0.82 1.45 1.91 2.19 2.90

10 0.41 0.90 1.53 2.34 3.34 1.08 2.73 5.09 8.32 12.53
11 0.31 0.63 1.08 1.68 2.45 0.86 2.24 4.26 7.06 10.78
12 0.30 0.48 0.60 0.66 0.67 0.64 1.07 1.34 1.43 1.34
13 0.33 0.67 1.10 1.61 2.20 0.81 1.78 2.93 4.26 5.76

Table 5. Statistical evaluation of 13 representations with respect
to the energy expenditure and the maximal distance
factors for the Brockett integrator.
rep. total energy maximal dist.
no. mean std. dev. mean std. dev.

1 4.96 1.71 0.50 0.12

2 11.46 2.20 0.67 0.13

3 11.44 2.19 0.62 0.15

4 13.04 2.66 0.71 0.16

5 13.05 2.66 0.65 0.12

6 10.25 3.29 0.61 0.10

7 10.25 3.29 0.60 0.11

8 19.85 4.29 0.73 0.14

9 19.85 4.29 0.76 0.14

10 19.85 4.29 0.72 0.14

11 19.85 4.29 0.74 0.11

12 19.85 4.29 0.69 0.13

13 19.85 4.29 0.68 0.12

are available for this case, cf. Table 2, only three represen-
tations, namely, canonical, forward and backward ones,
were evaluated. CFS equations for the representations are
the following:

• the canonical representation:

(ḣ1, ḣ2, ḣ3, ḣ4, ḣ5)T

= (v1, v2,
1
2
(h1v2 − h2v1) + v3,

v4 +
1
12

h1(h1v2 − h2v1) +
1
2
(h1v3 − h3v1),

v5 +
1
12

h2(h1v2 − h2v1) +
1
2
(h2v3 − h3v2))T ,

• the forward representation:

(ḣ1, ḣ2, ḣ3, ḣ4, ḣ5)T

= (v1, v2, v3 − h2v1, v4 − h3v1,

v5 − h3v2 +
1
2
h2

2v1)T ,

• the backward representation:

(ḣ1, ḣ2, ḣ3, ḣ4, ḣ5)T

= (v1, v2, v3 + h1v2,

v4 + h1v3 +
h2

1

2
v2, v5 + h2v3 + h1h2v2)T .

It is worth noticing that, despite the fact that the chain
system (20) is four dimensional, n = 4, the correspon-
ding CFS equations are five dimensional. It is quite clear,
cf. Eqn. (12), that CFS equations have to cover whole lay-
ers of vector fields as, in a general case, any vector field
appearing in a given layer has a comparable impact on
the resulting motion to any other vector field from the sa-
me layer. For the system (20), the h5 term does not im-
pact the motion as it multiplies the vanishing vector field
[YYY , [XXX,YYY ]].

To generate hhh(T ), in each interval i = 1, . . . , r
controls were selected from the family u1(s) = p1 +
p2 sin(ωs) + p3 sin(2ωs), u2(s) = p4 + p5 cos(ωs) +
p6 cos(2ωs), where s ∈ [0, T/r = T ′], ω = 2π/T ′.
As in the previous example, the values of the parameters
ppp = (p1, . . . , p6)T were determined with the use of the
Newton algorithm, although the control-dependent func-
tion fff(ppp) is quite different in this case. Simulations were
carried out on a set of tasks with uniformly distributed
goal points placed on a surface of the four dimensional
sphere with the radius R = 1 (more than 300 tasks were
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Fig. 2. Distance of qqq(t) from the straight line qqq0qqqf as a function of t for a family of goals controlled by the coefficient ξ = 0.2 · i, i =
1, . . . , 5 and various representations. In almost any case, curves corresponding to a smaller value of i are placed below those
with higher i.
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generated). The initial configuration for all the tasks was
(0, 0, 0, 0)T and the time horizon T = 1. Also, for the fo-
ur dimensional case, the observations made for the three
dimensional Brockett integrator remain valid.

While presenting and comparing representations,
their computational complexity should be addressed. In
many cases, it is not a crucial problem in motion planning
because the planning can be performed in the off-line mo-
de, and a resulting trajectory or path supplied to a control
module (which works in the on-line mode) is approxima-
ted as accurately as possible. To compare the computa-
tional complexity of representations, let us note that for a
given representation its CFS differential equation can be
computed in the off-line mode as it does not depend on a
particular configuration of a system.

Computing hhh(T ) needs approximately the same
amount of time for any representation as it requires in-
tegration of the CFS equation corresponding to the repre-
sentation for given vvv(·). The only difference in complexity
between representations is in determining controls to ge-
nerate hhh(T ). Clearly, the complexity is more or less pro-
portional to the number of segments r. In this aspect the
canonical representation is best (r = 1) while forward
and backward representations are worst (r = r ≥ n).
However, for forward and backward representations, mo-
tions along segments ehiXXX , ehjYYY always appear, and they
can be computed without using the Newton algorithm,
just by switching one control and switching off the other.
For the canonical representation the easy-to-generate seg-
ments never appear.

Another interesting question to be answered con-
cerns the best representation among those possible to be
generated. According to the presented simulation results,
it seems that the canonical representation is the best one
from among all other representations, at least for obstac-
le free environments. However, from the perspective of
avoiding obstacles, representations are much harder to
compare. Trajectories joining two fixed boundary points
and corresponding to various motion representations like-
ly pass through different areas of a state space, cf. Fig. 2.
In this sense any representation can be made the best one
from among all considered by a simple construction.

Let a trajectory be generated for a given representa-
tion and fixed boundary points in an obstacle free environ-

Table 6. Statistical evaluation of three representations with re-
spect to energy expenditure and the maximal distance
factors for the four dimensional chain system.

representation total energy maximal dist.
mean std. dev. mean std. dev.

backward 924.54 359.57 2.99 0.35

forward 965.49 364.77 3.26 0.42

canonical 68.49 63.29 2.17 0.96

ment. Now, make the trajectory surrounded with a small
radius tube. Only the points inside the tube are obstacle
free for a next task to be performed. It is easy to obse-
rve that any other representation will not be as effective
in planning the desired motion as that one just conside-
red because, likely, the other representations will generate
trajectories colliding with obstacles. In practice there is no
other way to evaluate representations with respect to colli-
sion avoidance than to generate their corresponding trajec-
tories and check their distances from the nearest obstacle.
Fortunately, it is a simple numerical integration procedure
which can be immediately abandoned when a collision is
detected.

6. Conclusions

In this paper the LS algorithm for motion planning of
driftless nilpotent systems was extended by using a va-
riety of motion representations. In a systematic way the
representations were introduced and exemplified on con-
trolling the Brockett integrator and the four dimensional
chain system. Some positional and angular measures we-
re proposed to relate a given trajectory with a straight-
line trajectory joining boundary points of the planning. It
was shown that motion representations have great impact
on evolution of trajectories joining fixed boundary points.
Consequently, by changing the representation it is possi-
ble either to optimize the shape of a trajectory towards
the goal point or to avoid obstacles on its way. Some re-
marks on the computational complexity of processing the
representations were provided. In the future, the develop-
ments of this paper are to be applied to plan a motion of
real robots (via local transformations their models can be
approximated with nilpotent systems).
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