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1. Introduction

There are many real-world systems and natural processes
which display some kind of dynamic behavior in a style
of both continuous and discrete characteristics. For in-
stance, many evolutionary processes, particularly some bi-
ological systems such as biological neural networks and
bursting rhythm models in pathology, as well as optimal
control models in economics, frequency-modulated signal
processing systems, flying object motions, and the like
are characterized by abrupt changes in states at certain
time instants (Gelig and Churilov, 1998; Lakshmikantham
et al., 1989). This is the familiar impulsive phenomenon.
Often, sudden and sharp changes occur instantaneously,
in the form of impulses, which cannot be well described
using purely continuous or purely discrete models. On
the other hand, stochastic modelling has come to play an
important role in many branches of science and industry
because any real world system and natural process may be
disturbed by many stochastic factors. Therefore, stochas-
tic impulsive systems arise naturally from a wide variety
of applications and can be used as an appropriate descrip-
tion of these phenomena of abrupt qualitative dynamical
changes of essentially continuous time systems which are
disturbed by stochastic factors.

Control systems are often subject to constraints on
their manipulated inputs and state variables. Input con-

straints arise as a manifestation of the physical limitations
inherent in the capacity of control actuators (e.g., bounds
on the magnitude of valve opening) and are enforced at
all times (hard constraints). State constraints, on the other
hand, arise either due to the necessity to keep the state
variables within acceptable ranges, to avoid, for example,
runaway reactions (in which case they need to be enforced
at all times and treated as hard constraints) or due to the
desire to maintain them within desirable bounds dictated
by performance considerations (in which case they may be
relaxed and treated as soft constraints). Neglecting such
constraints in controller design and implementation can
drastically degrade system performance or, worse, lead to
catastrophic failures (Gilbert, 1992).

It has been found that in some control system op-
erations it is necessary to change operational limits. For
example, the need for such a control system occurs in in-
dustrial electric motor control for motors which are com-
prised of stator and rotor assemblies. It is frequently de-
sirable to limit both synchronous frequency and slip fre-
quency of such motors within prescribed limits. Also, it is
desirable to limit the supply voltage to the stator as a func-
tion of both synchronous and slip frequency so that the
airgap flux between the stator and rotor of the motor may
never exceed the saturation limit of the rotor core. Any
control system design methodology must include these
properties as objectives in the design procedure. For more
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applications on constrained controls in industrial plants
one can refer to the works of Alotabi et al. (2004), Re-
spondek (2007) or Semino and Ray (1995). This problem
is important and challenging in both theory and practice,
which has motivated the present study.

The theory of controllability of nonlinear deter-
ministic systems is well developed (Balachandran and
Dauer, 1987; Klamka, 2000b). Many important results
for controllability of linear as well as nonlinear stochas-
tic systems have also been established (Balachandran and
Karthikeyan, 2007; Balachandran et al., 2009; Klamka,
2007a; Mahmudov, 2001; Mahmudov and Zorlu, 2003;
Zabczyk, 1981). When the control is constrained, the
major global results are those by Conti (1976). Benzaid
(1988) studied global null controllability with bounded
controls of perturbed linear systems in R

n.
The theory of constrained controllability of linear

and nonlinear systems in finite dimensional space has
been extensively studied (Chukwu, 1992; Klamka, 1991;
1993; Sikora, 2003). Klamka (1996; 1999; 2001) for-
mulated sufficient conditions for exact and approximated
constrained controllability assuming that the values of
controls are in a convex and closed cone with the vertex
at zero. Respondek (2008) generalized earlier results to a
system of an arbitrary, n-th order system with respect to
time, with possible delays in controls and with considera-
tion of arbitrary multiplicities of its characteristic equation
eigenvalues.

Klamka (2000a) and Respondek (2004) established
necessary and sufficient conditions for constrained ap-
proximate controllability for linear dynamical systems
described by abstract differential equations with an un-
bounded control operator. However, such a type of con-
trol constraints models only non-negative controls and is
thus of minor industrial importance. Much better control
constraints are the so-called compact constraints, which
can consider both the lower and upper limitations of the
control. Schmitendorf (1981) and Respondek (2010) in-
vestigated controllability with compact control constraints
for ordinary differential equations and partial differential
equations, respectively.

Generally, the control may be any element of the
control space U , but sometimes some constraints are im-
posed on the control function u. Concerning the con-
cept of controllability with prescribed controls, Anichini
(1980; 1983) discussed complete controllability of the
nonlinear boundary-value problem with boundary con-
ditions on the control and used a fixed-point argument.
A similar approach can be found in the work of Lukes
(1972) for nonlinear differential systems which arise when
a linear system is perturbed. Controllability for nonlinear
Volterra integro-differential systems with prescribed con-
trols was studied by Balachandran and Lalitha (1992) as
well as Sivasundaram and Uvah (2008). Recently, Bal-
achandran and Karthikeyan (2010) studied controllability

of stochastic integrodifferential systems with prescribed
controls. However, it should be emphasized that most of
the works in this direction are mainly concerned with de-
terministic controllability problems and there have been
no attempts made to study constrained controllability of
stochastic impulsive systems. In order to fill this gap, the
present paper studies the complete controllability problem
for a class of nonlinear stochastic impulsive systems with
prescribed controls (that is, a controllability condition for
which the initial and the final value of the control are given
a priori).

In this article we obtain sufficient controllability con-
ditions for the nonlinear stochastic impulsive system

dx(t) =
[
A(t)x(t) + B(t)u(t) + f(t, x(t))

]
dt

+ σ(t, x(t)) dw(t), t �= tk,

Δx(tk) = Ik(x(t−k )), t = tk, k = 1, 2, . . . , ρ,

x(0) = x0, x(T ) = xT ,

u(0) = u0, u(T ) = uT ,

(1)

by means of controls whose initial and final values can
be prescribed in advance. That is, we want to estab-
lish conditions on A(t), B(t), f(t, x(t)) and σ(t, x(t))
which ensure that, for x0, xT ∈ R

n, there exists a control
u ∈ L2([t0, T ]; Rm) with u(0) = u0, u(T ) = uT which
produces a response x(t; u) satisfying the boundary con-
ditions x(0; u) = x0 and x(T ; u) = xT . Further, we
show complete controllability of the nonlinear stochastic
impulsive system under the natural assumption that the as-
sociated linear stochastic impulsive system is completely
controllable.

2. Preliminaries

Consider the linear stochastic impulsive system repre-
sented by the Itô equation of the form

dx(t) =
[
A(t)x(t) + B(t)u(t)

]
dt

+ σ̃(t) dw(t), t �= tk,

Δx(tk) = Ik(x(t−k )), t = tk, k = 1, 2, . . . , ρ,

x(t0) = x0, t0 ≥ 0,

(2)

where A(t) and B(t) are known n × n and n × m con-
tinuous matrices, respectively, x(t) ∈ R

n is the vector
describing the instantaneous state of the stochastic sys-
tem, u(t) ∈ R

m is a control input to the stochastic dy-
namical system, w is an n-dimensional Wiener process,
σ̃ : [t0, T ] → R

n×n, Ik : [t0, T ] → R
n, Δx(t) =

x(t+) − x(t−), where

lim
h→0+

x(t + h) = x(t+), lim
h→0+

x(t − h) = x(t−)

and

0 = t0 < t1 < t2 < · · · < tρ < tρ+1 = T,
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Ik(x(t−k )) =
(
I1k(x(t−k )), . . . , Ink(x(t−k ))

)T

represents an impulsive perturbation of x at time tk and
x(t−k ) = x(tk), k = 1, 2, . . . , ρ, which implies that the
solution of system (2) is left continuous at tk.

Consider the following ordinary differential system
corresponding to the stochastic impulsive system (2):

x′(t) = A(t)x(t), x(0) = x0. (3)

Suppose that Φ(t, t0) is the fundamental solution matrix
of (3). Then Φ(t, s) = Φ(t)Φ−1(s), t, s ∈ [t0, T ], is
the transition matrix associated with matrix A(t). It is
easy to see that, for any t, s, τ ∈ [t0, T ], Φ(t, t) = I, the
identity matrix of order n, Φ(t, τ)Φ(τ, s) = Φ(t, s), and
Φ(t, s) = Φ−1(s, t).

Lemma 1. For any t ∈ (tk−1, tk], k = 1, 2, . . . , ρ, the
general solution of the system (2) is given by

x(t) = Φ(t, t0)x0 +
∫ t

t0

Φ(t, s)B(s)u(s) ds

+
∫ t

t0

Φ(t, s)σ̃(s) dw(s)

+
k∑

i=1

Φ(t, ti)Ii(x(t−i )),

(4)

where Φ(t, s) is the transition matrix of the system (3).

Proof. The proof is quite similar to that by in Karthikeyan
and Balachandran (2009). �

For convenience, we define some notation that will
be used throughout this paper. Let (Ω,F , P) be a complete
probability space with a probability measure P on Ω and
w(t) = (w1(t), w2(t), . . . , wn(t))T be an n-dimensional
Wiener process defined on this probability space. Let
{Ft|t ∈ [t0, T ]} be the filtration generated by {w(s) :
0 ≤ s ≤ t} defined on the probability space (Ω,F , P).
Let L2(Ω,Ft, R

n) denote the Hilbert space of all Ft-
measurable square integrable random variables with val-
ues in R

n. Let LF
2 ([t0, T ], Rn) be the Hilbert space of all

square-integrable and Ft-measurable processes with val-
ues in R

n. Let PC([t0, T ], Rn) = {x : x is a function
from [t0, T ] into R

n such that x(t) is continuous at t �= tk
and left continuous at t = tk and the right limit x(t+k ) ex-
ists for k = 1, 2, . . . , ρ}. Let B2 denote the Banach space
PCb

Ft
([t0, T ], L2(Ω,Ft, R

n)), the family of all bounded
Ft-measurable, PC([t0, T ], Rn)-valued random variables
ϕ, satisfying

‖ϕ‖2
L2

= sup
t∈[t0,T ]

E‖ϕ(t)‖2,

where E denotes the mathematical expectation operator
of a stochastic process with respect to the given probabil-
ity measure P. Let L(Rn, Rm) be the space of all linear
transformations from R

n to R
m.

In the sequel, for simplicity, we shall assume that the
set of admissible controls is Uad := LF

2 ([0, T ], Rm).
For brevity, we set

P (t; θ) =
∫ t

0

Φ(θ, θ − s)B(θ − s) ds,

C̄(t; T ) =
∫ T

T−t

P ∗(s; T ) ds − t

T

∫ T

0

P ∗(s; T ) ds,

S(t; T ) =
∫ t

0

Φ(t, s)B(s)C̄(s; T ) ds

and define

M(0, t) =
∫ t

0

B(s)B∗(s) ds,

S̄(T ) =
∫ T

0

P (s; θ)P ∗(s; θ) ds

− 1
T

[∫ T

0

P (s; θ) ds

] [∫ T

0

P ∗(s; θ) ds

]
,

where the star denotes the matrix transpose. We observe
that P (t; θ), C̄(t; T ), and S(t; T ) are continuous.

The set of all states attainable from x0 in time t > 0
is given by

Rt(x0) = {x(t; x0, u) : u(·) ∈ Uad},
where x(t; x0, u) is the solution to (1) corresponding to
x0 ∈ R

n, u(·) ∈ Uad.

Definition 1. The stochastic impulsive system (1) is said
to be controllable on [t0, T ] if, for given any initial state
x0 ∈ R

n and xT ∈ R
n, there exists a piecewise con-

tinuous input signal u(t) : [t0, T ] → R
m such that the

corresponding solution of (1) satisfies x(T ) = xT .

Since for the stochastic dynamical system (1)
the state space L2(Ω,Ft, R

n) is, in fact, an infinite-
dimensional space, we distinguish exact or complete con-
trollability and approximate controllability. Using the no-
tation given above for the stochastic dynamical system (1)
we define the following complete and approximate con-
trollability concepts for nonlinear stochastic systems.

Definition 2. The stochastic impulsive system (1) is com-
pletely controllable on [t0, T ] if

RT (x0) = L2(Ω,FT , Rn),

that is, all the points in L2(Ω,FT , Rn) can be exactly
reached from the arbitrary initial condition arrived at from
an arbitrary initial x0 ∈ L2(Ω,FT , Rn) at time T .
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Definition 3. The stochastic impulsive system (1) is ap-
proximately controllable on [t0, T ] if

RT (x0) = L2(Ω,FT , Rn),

that is, if all the points in L2(Ω,FT , Rn) can be ap-
proximately reached from an arbitrary initial condition
x0 ∈ L2(Ω,FT , Rn) at time T .

Consider the deterministic dynamical system of the
following form:

ż(t) = A(t)z(t) + B(t)v(t), (5)

where the admissible controls v ∈ L2([t0, t1], Rm).

Lemma 2. The following conditions are equivalent:

(i) The deterministic system (5) is controllable on
[t0, T ].

(ii) The stochastic system (2) is completely controllable
on [t0, T ].

(iii) The stochastic system (2) is approximately control-
lable on [t0, T ].

Proof. The proof is quite similar to that by Klamka
(2007b). �

The solution of the linear stochastic system (2) can
be written as follows:

x(t) = Φ(t, t0)x0 +
∫ t

t0

Φ(t, s)B(s)u(s) ds

+
∫ t

t0

Φ(t, s)σ̃(s) dw(s)

+
k∑

i=1

Φ(t, ti)Ii(x(t−i )).

(6)

Proposition 1. For all u ∈ R
m, we have

∫ t

0

Φ(t, s)B(s)u(s) ds

= P (t; t)u0 +
1
T

(uT − u0)
∫ t

0

P (s; t) ds

+ S(t; T )y(T )

(7)

and S(T ; T ) = S̄(T ).

Proof. The proof is quite similar to that by Sivasundaram
and Uvah (2008). �

By restricting our attention to systems with a con-
trollable linear part, we are able to obtain global results
for systems in which the control can enter in a nonlin-
ear fashion. The results cover linear systems as a simple
special case and, moreover, show that the steering can be

accomplished using continuous controls with arbitrarily
prescribed initial and final values. The following lemma
gives a formula for a minimum energy control steering
the linear stochastic system (2) from the state x0 to an ar-
bitrary point xT with prescribed controls.

Lemma 3. Assume that the matrix M(0, T ) is invertible.
Then, for an arbitrary xT ∈ L2(Ω,FT , Rn) and σ̃(·) ∈
LF

2 ([0, T ], Rn×n), the control

u0(t) =
(

1 − t

T

)
u0 +

t

T
uT + C̄(t; T )y(T ), (8)

where

y(T ) = E
{

[S̄(T )]−1
(
xT − Φ(T, 0)x0

− P (T ; T )u0 − 1
T

(uT − u0)
∫ T

0

P (s; t) ds

−
∫ T

0

Φ(T, s)σ̃(s) dw(s)

−
k∑

i=1

Φ(T, ti)Ii(x(t−i ))
)∣∣∣∣Ft

}
,

transfers the system

x(t) = Φ(t, 0)x0 + P (t; t)u0

+
1
T

(uT − u0)
∫ t

0

P (s; t) ds

+ S(t; T )y(T ) +
∫ t

0

Φ(t, s)σ̃(s) dw(s)

+
k∑

i=1

Φ(t, ti)Ii(x(t−i ))

(9)

from x0 ∈ R
n to xT at time T with u(0) = u0 and u(T ) =

uT .
Moreover, among all the admissible controls u(t)

transferring the initial state x0 to the final state x1 at time
T > 0, the control u0(t) minimizes the integral perfor-
mance index

J (u) = E

∫ T

0

‖u(t)‖2 dt.

Proof. If the matrix M(0, T ) is invertible, then the im-
pulsive system (2) is controllable on [0, T ]. Moreover, the
inverse [S̄(T )]−1 exists (Anichini, 1980). Thus the pair
(x(t), u0(t)) defined in (8) and (9) is well defined.

Now, by Proposition 1, we have

x(t) = Φ(t, 0)x0 +
∫ t

0

Φ(t, s)B(s)u0(s) ds

+
∫ t

0

Φ(t, s)σ̃(s) dw(s) +
k∑

i=1

Φ(t, ti)Ii(x(t−i )).
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From (7) and (9) we have

x(T ) = Φ(T, 0)x0 + P (T ; T )u0 + S(T ; T )y(T )

+
1
T

(uT − u0)
∫ T

0

P (s; T ) ds

+
∫ T

0

Φ(T, s)σ̃(t)(s) dw(s)

+
k∑

i=1

Φ(T, ti)Ii(x(t−i ))

= Φ(T, 0)x0+P (T ; T )u0

+
1
T

(uT −u0)
∫ T

0

P (s; T ) ds

+ S(T ; T )S̄(T )−1
[
xT − Φ(T, 0)x0

− P (T ; T )u0 − 1
T

(uT − u0)
∫ T

0

P (s; t) ds

−
∫ T

0

Φ(T, s)σ̃(s) dw(s)

−
k∑

i=1

Φ(T, ti)Ii(x(t−i ))
]

+
∫ T

0

Φ(T, s)σ̃(s) dw(s)

+
k∑

i=1

Φ(T, ti)Ii(x(t−i )) = xT

and x(0) = x0, u0(0) = u0, u0(T ) = uT . The second
part of the proof is similar to that of Theorem 2 by Klamka
(2007a). �

3. Controllability results

In this section, we investigate the possibility of designing
a nonlinear controller which conforms to the prescribed
control and derive controllability conditions for the non-
linear stochastic impulsive system (3) by using the con-
traction mapping principle. Here we prove complete con-
trollability of the nonlinear stochastic impulsive system
under the natural assumption that the associated linear
stochastic impulsive control system is completely control-
lable.

Consider the nonlinear stochastic impulsive system

dx(t) =
[
A(t)x(t) + B(t)u(t) + f(t, x(t))

]
dt

+ σ(t, x(t)) dw(t), t �= tk,

Δx(tk) = Ik(tk, x(t−k )), t = tk, k = 1, 2, . . . , ρ,

x(0) = x0, x(T ) = xT ,

u(0) = u0, u(T ) = uT ,

(10)

with f : [0, T ] × R
n → R

n, σ : [0, T ] × R
n → R

n×n,
Ik : Ω → R

n, Ω ⊂ [t0, T ]×R
n, Δx(t) = x(t+)−x(t−),

where

lim
h→0+

x(t + h) = x(t+), lim
h→0+

x(t − h) = x(t−)

and w is an n-dimensional Wiener process.
For the study of this problem we impose the follow-

ing hypotheses on the problem data:

(H1) The functions f, Ik and σ satisfy the following Lip-
schitz condition: There exist constants L1 and αk >
0, k = 1, 2, . . . , ρ for x, y ∈ R

n and t0 ≤ t ≤ T
such that

‖f(t, x) − f(t, y)‖2 + ‖σ(t, x) − σ(t, y)‖2

≤ L1‖x − y‖2,

‖Ik(t, x) − Ik(t, y)‖2 ≤ αk‖x − y‖2.

(H2) The functions f, Ik and σ are continuous and satis-
fies the usual linear growth condition, i.e., there ex-
ist a constants K1 and βk > 0, k = 1, 2, . . . , ρ for
x ∈ R

n and t0 ≤ t ≤ T such that

‖f(t, x)‖2 + ‖σ(t, x)‖2 ≤ K1(1 + ‖x‖2),

‖Ik(t, x)‖2 ≤ βk(1 + ‖x‖2),

By a solution of the system (10), we mean a solution of
the nonlinear integral equation

x(t) = Φ(t, 0)x0 +
∫ t

0

Φ(t, s)B(s)u(s) ds

+
∫ t

0

Φ(t, s)f(s, x(s)) ds

+
∫ t

0

Φ(t, s)σ(s, x(s)) dw(s)

+
ρ∑

k=1

Φ(t, tk)Ik(tk, x(t−k )).

(11)

It is obvious that, under the conditions (H1) and (H2), for
every u(·) ∈ Uad the integral equation (11) has a unique
solution in B2.

For x ∈ R
n, consider

x(t) = Φ(t, 0)x0 + P (t; t)u0 + S(t; T )y(T )

+
1
T

(uT − u0)
∫ t

0

P (s; t) ds

+
∫ t

0

Φ(t, s)f(s, x(s)) ds

+
∫ t

0

Φ(t, s)σ(s, x(s)) dw(s)
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+
ρ∑

k=1

Φ(t, tk)Ik(tk, x(t−k )),

u(t) =
(

1 − t

T

)
u0 +

t

T
uT + C̄(t; T )y(T ), (12)

where

y(T ) = E
{

[S̄(T )]−1
(
xT − Φ(T, 0)x0 − P (T ; T )u0

− 1
T

(uT − u0)
∫ T

0

P (s; t) ds

−
∫ T

0

Φ(T, s)f(s, x(s)) ds

−
∫ T

0

Φ(T, s)σ(s, x(s)) dw(s)

−
ρ∑

k=1

Φ(T, tk)Ik(tk, x(t−k ))
)∣∣∣∣Ft

}
.

To apply the contraction mapping principle, we define the
nonlinear operator Q from B2 to B2 as follows:

(Qx)(t) = Φ(t, 0)x0 + P (t; t)u0 + S(t; T )y(T )

+
1
T

(uT − u0)
∫ t

0

P (s; t) ds

+
∫ t

0

Φ(t, s)f(s, x(s)) ds

+
∫ t

0

Φ(t, s)σ(s, x(s)) dw(s)

+
ρ∑

k=1

Φ(t, tk)Ik(tk, x(t−k )).

From Lemma 3, if the operator Q has a fixed point,
then the system (10) has a solution x(t, u) with respect to
u(·). Clearly, x(t0, u) = x0, x(T, u) = x1. Then the
system (10) is controllable by u(·). Thus the problem of
discussing the controllability of the system (10) can be
reduced into that of the existence of a fixed point of Q.

Note that if the linear stochastic system (2) is com-
pletely controllable, then there exists a positive constant
m1 such that, for t0 < s < t ≤ T (Mahmudov, 2001),

‖Φ(s, t)‖2 ≤ m1.

Now, for convenience, let us introduce the following no-
tation:

m2 = max{‖A(s)‖2 : s ∈ [0, T ]},
m3 = max{‖B(s)‖2 : s ∈ [0, T ]},
M1 = max{‖S(t; T )‖2 : t ∈ [0, T ]},
M2 = ‖S̄(T )−1‖2.

Theorem 1. Assume that the functions involved in the
stochastic impulsive system given by (10) satisfy the con-
ditions (H1)–(H2) required to ensure the existence and
uniqueness of a solution process x(t) in B2 and that the
hypotheses of Lemma 3 hold. Then, for every x0, xT ∈ R

n

and prescribed values for the controls u0, uT ∈ R
m, the

nonlinear stochastic impulsive system (10) is completely
controllable provided that

6m1(1 + M1M2)

(
L1 + ρ

ρ∑
k=1

αk

)
(1 + T )T

< 1. (13)

Proof. To prove complete controllability, it is enough to
show that Q has a fixed point in B2. To do this, we use the
contraction mapping principle. To apply it, first we show
that Q maps B2 into itself. For that we have

E‖(Qz)(t)‖2

= E
∥∥∥Φ(t, 0)x0 + P (t; t)u0 + S(t; T )y(T )

+
1
T

(uT − u0)
∫ t

0

P (s; t) ds

+
∫ t

0

Φ(t, s)f(s, x(s)) ds

+
∫ t

0

Φ(t, s)σ(s, x(s)) dw(s)

+
ρ∑

k=1

Φ(t, tk)Ik(tk, x(t−k ))
∥∥∥

2

≤ 7‖Φ(t, 0)‖2‖x0‖2 + 7‖P (t; t)‖2‖u0‖2

+
7

T 2
‖uT − u0‖2‖

∫ t

0

P (s; t) ds‖2

+ 7‖S(t; T )‖2E‖y(T )‖2

+ 7E
∥∥
∫ t

0

Φ(t, s)f(s, x(s)) ds
∥∥2

+ 7E
∥∥
∫ t

0

Φ(t, s)σ(s, x(s)) dw(s)
∥∥2

+ 7E
∥∥∥

ρ∑
k=1

Φ(t, tk)Ik(tk, x(t−k ))
∥∥∥

2

.

Now we estimate E‖y(T )‖2,

E‖y(T )‖2 ≤ 7‖S̄(T )−1‖2
(
‖xT ‖2

+ ‖Φ(T, 0)‖2‖x0‖2 + ‖P (T ; t)‖2‖u0‖2

+ E
∥∥
∫ T

0

Φ(T, s)f(s, x(s)) ds
∥∥2

+ E
∥∥
∫ T

0

Φ(T, s)σ(s, x(s)) dw(s)
∥∥2

+
1
T
‖uT − u0‖2‖

∫ T

0

P (s; t) ds‖2
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+ E
∥∥∥

ρ∑
k=1

Φ(t, tk)Ik(tk, x(t−k ))
∥∥∥

2)

≤ 7M2

(
‖xT ‖2 + m1‖x0‖2 + T 2m1m3‖u0‖2

+ m1m3T
2‖uT − u0‖2

+ m1

(
L2 + ρ

ρ∑
k=1

βk

)

× E
∫ T

0

(1 + ‖x(s)‖2) ds
)
.

Therefore,

E‖(Qx)(t)‖2

≤ 49M1M2‖xT ‖2 + 7(1 + 7M1M2)
(
m1‖x0‖2

+ T 2m1m3‖u0‖2 + m1m3T
2‖uT − u0‖2

+ m1

(
L2 + ρ

ρ∑
k=1

βk

)
(1 + T )

× E
∫ T

0

(1 + ‖x(s)‖2) ds
)
.

(14)

From (14) and the condition (H2) it follows, that there
exists C1 > 0 such that

E‖(Qx)(t)‖2 ≤ C1

(
1 + T sup

0≤s≤T
E‖x(s)‖2

)
,

for all t ∈ [0, T ]. Therefore, Q maps B2 into itself.

Next we show that Q is a contraction mapping. In-
deed,

E‖(Qx1)(t) − (Qx2)(t))‖2

= E

∥∥∥
∫ t

t0

Φ(t, s)[f(s, x1(s)) − f(s, x2(s))] ds

+
∫ t

t0

Φ(t, s)[σ(s, x1(s)) − σ(s, x2(s))] dw(s)

+
ρ∑

k=1

Φ(t, tk)[Ik(tk, x1(t−k )) − Ik(tk, x2(t−k ))]

+ S(t; T )S̄(T )−1

×
(∫ T

t0

Φ(T, s)[f(s, x2(s)) − f(s, x1(s))] ds

+
∫ T

t0

Φ(T, s)[σ(s, x2(s)) − σ(s, x1(s))] dw(s)

+
ρ∑

k=1

Φ(T, tk)[Ik(tk, x2(t−k )) − Ik(tk, x1(t−k ))]

)∥∥∥
2

≤ 6m1L1(1 + T )
∫ T

t0

E‖x1(s) − x2(s)‖2 ds

+ 6m1ρ

ρ∑
k=1

αkE‖x1(t) − x2(t)‖2

+ 6M1M2

[
m1L1(1 + T )

∫ T

t0

E‖x1(s) − x2(s)‖2 ds

+ m1ρ

ρ∑
k=1

αkE‖x1(t) − x2(t)‖2
]

≤ 6m1(1 + M1M2)(1 + T )

(
L1 + ρ

ρ∑
k=1

αk

)

×
∫ T

t0

E‖x1(s) − x2(s)‖2 ds.

Accordingly,

sup
t∈[t0,T ]

E‖(Qx1)(t) − (Qx2)(t))‖2

≤ 6m1(1 + M1M2)

(
L1 + ρ

ρ∑
k=1

αk

)
(1 + T )T

× sup
t∈[t0,T ]

E‖x1(t) − x2(t)‖2.

Therefore, from (13) we conclude that Q is a contraction
mapping on B2. Then the mapping Q has a unique fixed
point x(·) ∈ B2, which is the solution of Eqn. (10). Thus
the nonlinear stochastic impulsive system (10) is com-
pletely controllable. �

4. Neutral stochastic impulsive system

Now, we consider a class of Itô type nonlinear neutral
stochastic impulsive systems as follows:

d[x(t) − g(t, x(t))] = [A(t)x(t) + B(t)u(t)
+ f(t, x(t))] dt

+ σ(t, x(t)) dw(t), t �= tk,

Δx(tk) = Ik(tk, x(t−k )), (15)

x(t0) = x0, x(T ) = xT ,

u(t0) = u0, u(T ) = uT

for t = tk, k = 1, 2, . . . , ρ, where g : [t0, T ]×R
n → R

n

is continuously differentiable. The controllability of this
type for nonlinear systems with no constraints on the con-
trol function has been investigated by Karthikeyan and
Balachandran (2009). The solution of the system (15) in
the interval [t0, T ] is given by the nonlinear integral equa-
tion
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x(t) = Φ(t, t0)[x0 − g(t0, x0)] + g(t, x(t))

+ P (t; t)u0 +
1
T

(uT − u0)
∫ t

0

P (s; t) ds

+ S(t; T )y(T ) +
∫ t

t0

A(s)Φ(t, s)g(s, x(s)) ds

+
∫ t

t0

Φ(t, s)f(s, x(s)) ds

+
∫ t

t0

Φ(t, s)σ(s, x(s)) dw(s)

+
ρ∑

k=1

Φ(t, tk)Ik(tk, x(t−k )). (16)

In order to apply the contraction principle, we set

(Px)(t) = Φ(t, t0)[x0 − g(t0, x0)] + g(t, x(t))
+ P (t; t)u0 + S(t; T )y(T )

+
1
T

(uT − u0)
∫ t

0

P (s; t) ds

+
∫ t

t0

A(s)Φ(t, s)g(s, x(s)) ds

+
∫ t

t0

Φ(t, s)f(s, x(s)) ds

+
∫ t

t0

Φ(t, s)σ(s, x(s)) dw(s)

+
ρ∑

k=1

Φ(t, tk)Ik(tk, x(t−k )),

u(t) =
(

1 − t

T

)
u0 +

t

T
uT + C̄(t; T )y(T ),

where

y(T ) = E
{

[S̄(T )]−1
(
xT − Φ(T, 0)[x0 − g(t0, x0)]

− g(T, x(T )) − P (T ; T )u0

− 1
T

(uT − u0)
∫ T

0

P (s; t) ds

−
∫ T

0

Φ(T, s)f(s, x(s)) ds

−
∫ T

0

Φ(T, s)σ(s, x(s)) dw(s)

−
∫ T

t0

A(s)Φ(T, s)g(s, x(s)) ds

−
ρ∑

k=1

Φ(T, tk)Ik(tk, x(t−k ))
)∣∣∣∣Ft

}
.

Along with the hypotheses (H1) and (H2) we assume the
following conditions on the problem data:

(H3) The function g satisfies the following Lipschitz con-
dition: There exist a constant L2 > 0 for x, y ∈ R

n

and t0 ≤ t ≤ T such that

‖g(t, x) − g(t, y)‖2 ≤ L2‖x − y‖2.

Theorem 2. Under the conditions (H1)–(H3) and the
hypotheses of Lemma 3, the nonlinear stochastic system
(15) is completely controllable provided that

[
9L2 + 9m1(1 + M1M2)(1 + m2)

×
(
L1 + L2 + ρ

ρ∑
k=1

αk

)]
(1 + T )T < 1. (17)

Proof. The proof is similar to that of Theorem 2 and
therefore it is omitted. �

5. Example

Consider the nonlinear stochastic impulsive system of the
form

d[x1 − x2]

=
[
e−tx2 + 1.2u1 − 0.2u2 +

x1 cosx2

5

]
dt

+
x1e

−t

8(1 + x2)
dw1(t), t �= tk,

d[x2 − 2 sinx1]

=
[
e−tx2 + 0.6u1 + 2.4u2 +

x2 sinx1

6

]
dt

+
x2e

−t

7(1 + x1)
dw2(t), t �= tk,

[
Δx1(tk)

Δx2(tk)

]

= e−0.1k

[
0.5 −0.15
0.12 0.6

] [
x1(t−k )
x2(t−k )

]
, (18)

with t = tk, where tk = tk−1 + 0.15, k = 1, 2, . . . , ρ.
This above equation can be rewritten in the form (15) with
x(t) = (x1(t), x2(t)) ∈ R

2, t0 = 0,

A(t) =
[

0 e−t

0 e−t

]
,

B(t) =
[

1.2 −0.2
0.6 2.4

]
,

g(t, x(t)) =
[

x2

2 sinx1

]
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f(t, x(t)) =

⎡
⎣

x1 cosx2

5
x2 sin x1

6

⎤
⎦ ,

σ(t, x(t)) =

⎡
⎢⎢⎣

x1e
−t

8(1 + x2)
0

0
x2e

−t

7(1 + x1)

⎤
⎥⎥⎦ .

The fundamental matrix associated with the linear
control system is

Φ(t, 0) =
[

1 exp(1 − e−t) − 1
0 exp(1 − e−t)

]
.

Take the final point as xT ∈ R
2. Moreover, it is

easy to show that for all x ∈ R
2, ‖f(t, x(t))‖2 +

‖σ(t, x(t))‖2 ≤ ‖x‖2/25 and ‖g(t, x(t))‖2 ≤ 4‖x‖2.
Also L1 = 1/25, L2 = 4, βk = 0.6469e−0.1k, m1 =
2(1 + e2(1−e−T )), m2 = 2, and m3 = 7.6. Using the
values of m1 and m2, we can easily obtain M1 and M2.
Choose T > 0 in such a way that (17) is satisfied. One can
see that all other conditions stated in Theorem 2 are satis-
fied. Hence, the stochastic impulsive system (18) is com-
pletely controllable on [0, T ] with arbitrarily prescribed
initial and final values of control.

Remark 1. It is very important to note that the con-
trollability results for stochastic integro-differential sys-
tems discussed by Shena et al. (2010) using Schaefer’s
fixed point theorem are invalid since the compactness of a
bounded linear operator implies that its range space must
be finite dimensional (Hernandez and O’Regan, 2009). It
should be pointed out that for stochastic dynamical sys-
tems the state space L2(Ω,Ft, R

n) is in fact an infinite-
dimensional space, which is incompatible with the re-
quirement that the mapping be compact. Even for a fi-
nite dimensional system, the finite set {yi, 1 ≤ i ≤ m}
may well depend on the sample point ω ∈ Ω, and there-
fore proving the desired compactness is extremely diffi-
cult. Thus, Schauder’s or Schaefer’s fixed point theorem
cannot be applied to study nonlinear stochastic control
problems.

6. Concluding remarks

In the paper, sufficient conditions for complete controlla-
bility of linear and nonlinear stochastic systems with pre-
scribed control were formulated and proved. It should be
pointed out that these results constitute an extension of
the controllability conditions for deterministic control sys-
tems given by Anichini (1980; 1983), Balachandran and
Lalitha (1992) as well as Luke (1972) to stochastic im-
pulsive systems with prescribed controls. As a possible
application of the theoretical results, an example of a non-
linear stochastic system was presented. Some important

comments regarding fixed point theorems involving com-
pactness results for nonlinear stochastic control problems
were explained.
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