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SINGULAR FRACTIONAL LINEAR SYSTEMS AND ELECTRICAL CIRCUITS
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A new class of singular fractional linear systems and electrical circuits is introduced. Using the Caputo definition of the
fractional derivative, the Weierstrass regular pencil decomposition and the Laplace transformation, the solution to the state
equation of singular fractional linear systems is derived. It is shown that every electrical circuit is a singular fractional
system if it contains at least one mesh consisting of branches only with an ideal supercapacitor and voltage sources or at
least one node with branches with supercoils.
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1. Introduction

Singular (descriptor) linear systems were addressed in ma-
ny papers and books (Dodig and Stosic, 2009; Dai, 1989;
Fahmy and O’Reill, 1989; Kaczorek, 1992; 2004; 2007a;
2007b; Kucera and Zagalak, 1988; Van Dooren, 1979).
The eigenvalues and invariants assignment by state and
output feedbacks were investigated by Dodig and Stosic
(2009), Dai (1989), Fahmy and O’Reill (1989), or Kaczo-
rek (1992; 2004), and the realization problem for singular
positive continuous-time systems with delays by Kaczo-
rek (2007b). The computation of Kronecker’s canonical
form of a singular pencil was analyzed by Van Dooren
(1979).

Fractional positive continuous-time linear systems
were addressed by Kaczorek (2008) along with positive
linear systems with different fractional orders (Kaczorek,
2010). An analysis of fractional linear electrical circu-
its was presented in another work of Kaczorek (2011)
and some selected problems in theory of fractional line-
ar systems in a monograph by the same author (Kaczorek,
2009).

In this paper a new class of singular fractional linear
systems and electrical circuits will be introduced and their
solution of state equations will be derived. The paper is
organized as follows. In Section 2 the Caputo definition
of the fractional derivative and the solution to the state
equation of the fractional linear system are recalled. The
solution of the state equation of a singular fractional linear
system is derived in Section 3 using the Weirstrass pencil

decomposition and the Laplace transform. Singular frac-
tional linear electrical circuits are introduced in Section 4.
Concluding remarks are given in Section 5.

To the best of the author’s knowledge, singular frac-
tional linear systems and electrical circuits have not been
considered yet.

The following notation will be used in the paper. The
set of n ×m real matrices will be denoted by R

n×m and
R

n := R
n×1. The set of m× n real matrices with nonne-

gative entries will be denoted by R
m×n
+ and R

n
+ := R

n×1
+ .

The set of nonnegative integers will be denoted by Z+ and
the n× n identity matrix by In.

2. Preliminaries

The following Caputo definition of the fractional derivati-
ve will be used (Podlubny, 1999; Kaczorek, 2009):

dα

dtα
f(t) =

1
Γ(n− α)

∫ t

0

f (n)

(t− τ)α+1−n
dτ,

n− 1 < α ≤ n ∈ N = {1, 2, . . .},
(1)

where α ∈ R is the order of the fractional derivative,

f (n)(τ) =
dnf(τ)

dτn
,

and

Γ(x) =
∫ ∞

0

e−ttx−1 dt

is the gamma function.
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Consider the continuous-time fractional linear sys-
tem described by the state equation

dα

dtα
x(t) = Ax(t) +Bu(t), 0 < α ≤ 1, (2)

where x(t) ∈ R
n and u(t) ∈ R

m are the state and input
vectors, respectively, and A ∈ R

n×n, B ∈ R
n×m.

Theorem 1. The solution of Eqn. (2) is given by

x(t) = Φ0(t)x0 +
∫ t

0

Φ(t− τ)Bu(t) dτ, x(0) = x0,

(3)
where

Φ0(t) =
∞∑

k=0

Aktkα

Γ(kα+ 1)
, (4)

Φ(t) =
∞∑

k=0

Akt(k+1)α−1

Γ[(k + 1)α]
. (5)

The proof was given by Kaczorek (2008; 2009).

Remark 1. From (4) and (5) for α = 1 we have

Φ0(t) = Φ(t) =
∞∑

k=0

(At)k

Γ(k + 1)
= eAt.

3. Singular fractional linear systems

Consider a singular fractional linear system described by
the state equations

E
dα

dtα
x(t) = Ax(t) +Bu(t), (6a)

y(t) = Cx(t) +Du(t), (6b)

where x(t) ∈ R
n, u(t) ∈ R

m, y(t) ∈ R
p are respectively

the state, input and output vectors, and E,A ∈ R
n×n,

B ∈ R
n×m, C ∈ R

p×n, D ∈ R
p×m.

The initial condition for (6a) is given by

x(0) = x0. (6c)

It is assumed that the pencil of the pair (E, A) is regular,
i.e.,

det[Es−A] �= 0, (7)

for some s ∈ C (the field of complex numbers). It is well
known (Gantmacher, 1960; Kaczorek, 2007a, p. 92) that,
if the pencil is regular, then there exists a pair of nonsin-
gular matrices P,Q ∈ R

n×n such that

P [Es−A]Q =
[
In1 0
0 N

]
s−

[
A1 0
0 In2

]
, (8)

where n1 is equal to the degree of the polynomial
det[Es − A], A1 ∈ R

n1×n1 , N ∈ R
n2×n2 is a nilpotent

matrix with the index μ (i.e.,Nμ = 0 andNμ−1 �= 0) and
n1 + n2 = n.

Applying the Laplace transform (L) to Eqn. (6a)
with zero initial conditions x0 = 0, we obtain

[Esα −A]X(s) = BU(s), (9)

where

X(s) = L[x(t)] =
∫ ∞

0

x(t)e−st dt

and U(s) = L[u(t)]. By the assumption (7), the pencil
[Esα−A] is regular and we may apply the decomposition
(8) to Eqn. (6a).

Premultiplying (6a) by the matrix P ∈ R
n×n and

introducing the new state vector

x̄(t) = Q−1x(t) =
[
x1(t)
x2(t)

]
, (10)

where x1(t) ∈ R
n1 and x2(t) ∈ R

n2 , we obtain

dα

dtα
x1(t) = A1x1(t) +B1u(t), (11a)

N
dα

dtα
x2(t) = x2(t) + B2u(t), (11b)

where

PB =
[
B1

B2

]
, B1 ∈ R

n1×m, B2 ∈ R
n2×m. (11c)

Using (3) we obtain the solution to Eqn. (11a) in the
form

x1(t) = Φ10(t)x10 +
∫ t

0

Φ11(t− τ)B1u(t) dτ, (12a)

where

Φ10(t) =
∞∑

k=0

Ak
1t

kα

Γ(kα+ 1)
, (12b)

Φ11(t) =
∞∑

k=0

Ak
1t

(k+1)α−1

Γ[(k + 1)α]
, (12c)

and x10 ∈ R
n1 is the initial condition for (11a) defined by
[
x10

x20

]
= Q−1x0, x0 = x(0). (12d)

To find the solution of Eqn. (11b), we apply the La-
place transform and obtain

NsαX2(s) −Nsα−1x20 = X2(s) +B2U(s) (13a)

since (Dai, 1989; Kaczorek, 2008), for 0 < α < 1,

L
[

dα

dtα
x2(t)

]
= sαX2(s) − sα−1x20, (13b)
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where X2(s) = L[x2(t)]. From (13) we have

X2(s) = [Nsα − In2 ]
−1(B2U(s) +Nsα−1x20). (14)

It is easy to check that

[Nsα − In2 ]
−1 = −

μ−1∑
i=0

N isiα (15)

since

[Nsα − In2 ]

(
−

μ−1∑
i=0

N isiα

)
= In2 (16)

and N i = 0 for i = μ, μ+ 1, . . . .

Substitution of (15) into (14) yields

X2(s) = −B2U(s) − Nx20

s1−α

−
μ−1∑
i=1

[
N iB2s

iαU(s) +N i+1s(i+1)α−1x20

]
.

(17)

Applying the inverse Laplace transform (L−1) to
(17) and then the convolution theorem we obtain, for
1 − α > 0,

x2(t) = L−1[X2(s)]

= −B2u(t) −Nx20
t−α

Γ(1 − α)

−
μ−1∑
i=1

[
N iB2

diα

dtiα
u(t) +N i+1 d(i+1)α−1

dt(i+1)α−1
x20

]

(18)

since

L−1

[
1

sα+1

]
=

tα

Γ(1 + α)

for α+ 1 > 0.
Therefore, the following theorem has been proved.

Theorem 2. The solution to Eqn. (6a) with the initial con-
dition (6c) has the form

x(t) = Q

[
x1(t)
x2(t)

]
, (19)

where x1(t) and x2(t) are given by (12) and (18), respec-
tively.

Knowing the solution (19), we can find the output
y(t) of the system using the formula

y(t) = CQ

[
x1(t)
x2(t)

]
+Du(t). (20)

4. Singular fractional electrical circuits

Let the current iC(t) in the supercapacitor with the ca-
pacity C be the α-th order derivative of its charge q(t)
(Kaczorek, 2011),

iC(t) =
dαq(t)
dtα

. (21)

Taking into account that q(t) = CuC(t), we obtain

iC(t) = C
dαuC(t)

dtα
, (22)

where uC(t) is the capacitor voltage.
Similarly, let the voltage uL(t) of the supercoil (in-

ductor) with the inductance L be the β-th order derivative
of its magnetic flux ψ(t),

uL(t) =
dβΨ(t)
dtβ .

(23)

Taking into account that ψ(t) = LiL(t) we obtain

uL(t) = L
dβiL(t)

dtβ
, (24)

where iL(t) is the current of the supercoil.

Example 1. Consider the electrical circuit shown in Fig. 1
with given resistance R, capacitances C1, C2, C3 and so-
urce voltages e1 and e2.

 

Fig. 1. Electrical circuit of Example 1.

Using Kirchhoff’s laws, for the electrical circuit we
can write the equations

e1 = RC1
dαu1

dtα
+ u1 + u3,

C1
dαu1

dtα
+ C2

dαu2

dtα
− C3

dαu3

dtα
= 0,

e2 = u2 + u3.

(25)

They (25) can be rewritten in the form⎡
⎣ RC1 0 0

C1 C2 −C3

0 0 0

⎤
⎦ dα

dtα

⎡
⎣ u1

u2

u3

⎤
⎦

=

⎡
⎣ −1 0 −1

0 0 0
0 −1 −1

⎤
⎦
⎡
⎣ u1

u2

u3

⎤
⎦+

⎡
⎣ 1 0

0 0
0 1

⎤
⎦
[
e1
e2

]
.

(26)
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In this case we have

E =

⎡
⎣ RC1 0 0

C1 C2 −C3

0 0 0

⎤
⎦ ,

A =

⎡
⎣ −1 0 −1

0 0 0
0 −1 −1

⎤
⎦ ,

B =

⎡
⎣ 1 0

0 0
0 1

⎤
⎦ .

(27)

Note that the matrix E is singular (detE = 0) but
the pencil

det[Esα −A]

=

∣∣∣∣∣∣
RC1s

α + 1 0 1
C1s

α C2s
α −C3s

α

0 1 1

∣∣∣∣∣∣
= (RC1s

α + 1)(C2 + C3)sα + C1s
α

(28)

is regular. Therefore, the electrical circuit is a singular
fractional linear system. �

Remark 2. If the electrical circuit contains at least one
mesh consisting of branches with only ideal supercapa-
citors and voltage sources, then its matrix E is singular
since the row corresponding to this mesh is a zero row.
This follows from the fact that the equation written with
the use of Kirchhoff’s voltage law is an algebraic one.

Example 2. Consider the electrical circuit shown in Fig. 2
with given resistancesR1,R2,R3, inductancesL1,L2,L3

and source voltages e1 and e2.

Fig. 2. Electrical circuit of Example 2.

Using Kirchhoff’s laws we can write, the equations

e1 = R1i1 + L1
dβi1
dtβ

+R3i3 + L3
dβi3
dtβ

,

e2 = R2i2 + L2
dβi2
dtβ

,+R3i3 + L3
dβi3
dtβ

i1 + i2 − i3 = 0.

(29)

Equations (29) can be written in the form

⎡
⎣ L1 0 L3

0 L2 L3

0 0 0

⎤
⎦ dβ

dtβ

⎡
⎣ i1
i2
i3

⎤
⎦

=

⎡
⎣ −R1 0 −R3

0 −R2 −R3

1 1 −1

⎤
⎦
⎡
⎣ i1
i2
i3

⎤
⎦

+

⎡
⎣ 1 0

0 1
0 0

⎤
⎦
[
e1
e2

]
.

(30)

In this case we have

E =

⎡
⎣ L1 0 L3

0 L2 L3

0 0 0

⎤
⎦ ,

A =

⎡
⎣ −R1 0 −R3

0 −R2 −R3

1 1 −1

⎤
⎦ ,

B =

⎡
⎣ 1 0

0 1
0 0

⎤
⎦ .

(31)

Note that the matrix E is singular but the pencil

det[Esβ −A]

=

∣∣∣∣∣∣
L1s

β +R1 0 L3s
β +R3

0 L2s
β +R2 L3s

β +R3

−1 −1 1

∣∣∣∣∣∣
= [L1(L2 + L3) + L2L3]s2β

+ [(L2 + L3)R1 + (L1 + L3)R2 + (L1 + L2)R3]sβ

+R1(R2 +R3) +R2R3

(32)

is regular. Therefore, the electrical circuit is a singular
fractional linear system. �
Remark 3. If the electrical circuit contains at least one
node with branches with supercoils, then its matrix E is
singular since it has at least one zero row. This follows
from the fact that the equation written using Kirchhoff’s
current law for this node is an algebraic one.

In the general case we have the following theorem.

Theorem 3. Every electrical circuit is a singular fractio-
nal system if it contains at least one mesh consisting of
branches with only ideal supercapacitors and voltage so-
urces or at least one node with branches with supercoils.

Proof. By Remark 1 the matrix E of the system is sin-
gular if the electrical circuit contains at least one mesh
consisting of branches with only ideal supercapacitors and
voltage sources. Similarly, by Remark 2 the matrix E is
singular if the electrical circuit contains at least one node
with branches with supercoils. �
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Using the solution (19) of Eqn. (6a) we may find the
voltages on the supercapacitors and currents in the super-
coils in transient states of singular fractional linear electri-
cal circuits. Knowing the voltages and currents and using
(20), we may also find any currents and voltages in singu-
lar fractional linear electrical circuits.

Example 3. (Continuation of Example 1) Using one of the
well-known methods (Van Dooren, 1979; Dai, 1989; Ka-
czorek, 2007a) for the pencil (28), we can find the matri-
ces

P =

⎡
⎢⎢⎢⎢⎢⎢⎣

1
RC1

0 − C2
RC1(C2+C3)

− 1
R(C2+C3)

1
C2+C3

C2
R(C2+C3)2

0 0 −1

⎤
⎥⎥⎥⎥⎥⎥⎦
,

Q =

⎡
⎢⎢⎢⎢⎣

1 0 0

0 1 C3
C2+C3

0 −1 C2
C2+C3

⎤
⎥⎥⎥⎥⎦,

(33)

which transform it to the canonical form (8) with

A1 =

⎡
⎣ − 1

RC1

1
RC1

1
R(C2+C3)

− 1
R(C2+C3)

⎤
⎦ ,

N = [0], n1 = 2, n2 = 1. (34)

Using the matrix B given by (27), (33) and (11c) we ob-
tain[

B1

B2

]
= PB

=

⎡
⎢⎢⎢⎢⎣

1
RC1

− C2
RC1(C2+C3)

− 1
R(C2+C3)

C2
R(C2+C3)

0 −1

⎤
⎥⎥⎥⎥⎦ .

(35)

From (12) we have

x1(t) = Φ10(t)x10 +
∫ t

0

Φ11(t− τ)B1u(t) dτ (36)

for any given initial condition x10 ∈ R
n1 and input u(t),

where

Φ10(t) =
∞∑

k=0

Ak
1t

kα

Γ(kα+ 1)
,

Φ11(t) =
∞∑

k=0

Ak
1t

(k+1)α−1

Γ[(k + 1)α]
, 0 < α < 1.

In this case, using (18) we obtain

x2(t) = −B2u(t) (37)

since N = [0].
In much the same way we may find currents in the su-

percoils of the singular fractional electrical circuit shown
in Fig. 2.

5. Concluding remarks

Singular fractional linear systems and electrical circuits
have been introduced. Using the Caputo definition of the
fractional derivative, the Weierstrass regular pencil de-
composition and the Laplace transform, the solution to the
state equation of singular fractional linear system was de-
rived (Theorem 2). Singular fractional linear electrical cir-
cuits were analyzed. It was shown that every electrical cir-
cuit is a singular fractional system if it contains at least one
mesh consisting of branches with only ideal supercapaci-
tors and voltage sources or at least one node with branches
with supercoils (Theorem 3). The discussion was illustra-
ted by singular linear electrical circuits. It can be extended
to singular fractional linear systems with singular pencils.

An open problem is extension of the results to posi-
tive singular fractional linear systems and singular positi-
ve linear systems with different fractional orders. Linear
systems with different fractional orders are described by
(Kaczorek, 2010)

⎡
⎢⎢⎣

dαx1

dtα

dβx2

dtβ

⎤
⎥⎥⎦ =

[
A11 A12

A21 A22

] [
x1

x2

]
+
[
B1

B2

]
u,

p− 1 < α < p, q − 1 < β < q, p, q ∈ N,
(38)

where x1 ∈ R
n1 , x2 ∈ R

n2 are the state vectors andAij ∈
R

ni×nj , Bi ∈ R
ni×m, i, j = 1,2, and u ∈ R

m is the
input vector. The initial conditions for (38) have the form
x1(0) = x10 and x2(0) = x20.
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