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This paper presents a method for building a foothold selection module as well as methods for the stability check for a
multi-legged walking robot. The foothold selection decision maker is shaped automatically, without expert knowledge.
The robot learns how to select appropriate footholds by walking on rough terrain or by testing ground primitives. The
gathered knowledge is then used to find a relation between slippages and the obtained local shape of the terrain, which is
further employed to assess potential footholds. A new approach to function approximation is proposed. It uses the least-
squares fitting method, the Kolmogorov theorem and population-based optimization algorithms. A strategy for re-learning
is proposed. The role of the decision support unit in the control system of the robot is presented. The importance of the
stability check procedure is shown. A method of finding the stability region is described. Further improvements in the
stability check procedure due to taking into account kinematic correction are reported. A description of the system for
calculating static stability on-line is given. Methods for measuring stance forces are described. The measurement of stance
forces facilitates the extended stability check procedure. The correctness of the method is proved by results obtained in a
real environment on a real robot.
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1. Introduction

1.1. Taxonomy of locomotion tasks for a walking ro-
bot. A six-legged walking robot, due to its stability and
kinematic redundancy, has better locomotive abilities than
wheeled mobile robots and also better performance com-
pared with walking robots with two or four legs. A six-
legged robot is able to walk on rough terrain with obstac-
les as high as its leg’s last segment. Thanks to its kinematic
redundancy, it is also able to climb obstacles which exhibit
the local height difference as high as the robot’s stretched
leg. The movement on rough terrain should be fast. The
problem of foot placement has to be solved in order to
avoid slippages or being stuck in local terrain concavities.
Traversing high obstacles is similar to climbing strategies
and thus has deliberate character. Planning each next step
is strongly dependent on the current robot pose and the
prediction of robot stability in the target pose. As can be
seen, two locomotion tasks of different character are invo-
lved. Each of them requires different planning methods.
The locomotion system architecture for a walking robot
can be seen in Fig. 1
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Fig. 1. Control architecture.

1.2. State of the art. To create an efficient control al-
gorithm for a robot walking on rough terrain, one should
deal with many substantial problems. At the beginning,
the robot should build a proper model of the environment.
The Lauron robot is an example of a walking machine
which is able to acquire a map of an unstructured envi-
ronment (Gassmann et al., 2003; Roennau et al., 2009).
It uses both occupancy and credibility maps in order to
make decisions about appropriate footholds. The chosen
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position of a foot depends on the value of credibility and
the distance from the center of the local map (which is clo-
se to a foothold expected for “normal” walking behavior).
Another robot which can acquire a map of the surroun-
ding terrain is LittleDog (Kolter et al., 2009). Here a dif-
ferent approach to the foothold selection problem was im-
plemented (Rebula et al., 2007). The robot was equipped
with a terrain scorer/classifier. It judges a potential foot
placement at a given point as acceptable or unacceptable,
by taking into account the height of the point considered
and the height of the neighboring ones. The scorer rejects
the points which are located on too excessive slopes or are
too close to the top edge or the base of a cliff, or are inside
of a hole. The robot uses a previously acquired map of the
surroundings to compute a fine grid of the scored terrain.
An interesting approach to the foothold selection problem
was presented by Kalakrishnan et al. (2009). They propo-
sed to use terrain templates and supervised learning from
expert demonstrations. This allows us to obtain a complex
ranking function which improves the walking performan-
ce. This function is generic and can be applied to a pre-
viously unvisited terrain.

Another problem which should be taken into account
is the role of the foothold selection algorithm in the con-
trol system architecture. The foothold planner can work
as part of a higher-level planner (Kolter et al., 2008). It
produces a set of footsteps on the terrain. The low-level
planner takes into account the foothold sequence to gene-
rate desired paths of the legs and of the robot’s center of
gravity.

The appropriate structure of the control system sho-
uld contain an efficient motion controller unit. The obta-
ined footstep sequence is used for motion planning of the
robot (Vernaza et al., 2009). Afterwards, the robot exe-
cutes the joints trajectories to follow the desired footstep
sequence. Robustness during movement execution can be
provided by using force control (Schmucker et al., 2003).
Compliant legs of a robot yield automatic adaptation to
small irregularities on the surface while walking on a ro-
ugh terrain.

A slightly different problem is posed by the negotia-
tion of higher obstacles such as stairs. Much research in
this field was conducted for biped robots. The use of for-
ce sensors and accelerometers while climbing stairs was
described by Li et al. (2007). Another approach was re-
ported by Gutmann et al. (2004), who used a stereo vision
system as the main state sensor. Bipedal robots are able to
move in the horizontal direction, but a big problem is their
poor stability while walking, as they can easily fall down
if they encounter an obstacle on the stairs.

Walking robots with six or more legs exhibit a con-
siderable static stability in transient states, which prevents
them from falling down in the case of obstacles on a stair-
case. Nevertheless, there is still a need for performing the
stability check procedure which is based on the position

of the robot Center of Mass (CM). Early research in this
field was done in the 1980s and 1990s, and it is described
by Kumar and Waldron (1988) as well as Barghava and
Waldron (1988). Further results in this area were reported
by Gonzalez et al. (2005), whose stability margin check
included joints torques and limited power. The latest rese-
arch is focused on testing the static equilibrium on-line by
using optimization methods (Bretl and Lall, 2006; 2008).

The solution proposed by Bretl and Lall (2008) was
taken as the starting point in our research. The method of
finding a support region was adapted to the case of a six-
legged walking robot. The specification of the problem led
to the simplification of computations, thus enabling a real
time operation on a real robot.

The modules presented in the paper are part of a lo-
comotion system architecture. They support the main mo-
dule in motion planning of the robot body. Terrain evalu-
ation and the robot mobility should be taken into account
during trajectory planning and gait generation (Bai and
Low, 2001). The efficiency of walking on a rough terra-
in can be improved by appropriate gait generation (Bai
et al., 1999). During the execution of the planned move-
ment the robot should distribute the body force to the feet
to prevent leg slippages. This could be achieved by apply-
ing active force control (Zhou et al., 2000).

2. Adaptive foothold selection problem

2.1. Adapting a walk to uneven terrain. Walking on
an uneven terrain requires selecting an appropriate ga-
it type. For the proposed task, the tripod gait was cho-
sen (Belter et al., 2008). However, the results are appli-
cable for wave and free gait. We decided to verify the al-
gorithm on the most demanding type of gait. The tripod
gait is characterized by the smallest support region. As a
result, walking on rough terrain is more demanding accor-
ding to the stability criterion. On the other hand, the robot
has the potential to cover a particular distance in shorter
time, which is important in search and rescue missions.
The wave and free gaits were rejected due to low maximal
speeds of walking in these modes.

The problem of walking on rough terrain is similar
to that of multi-finger grasping. The are two approaches
to this problem. The first one is based on the form-closure
principle, while the second one exploits constraints resul-
ting from closure forces. Form-closure constraints result
from geometric properties of a set of contact constraints
between feet and the terrain. Force-closure is due to the
forces which are transmitted through the contact points.
The use of force-closure constraints requires the know-
ledge of a friction coefficient. It is difficult to deduce such
information. Additionally, the friction of the terrain may
differ locally while walking on a rocky ground. For that
reason, the robot controller uses only geometrical proper-
ties of the terrain to plan the footholds. Moreover, such a
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method is independent of the friction coefficient value. It
works properly for terrain with varying values of friction
coefficients but does not take into account dynamic terrain
such as moving rocks.

Fig. 2. Ragno robot during tests on a rough terrain mockup.

2.2. Robot and the simulator. The Ragno hexapod
walking robot (cf. Fig. 2) is used in this research. Each
leg has three joints that are driven by integrated servomo-
tors. The robot weighs 2.155 kg without batteries and fits
in a box of 33×30 cm. Its mechanical structure allows for
walking with the trunk elevated from 15 to 70 mm over
the ground. The robot is equipped with various types of
sensors including an Inertial Measurements Unit (IMU) to
measure the roll and pitch angles. The reader can find mo-
re information in the paper by Walas et al. (2008). What is
important, the results are also verified on a bigger robot,
Messor, with a similar feet shape.

The simulator of the Ragno robot is based on the
Open Dynamics Engine (ODE). This library allows for
simulating rigid body dynamics. It provides methods for
modeling various joints with friction and softness, and
for detecting collisions (Smith, 2007). The parameters of
the simulated model are optimized by using the evolutio-
nary algorithm, which minimizes discrepancies between
the real and the simulated robot (Belter and Skrzypczyń-
ski, 2009). This simulator has been already successfully
used to evolve feasible gaits for the Ragno robot (Belter et
al., 2008).

2.3. Control strategy for walking on uneven terrain.
During the stance phase the robot maintains a constant
average height of the trunk above the ground. This ave-
rage height is computed by using position coordinates of
the last six footholds coordinates. To stabilize the trunk
orientation during the walk, the information about pitch
and roll angles from the IMU is used.

At the end of the swing phase of the supporting legs,
the robot searches for the best positions of three new fo-
otholds. At first, it checks whether the potential footholds

Fig. 3. Simulated robot.
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Fig. 4. Computation of the coefficients K1 and K2.

are in the workspace of the given leg. If there is no feasi-
ble foothold in the reach of one of the legs, the robot chan-
ges the height of its trunk to reach a proper support point.
If this strategy fails, the control system informs the path
planner module that the planned movement is not feasi-
ble. The problem is solved by higher layers of the control
system, which are not considered in this paper. However,
in the experiments presented further, the reactions which
change the robot’s posture were sufficient to deal with the
problem.

2.4. Ground properties. The presented algorithm uses
a known grid map of the surroundings and computes fo-
ur coefficients which describe the geometric properties of
potential footholds. For the [i, j] grid coordinates, the co-
efficient K1 is defined as follows:

K1(i, j) =
1∑

k=−1

1∑

l=−1

(zi,j − zi+k,j+l), (1)

where zi,j and zi+k,j+l are terrain elevations of the cor-
responding points from the grid map (Fig. 4). This coeffi-
cient allows for detecting a top edge or a hole. For a top
edge, K1 is positive, and for a hole, K1 is negative. The
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Fig. 5. Computation of the K3 coefficient.

value of K1 provides information about the local terrain
extremes, although K1 is ambiguous when its value is ze-
ro. A flat terrain as well as a terrain with a constant slope
give the same results for K1.

The coefficient K2 for [i, j] grid coordinates is defi-
ned as follows:

K2(i, j) =
1∑

k=−1

1∑

l=−1

|zi,j − zi+k,j+l|. (2)

The coefficient K2 provides information about the
steepness of the terrain. It returns different results for a
constant slope and for a flat terrain. On the other hand,
top edges and holes return the same values of K2. K1 and
K2 separately are ambiguous, but together they provide
fundamental information about the terrain relief.

The coefficient K3 is defined by the angle α between
a vector f describing the foot movement with respect to
the body and a vector n normal to the surface. The normal
vector n is computed only for a piece of the surface as
shown in Fig. 5. It depends on the projection of the vector
f on the plane xy. Tangent vectors s1, . . . , s5 are compu-
ted for points which are neighbors to the quadrant where
the projection of the vector f is located. Next, the vector
n is computed as follows:

n =
4∑

i=1

si × si+1. (3)

The angle α between the vectors n and f is computed
as follows:

α = K3 = arc cos
(

n · f
|n||f |

)
. (4)

Whenever the angle α is close to π, the robot’s foot has
good support for the movement. When α is small, then
there is a high probability of a slippage.

The coefficient K4 is calculated as the distance be-
tween the point considered and the point (x0,y0,z0), being

a) b)

d)

f)

c)

e) g)

Foothold

Fig. 6. Ground primitives.

the center of the local map (the foothold for the “normal”
walking behavior):

K4(i, j) =
√

(x0 − xi,j)2 + (y0 − yi,j)2. (5)

3. Algorithm

The aim of the algorithm is to evaluate potential footholds
and to select the best one. The best point for a foot stance
should minimize the risk of a slippage. The slippage is
defined by the difference between the positions of a foot
at the beginning and at the end of the stance phase. If the
foot does not slip at all, these positions should be the same.
Thus, the i-th foot slippage ri is computed as ri = di/|fi|,
where di is the distance between the initial and the final
position of this foot during the stance phase, and |fi| (used
as a normalizing factor) is the length of the vector that
defines the intended i-th leg movement with respect to the
body.

To evaluate potential foot placements, a grid map of
the terrain is used with 5 mm×5 mm grid cells. In the
presented simulations and experiments the terrain map is
given a priori, but this method can be used with an on-
line terrain mapping system utilizing a laser scanner or
a structured light sensor (Łabecki et al., 2009). For the
points of the map considered, the coefficients K1, K2, K3,
and K4 are computed. The foothold selection algorithm
consists of four steps (Belter, 2009):

1. collecting data,

2. learning (approximation),

3. regular operation,

4. re-learning.

3.1. Collecting data that identify the ground proper-
ties. At first, the robot collects the appropriate data for
learning. Two strategies of data acquisition were investi-
gated. In the first one, the robot walks on rough terrain,
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randomly selecting footholds, saving coefficients corre-
sponding to these points and, as a result of a particular
step selection, a foot slippage measured after the stance
phase. In the second approach, the robot tests seven ty-
pes of previously prepared “ground primitives” (shown in
Fig. 6). Each of the robot’s foot is placed on the same pri-
mitive. The robot executes a movement, and after that, the
slippage of each foot is registered. This experiment is re-
peated with all primitives. To test different ground types,
the height of the primitives is changed during the acquisi-
tion phase within the range of 4 cm, with a step of 1 cm.
The primitives are also rotated with a step of 45◦. After
this stage, the robot has an appropriate data set to build a
relation between the slippages and the local shape of the
terrain and to distinguish between the good and the poor
footholds. In most supervised learning systems the robot
is taught on positive examples. The teacher shows the po-
ints of the terrain which are appropriate for a foot stance.
In this system, negative examples have the same impor-
tance.

The point cloud shown in Fig. 7 was obtained in a
situation when only two coefficients were used (K1 and
K2). The primitives were used for data acquisition. Whe-
never the parameter space has a higher dimensionality, it
is not possible to show the results graphically. It is dif-
ficult to deduce information about the usefulness of the
footholds from a cloud of raw points. Very often the data
are ambiguous. Selecting the same points (defined by the
same coordinates K1 and K2) results in different slippage
values. This is due to the closed kinematic chains made by
the robot’s legs with the ground. Footholds are evaluated
locally, leg by leg, but the slippage at the selected point
depends also on footholds of the remaining legs. If even a
single foot skids, the forces are transmitted through the ro-
bot body, which can cause a slippage in the contact points
of other feet.

3.2. Learning the decision support unit. In the se-
cond phase, the robot forms its decision support module.
Learning is understood here in a broader sense, as the de-
velopment of a decision support unit on the basis of the
terrain characteristics. The learning phase provides an ad-
aptation mechanism, which incorporates the knowledge
gathered by the robot into its control system. To deduce
useful information from the cloud of points, a discretiza-
tion using a fixed grid is used. The input space K1, K2

and K3 is divided into a regular grid (Fig. 7 for a situation
when only K1 and K2 are used). For points that have pro-
jections located in the examined grid cell, a mean value is
computed. The result is placed in the center of the grid cell
considered. After this discretization, a group of input po-
ints pf = [pf1, . . . ,pfk]T is obtained. The output vector
r = [r1, . . . , rk]T contains the slippage values which cor-
respond to the respective pfi vector of input values. For
further purposes, only these points are stored. The previo-
us point cloud is removed from the memory.

A foothold selection method should be general, but
it is not possible to test all types of terrain. However, the
algorithm should have the ability to judge the usefulness
of the ground points, which have not been tested expli-
citly in the data acquisition stage. To this end, a least-
squares polynomial approximation is used (Dahlquist and
Bjorck, 1974). The approximation assignment requires the
selection of an appropriate polynomial base:

P (K1, K2, . . . , Kn) =
m∑

q=0

cq · φq(K1, K2, . . . , Kn),

(6)
where K1, K2, . . . , Kn are coefficients which characteri-
ze the terrain. The polynomial P allows assessing the po-
tential footholds represented by values of the K1, . . . , Kn

coefficients. To determine the vector c of cq values, the
least-squares fitting method is applied on the set of points
pf obtained in the data acquisition stage. The method uses
the Gram matrix G:

G =VT V, (7)

c =G−1VT r, (8)

where

V =

⎡

⎣
φ1(pf1) φ2(pf1) . . . φm(pf1)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
φ1(pfk) φ2(pfk) . . . φm(pfk)

⎤

⎦ (9)

is a Vandermonde matrix, and r is a vector of slippages
corresponding to the respective points pfi .

Unfortunately, there are no general rules for polyno-
mial base selection. Knowledge about the approximated
phenomenon is very useful, although in this case it is not
available. One possibility is to define the components φq

of the polynomial base as

φq(K1, K2, . . . , Kn) = f1(K1) · f2(K2) · · · · · fn(Kn),
(10)
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Fig. 8. Relation between slippages and the local shape of the
terrain obtained by using approximation with elementary
functions.

where the functions f1,. . . ,fn are chosen from the follo-
wing candidate elementary functions:

(Ki − aiq)round(λiq), (11)

sin(λiq · Ki − aiq), (12)

e−λiq(Ki−aiq), (13)

where the round() operator rounds a real number to the
nearest integer.

Another possibility for the construction of the poly-
nomial base is suggested by the Kolmogorov theorem. In
this approach, only Gaussian functions are used. Accor-
ding to the Kolmogorov theorem, any continuous func-
tions of several variables can be represented by the su-
perposition of functions of one variable and by the sum
of functions (Kolmogorov, 1957). Further generalizations
introduced by Sprecher and Lorentz (Lorentz, 1986) led
to the following form.

There exist n constants 0 < λi ≤ 1, i = 1, . . . , n
and 2n + 1 functions φq(x), q = 0, . . . , 2n defined on I
and with values in I , which have the following properties:

• the functions φq are strictly increasing and belong to
a class Lip(α), α > 0;

• for each continuous function f defined on S one can
find a continuous function g(x), 0 ≤ x ≤ n such that

f(x1, . . . , xn)

=
2n∑

q=0

g(λ1φq(x1) + · · · + λnφq(xn)), (14)

where I = [0, 1], S is an n-dimensional cube and
0 ≤ xi,≤ 1 for i = 1, . . . , n.
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After substitution φq = (xi − aiq)2 and g(x) =
cq · ex, the approximation polynomial (6) is defined as
follows:

P (K1, . . . , Kn) =
m∑

q=0

cq · e(
∑n

i=1 λiq(Ki−aiq)2). (15)

To find an approximation of an n-dimensional conti-
nuous function, the algorithm searches for an appropriate
sum of n-dimensional Gaussian functions. This approach
gives better results than the method which uses the sum
of products of elementary functions. To verify this algo-
rithm and present the quality of approximation, the follo-
wing commonly used three-input nonlinear test function
was tested (Kosiński and Weigl, 1998):

P (K1, . . . , Kn) =
(
1 +

√
K1 +

1
K2

+ K−1.5
3

)2

. (16)

For comparison, the Average Percentage Error (APE)
was used:

APE =
1
N

N∑

p=1

|y − ŷ|
y

· 100%, (17)

where y is the desired output and ŷ is the real output from
the system. The APE for the training data set is 0.069%,
and for test data it is 0.079%.

Computational intelligence optimization methods
can be applied in order to obtain the components λiq and
aiq of the polynomial base. In the context of this research,
two of such methods were selected and tested: the po-
pulation based Evolutionary Algorithm (EA) (Annunziato
and Pizzuti, 2000), and the Particle Swarm Optimization
(PSO) algorithm (Kennedy and Eberhart, 1995). The EA
is used because it is able to self-adapt its own parameters
during the search, which minimizes the number of para-
meters that have to be set manually. PSO is used because
it works simultaneously in all dimensions.
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The number of elements m in the polynomial (6) is
a design parameter. It could be determined automatically,
e.g., by using the Akaike information criterion (Burnhamn
and Anderson, 2002). However, it is not used in this case.
A fixed m makes the implementation of the EA and PSO
much simpler, while the EA and PSO themselves elimi-
nate unnecessary elements of the polynomial by setting
their corresponding parameters λiq to zero. In the EA,
the number of elements m in Eqn. (6) defines the num-
ber of genes in the chromosome. A single gene contains
information about one function (10). When a single gene
is mutated, all values of the aiq and λiq parameters are
randomly changed and the type of function fi is chosen
from among (11)–(13). For reproduction, the two-point
crossover is used. When the optimization starts, only the
boundaries for aiq and λiq along with the number of ele-
ments m have to be defined. The experiments show that
the parameter m should be small to ensure a proper qu-
ality of approximation and model complexity. The search
space boundaries for particular aiq are set taking into ac-
count the values of its corresponding parameter Ki. The
fitness function in the EA and PSO is defined as the sum of
distances between points pf and the corresponding points
of the obtained surface.

The obtained approximation polynomial and appro-
ximation points pf are shown in Fig. 8 (only K1 and K2

in input). According to the obtained relation between slip-
pages and the local shape of the terrain, the best potential
footholds are holes (negative K1 and a high, positive va-
lue of K2). Flat surfaces are also evaluated as useful. The
system learns to avoid local peaks (high, positive values
of K1 and K2). Deep depressions are not good for foot
support either.

The use of the Gaussian function for the approxima-
tion by using the set of points shown in Fig. 7 gives a si-
milar approximation surface (cf. Fig. 8). To obtain better
results, the number of input data was increased. The expe-
riments conducted by using primitives give points which
lie on the plane K2 = |K1| or K2 = 0. To increase the
number of input data, the primitives were additionally mo-
dified by using Gaussian noise. It provides a higher variety
of tested primitives. The obtained relation between slippa-
ges and the local shape of the terrain is shown in Fig. 9.

3.3. Control in regular mode. During the third phase
of the algorithm, the robot uses an approximated polyno-
mial to assess the potential footholds. Then, these results
are used to find the best place to put the foot on. Such a
decision support unit allows covering successfully diffi-
cult and rough terrain while avoiding slippages.

The first three coefficients are used as input to com-
pute the polynomial (6). The fourth one (K4) is used to
exclude points on the ground which are too close to the
boundaries of the robot’s leg workspace. The final coef-
ficient Q(i, j) (interpreted as a prediction of a slippage),
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Fig. 10. Terrain and assessment results.

which describes the usefulness of the potential [i, j] fo-
othold described by K1,. . . ,K4 features, is given as

Q(i, j) = P (K1(i, j), K2(i, j), K3(i, j)) + k · K4(i, j).
(18)

The adjustable constant k has to be set as 8. When this
value is too big, the robot selects points which are in the
center of the local map. When it is too small, there is a risk
that the robot will choose points which are very close to
the boundaries of the leg’s workspace, which might render
the movement impossible.

3.4. Results: Regular mode. The algorithm was tested
in a simulator on a specially prepared terrain map. It in-
cludes obstacles similar to scattered flagstones, extensive
hills with mild slopes, small and pointed hills, depressions
and stones. The highest point of the terrain is 8.7 cm high,
and the deepest depression is −0.35 cm.

During the walk, the robot uses the standard gait for
walking on flat terrain. This gait gives an expected fo-
othold for each leg of the robot. Around the expected fo-
othold, a local grid map is defined. Its size is set to 15
× 15 cells (7.5 × 7.5 cm). The computed polynomial is
then used to evaluate all the points of this local map. An
example of the local map with visualized assessments is
shown in Fig. 10. There are some cells which are exclu-
ded from the set of the potential footholds, because they
are out of the range of the robot’s legs. Cells are also exc-
luded while the value of Q is too big (such cells give we-
ak support to a leg’s tip), or when a cell is described by
values of Ki which are outside the boundaries defined
in the learning phase (as properties of this cell are unk-
nown). The foothold selection algorithm searches for the
minimum among the rest of the cells. The shorter the bar
shown in Fig. 10, the more useful the given cell as a fo-
othold. When a decision about foothold selection is made,
the control system of the robot modifies the trajectories of
the feet and places them at selected points.

Slippages during the whole simulation run were re-
corded to show the results produced by the proposed al-
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Fig. 11. Results: slippages obtained during verification experi-
ments.

gorithm (Fig. 11). Each experiment consists of a series of
three tests. The mean value of the accumulated slippages
and its standard deviation are shown. The sum of slippa-
ges after n steps is defined as the sum of slippages from
step i = 0 to i = n. These results are compared with the
results of a simulation on flat terrain, and a simulation in
which the robot randomly selected footholds. Better re-
sults are obtained when a point cloud acquired by using
pre-prepared primitives is applied. Data obtained during
experiments on real terrain are often ambiguous and di-
sturbed. The results when all three coefficients are used
for decision making are slightly better. When only coeffi-
cients K1 and K2 are used, the robot has a problem with
traversing extensive hills with mild slopes. The best re-
sults are obtained in the experiment where the Gaussian
approximation is used.

3.5. A posteriori modification of the decision support
unit: Re-learning. For learning systems, there is always
a problem with learning data sets. The knowledge which is
used for shaping the system should cover the whole possi-
ble input space. The problem is when it is not possible to
provide all necessary data. The robot is then taught using
incomplete data. The decision support unit, which is sha-
ped with these data, works properly only when it assesses
known points on the terrain. There is a risk that previo-
usly unknown points of the terrain are assessed improper-
ly. Then the robot should have a possibility to examine the
unknown points of the terrain, to collect information abo-
ut them and to merge the new knowledge with that stored
in the old decision unit. As a result, a new, more general
decision support unit is created. This procedure is called
re-learning. It works in an iterative way.

To modify and adapt the decision support, the lear-
ning strategy was modified. During the normal operation
stage, the robot additionally collects new data about the
terrain. New information can be used to modify the exi-
sting approximation polynomial. The new point cloud is
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Fig. 12. Results of a re-learning procedure.

filtered and, as a result, a new group of points pf is ob-
tained. To extend the knowledge represented by the old
group of points pold

f and to compute a new group of po-
ints pnew

f , a weighted mean is used:

pnew
fi

=
pold

fi
+ c · pfi

1 + c
, (19)

where pold
fi

and pfi are the points of old and newly col-
lected groups of points respectively. New points which do
not have their counterpart in the old group are simply ad-
ded to the new group. The constant c is a weight (the value
should be between 0 and 1) given to the new knowledge
represented by a group of points pf . The value of c set
to 1 means that newly collected data and the old ones are
equally important. Generally, if the robot has a correctly
working decision system, and it only aims to fine-tune it,
the constant c should be small (c < 0.1).

To show properties of the re-learning procedure, a se-
ries of experiments was conducted. Results are shown in
Fig. 12. At the beginning, the robot collects learning data
by walking on rough terrain and by randomly selecting fo-
otholds. Next, the relation between slippages and the local
relief of the terrain is shaped. Because the robot collects
data randomly and the experiment is short, there is always
a risk that the gathered knowledge is not complete. The
robot does not have appropriate knowledge about some
points of the terrain. In this experiment, the robot did not
collect information on the sharp edges of the cliffs. As a
result, the decision unit works improperly.

Because there were gaps concerning the knowledge
related to sharp edges, the robot classifies such points as
potentially suitable for footholds. As a result, the slippa-
ges in the experiment involving a relation between slippa-
ges and the local shape of the terrain are similar to those
appearing while collecting data. What is important, during
this experiment the robot collects new knowledge about
previously unknown points. The new information is then
added to the old knowledge according to (19). The value
of c was set to 1. After this step, a significant improve-
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ment was observed. Then the re-learning procedure was
repeated again for c set to 0.5. After the last iteration, the
slippages decreased slightly, which ended the re-learning
procedure.

4. Static stability control of a six-legged
walking robot

4.1. Importance of the stability region in motion plan-
ning. A six-legged walking robot while climbing ob-
stacles is prone to falling down due to the lack of static
stability. This could end up in mission failure. In order
to avoid such a situation, a stability check is required. As
climbing is a deliberate process, it is possible to plan it a
few steps ahead. The robot can stop and check its suppor-
ting polygon in a current position and in planned positions
in order to avoid overturning. To test a static equilibrium
condition of the robot, there is a need to establish its sup-
port region. In many cases, a convex hull described by
the contact points of the robot’s supporting feet is taken
as a good approximation of this region. But it was shown
by Bretl and Lall (2008) that it is an insufficient assump-
tion in the free multi-leg gaits. The CM of the robot must
satisfy constraints represented by Eqns. (20)–(22) to pre-
serve its stability:

n∑

i=1

Fi + mg = 0, (20)

n∑

i=1

ri × Fi + c× mg = 0, (21)

‖(I − viv
T
i )Fi‖ ≤ μvT

i Fi, (22)

where Fi is the vector of a reaction force at each leg (in-
dexed by i), ri is the position vector of the i-th leg contact
point, c is the position vector of the CM, m is the mass
of the robot, g is the gravity force vector, vi is the vector
normal to the surface at the i-th contact point, μ is a static
friction coefficient. All vectors are expressed in the global
coordinate system x0, y0, z0.

A solution to the robot static equilibrium problem
requires a projection of a nonlinear convex set onto a
two-dimensional subspace as described by Bretl and Lall
(2008). This can be done by using a Second Order Co-
ne Program (SOCP) (Lobo et al., 1998) specified in (23).
These computations produce the extremal position of the
CM in a chosen direction for each given set of the contact
points of the legs. The optimal solution is found subject to
a linear equality and a second order cone constraint. The
method was selected because the constraints for the force
and the torque balance are linear and the static friction is
modeled as a second order cone. The solutions from the
SOCP are used to approximate the support region by a

polygon:

maximize aT y,

subject to A1F + A2y = t,

‖ BF ‖ ≤ uT Fi, (23)

where y ∈ R
2 is the position of a CM, a ∈ R

2 is the
direction of optimization

F =

⎡

⎢⎣
F1

...
FN

⎤

⎥⎦ , y = Pc,

P =
[

1 0 0
0 1 0

]
.

Here T(r1) is a skew-symmetric matrix and
T(r1)F1 = ri × Fi,

A1 =
[

I · · · I
T(r1) · · · T(rN )

]
,

T(mg) being a skew-symmetric matrix and −T(mg)c =
c × mg,

A2 =
[

0
−T(mg)PT

]
, t =

[ −mg
0

]
,

B = diag(I− v1vT
1 , . . . , I− vnvT

n ),

u =

⎡

⎢⎣
μ1v1

...
μnvn

⎤

⎥⎦ .

Bretl and Lall (2008) use an adaptive algorithm called
PROJECT to approximate the support region by the inscri-
bed and prescribed polygon, having the number of edges
dependent on the complexity of the convex set geometry.
In our work, the approximation of the support region with
a 16-edge polygon is used (Walas, 2009).

4.2. Displacement of the CM. The walking robot con-
sists of a trunk and legs. The trunk is not actuated and
its CM position is constant with respect to the local robot
coordinates system. However, any movement of the legs
influences the position of the CM of the robot complete
body. This change in the CM position could easily be cal-
culated from the robot kinematic model. The kinematics
of the Ragno robot are described by Walas et al. (2008)
and Belter et al. (2008). Its frame assignment is shown in
Figs. 13 and 14. Using the appropriate transformation ma-
trices, the CM of each leg segment is described in the leg
local coordinate system as follows:

CMcoxa = A1rcoxa, (24)

CMfemur = A1A2rfemur, (25)

CMtibia = A1A2A3rtibia, (26)
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Fig. 13. Coordinates systems for the walking robot Ragno.

Fig. 14. Coordinates systems for the leg of the Ragno robot.

where A1, A2, A3 are the transformation matrices
from joint coordinates to the leg coordinate system,
rcoxa, rfemur, rtibia are the coordinates of the CM for each
segment in the joint coordinate system. Having this, we
could calculate the CM position for the whole leg by using

CMleg =
CMcoxa · mcoxa

mcoxa + mfemur + mtibia

+
CMfemur · mfemur

mcoxa + mfemur + mtibia

+
CMtibia · mtibia

mcoxa + mfemur + mtibia
,

(27)

where mcoxa, mfemur, mtibia are the masses of each seg-
ment of the leg. Using the appropriate constant transfor-
mation matrices, we can express the CM of each leg in a
robot local coordinate frame.

The CM position for the whole robot with its legs
in a neutral configuration is shown in Fig. 15, marked
with a dashed line. It was assumed that the neutral po-
sition of the leg is the following configuration: θ1 =
0◦, θ2 = 24◦, θ3 = −114◦. This corresponds to the bio-
logical insect-like prototype. The arrows in the figure are
the vectors of the CM position of each leg described in

Fig. 15. Center of mass for the walking robot Ragno with legs
in the neutral position and moved 30◦ forward and bac-
kward.

the leg’s local coordinate system (on the xy plane). While
the legs are rotated by 30◦ forward (in a positive direc-
tion around the z axis ), the CM of the robot moves for-
ward by 1.1 [cm] (marked with a continuous line). For the
backward movement of 30◦, the deviation from the neu-
tral position is by 0.9 [cm] (marked with a dotted line).
Therefore, the total shift between the extreme positions is
2.0 [cm]. When compared with the longitude of the robot
trunk, which is 20.0 [cm], the relative change is of about
10%. The range of the movement of the robot CM depends
on the length and the weight of the legs. In the case of Ra-
gno, the mass of the legs constitutes half the weight of the
whole machine.

4.3. Calculating static stability on-line. The propo-
sed three-phase on-line stability test system for a walking
machine is composed of two subsystems which were de-
scribed in Sections 4.1 and 4.2. The description of each
phase is as follows:

• In the first step, the SOCP problem is solved. For
the stability check procedure, one performs a sin-
gle SOCP computation in a direction planned befo-
rehand and according to the movement vector rM as
shown in Fig. 17. After this step, one obtains rSOCP

(the extremal CM position in that direction). The en-
tire 16 vertices approximation results in a complete
region of stability. For a specific task, the optimiza-
tion problem with constraints pointing towards a par-
ticular direction is solved. The output of this step is
CMSOCP,rSOCP.

• In the second step, the change in the CM position for
the whole body of the robot (rKIN) is found. The shift
is due to the movement of the legs while performing
the planned displacement in a direction described by
the vector rM (without a change of contact points).
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The solution is found by using the kinematics of the
robot as described in Section 4.2. The output of this
step is CMKIN and rKIN (used in the third step).

• In the third step, the difference between the vec-
tors rM and rKIN is calculated. The result of this
operation gives the real position of the center of
mass CMKM after the planned displacement. It is
the position after kinematic correction. The obtained
CMKM position is described by the vector rKM.
Equation (28) allows evaluating the real Geometri-
cal Stability Margin (GSM) for the movement of the
robot in direction rM . All described vectors are atta-
ched to the point defining the robot’s center of mass
in a neutral position for the legs configuration as
shown in Fig. 17:

‖rSOCP − rM − rKIN‖ = GSM. (28)

A schematic description of this approach is shown
in Fig. 16. The whole procedure for the specific case is
described below. Let us consider a walking robot clim-

Fig. 16. Stability check procedure.

Fig. 17. Stability analysis result for the walking robot Ragno.

bing against a 30◦ slope. Its fore- and middle-legs are on

the slope and hind-legs are on the flat surface beneath the
slope. The body of the robot is parallel to the flat surfa-
ce beneath. The result of the stability check procedure for
this example is shown in Fig. 17. The support region ob-
tained using the SOCP (marked as a continuous line) is
smaller here than the one obtained with the classical ap-
proach (a convex hull described by contact points of the
robot’s supporting feet, marked as a dotted line). The ro-
bot is about to move 4.3 cm forward in the horizontal di-
rection; this change is described by the vector rM . The
second and the third step of the algorithm presented in
Section 4.3 are shown using the position vectors rKIN and
rKM. The difference between GSM in the given direction
obtained using the SOCP and by using Kinematic Correc-
tion (KM) is evident. The procedure described in Section
4.3 is appropriate for all walking robots having static sta-
bility in transient states. The implementation of the stabi-
lity check on a real machine requires some customization,
because it depends on the kinematics of a particular robot.
In most cases, walking robot legs have an anthropomor-
phic structure. Thus the only change needed to implement
the procedure presented here for the Ragno robot on ano-
ther machine is the change in the dimensions of each leg
segment.

4.4. Reaction forces and stability analysis. The sys-
tem for calculating static stability on-line described in
Section 4.3 works well assuming that the exact position of
the CM of the robot is known. We can calculate a CM of
the whole robot off-line by using CM position of each leg
segment and the trunk as described in Section 4.2. But it
is insufficient, as the robot’s CM could change its location
during the task. For example, it is possible to place some
load on the back of the robot or to carry some package by
the middle legs and to walk on the remaining four. In the
mentioned examples, there was a need for establishing the
CM position for the complete robot on-line. This could be
done by measuring the reaction forces exerted on the gro-
und. But the problem is to measure the forces. Hereafter
we propose two methods of doing this.

4.5. Measuring stance forces. It is possible to split
those methods into direct and indirect ones. The direct me-
thod is based on measurements with a force sensor which
is shown in Fig. 18. It is a resistive sensor whose charac-
teristics are non-linear (in the required range from 0.5 to
2 kg could be linearized). We obtain a voltage on the re-
sistor dependent on the reaction force. Using the A/D co-
nverter, an exact value of a voltage representing the force
is obtained. One gets the module of the force normal to the
ground in the contact point. To obtain the direction of the
reaction force vector, we use direct kinematics of the leg
and information on the orientation of the ground. Thus the
information on the reaction force is complete. The sensor
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Fig. 18. Pressure sensor and its characteristics.

installation on the Messor robot is shown in Fig. 19. The
robot is the next generation of Ragno. Both robots have a
similar mechanical structure, but Messor is approximate-
ly three times bigger than Ragno. Moreover, the Messor
robot is equipped with more sensors than the other one.

The second method is indirect and it is based on me-
asuring the torque in each joint of the robot’s leg. To be
precise, the current of the motor in each joint is measu-
red. According to Eqn. (29), a torque in each joint is obta-
ined. To measure the value of the current, a transducer is
used. The sensor has linear current/voltage characteristics.
Measurements are based on the Hall effect, so the circuit
current does not change:

M(t) = kφ · i(t), (29)

where kφ= 0.845 Nm/A.
With a torque in each joint measured, it is possible to

calculate the reaction force for each leg. This is done by
using.

F = (JT)−1Q, (30)

where F is the reaction force vector [3 × 1], J is the geo-
metric Jacobian for the leg [3×3], Q is the torque in each
joint vector [3×1]. We use an inverse geometric Jacobian
to obtain the force at the contact point at the tip of the leg.

An example of the characteristics of the change in the
force at the tip of the leg of the robot while performing tri-
pod gait is shown in Fig. 20. The measurements are based
on the current ones and are calculated using Eqn. (30).

Fig. 19. Example application of the pressure sensor on the Mes-
sor robot.

Fig. 20. Example characteristic of the force at the tip of the ro-
bot leg.

Both methods return the force in a robot local coor-
dinates system. To find the forces described in a global
frame, we have to know the orientation of the local robot
frame in a global frame. It could be established by using
the IMU sensor. In the Messor robot, ADIS 16350 is used.
It is a six-DOF sensor which provides information about
acceleration along each axis and about angular velocity
around each axis. Each of the methods has its flaws. The
first one is direct. It is based on the contact sensor and has
measurements inaccuracies which depend on the shape of
the contact of the foot with the sensor. The shape and the
area of the contact play an important role in this case. The
second method, which is indirect and based on the current
measurements is sensitive to small changes of the current
which, could be due to measurement noise. Simultaneous
use of both methods could give better results.

With the full information about forces and the robot’s
orientation, it is possible to obtain the real position of the
CM of the robot in the xy-plane. This is achieved by the
following equation, which was derived from (23):

y = A+
2 t− A+

2 A1F, (31)

where y is the position of the CM [2 × 1], t is the gravity
vector [6 × 1], F is the force vector [18 × 1], A1 is the
reaction forces matrix [6 × 18], A2 is the gravity forces
matrix [6 × 2].

4.6. Modified stability check procedure for a walking
robot. In Section 4.3, the basic stability check procedu-
re was described. As could be seen, the step where the
current CM position is measured is missing. In an exten-
ded version of the stability check shown in Fig. 21 there
is one more step included where the real CM position of
the robot is established. It allows the robot to plan futu-
re movements by relying on the current knowledge of its
CM position in the support region. The description of the
functions of each step is as follows:

• The first step gives the approximated support region
for the walking robot.

• The second step gives the real position of the CM
of the robot and its distances to the borders of the
support region. The function Torque to CM position
(T2CM) takes as the argument a vector of torques in
each leg (τ ) and returns the real position of the CM
of the robot.
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Fig. 21. Extended stability check procedure.

• The third step gives the displacement of the CM of
the robot due to the planned movement (with kine-
matic correction).

• The fourth step returns the real geometric stability
margin for a six-legged walking robot.

4.7. Calibration procedure and results of the check.
At the beginning, the calculations of the position of the
CM of the robot were obtained in the simulator. This cre-
ated the possibility to check if the assumptions were cor-
rect. Thus we had a known position of the CM and also
the force distribution for a given position of the CM obta-
ined with SOCP method. We passed the force vectors to
Eqn. (31). The resulting position of the CM of the robot
was exactly the same as the one obtained with the SOCP.
In this way, it was proved that our assumptions were cor-
rect.

The next step was to validate if the method works in
a real environment on a real walking robot. First, the pre-
liminary calibration of the system was performed. In this
procedure robot moved 10 cm forward and then 10 cm
backward. The resulting CM position along the Y-axis
was 15.27 cm for the forward movement and 11.32 cm
for the backward movement. By dividing the performed
movement 20 cm by the sum of the above mentioned di-
stances 26.59 cm, one obtains a real value of a gain of
a motors equal to kφ=0.752 Nm/A. The positions of the
CM of the robot while moving forward and backward are
shown in Figs. 22 and 23, respectively. Having all this, the
measurement of the real position of the CM of the robot
could be done. We measured the currents and from that
we obtained the force distribution for the walking robot
at the contact points. The force vectors are marked with

arrows as shown in Fig. 24. In this figure, the measured
CM position of the robot is represented as a cross. This
experiment was performed with the Messor robot stan-
ding in its leg’s neutral position, θ2 = 24◦, θ3 = −114◦.
As could be seen, the established CM of the robot lies
in the middle of the convex hull described by the con-
tact points of legs. The CM of the robot is at the point
(−4.47 cm,1.07 cm).

Fig. 22. Backward movement of the robot.

Fig. 23. Forward movement of the robot.

5. Conclusions and future work

This paper presented a method for creating a foothold se-
lection system for a multi-legged walking robot and a sta-
tic stability control system for such a machine.

The system of foothold selection learns automatical-
ly without any expert knowledge. The robot acquires the
ground surface characteristics by walking on example ter-
rain or by testing ground primitives. Then it exploits this
knowledge to find a relation between slippages and the lo-
cal shape of the terrain, which is used for assessment of
the candidate footholds.

The simulations show that after learning the robot is
able to select the appropriate footholds to prevent slippa-
ges. The robot learned to avoid peaks of the terrain and to
select such points on the ground which give appropriate
support. This behavior is general. The same rules work on
different types of terrain. Additionally, the decision sup-
port unit can be modified by using a re-learning procedu-
re. It offers a possibility to extend the knowledge stored in
the approximation polynomial.
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Fig. 24. CM position obtained from measurements of the real
Messor robot.

The system of static stability control determines a re-
al position of the CM of the robot and allows predicting
its future position after making a planned step. The ava-
ilability of such a system is vital for stable climbing of a
walking robot. The results obtained on a real robot de-
monstrated that the method is feasible but there is still
a need for some refinement. Especially signal conditio-
ning is necessary to achieve smooth measurement results
in each configuration of the robot. Random fluctuations
at a steady state are due to digital servomotors operation.
Efficient methods of reducing this noise are needed.
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