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A computation rule determines the order of selecting premises during an inference process. In this paper we empirically
analyse three particular computation rules in a tableau-based, parallel reasoning system for the ALC description logic,
which is built in the relational programming model in the Oz language. The system is constructed in the lean deduction style,
namely, it has the form of a small program containing only basic mechanisms, which assure soundness and completeness
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their elements. We take advantage of this property and evaluate the studied methods of selecting premises with regard to
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1. Introduction

Description logics (DLs) (Baader et al., 2003) is the
name of a family of formal systems mainly used for
representing and processing terminological knowledge.
A common criterion of classification for DLs is their
language. In particular, special interest is given to a
class of DLs whose core language is the ALC lan-
guage (ALC DLs). Logics from this class have a rea-
sonable expressivity and are, in many cases, decidable.
Hence, they have been successfully applied in various
domains, such as software engineering (Devanbu and
Jones, 1997), object databases (Calvanese et al., 1999),
control in manufacturing (Rychtyckyj, 1996), action plan-
ning in robotics (De Giacomo et al., 1996), medical ex-
pert systems (Rector et al., 1998) and also the Semantic
Web (Semantic Web, 2001). DLs generally provide the se-
mantics of knowledge bases for systems constructed in the
areas mentioned. In the case of the Semantic Web, ALC
DLs stand behind the OWL-DL language (OWL Web On-
tology Language Overview, 2004), which is widely used
to represent the meaning of documents available in the
WWW network.

All essential inference problems for ALC DLs are at
least of PSPACE complexity. Thus, one of the biggest
research challenges in this area is the development of

tractable reasoning methods and systems. A reasoning
system (also called a reasoner or an inference system)
generally consists of a declarative part and a compu-
tational (execution) strategy. The declarative part en-
compasses the implementation of inference rules, while
the execution strategy defines the way the rules are ap-
plied. A number of reasoning systems are implemented
as logic programs in the Prolog language. This mainly
follows from the fact that a program in Prolog is for-
mally a set of logic formulas, that is to say, normal
clauses. Therefore, many elements of the language and
its computational model (e.g., operations on terms, the
inference rule) can be successfully absorbed to the con-
structed system. This leads to the idea of lean deduc-
tion (Beckert and Possega, 1995), which consists in im-
plementing inference systems as small programs equipped
only with basic mechanisms necessary for soundness and
completeness of the reasoning process. It is definitely
not a way to construct highly efficient reasoners using
sophisticated techniques for solving difficult problems,
as, for example, FaCT++ (Tsarkov and Horrocks, 2006),
Racer Pro (Wessel and Möller, 2005) or KAON2 (Hustadt
et al., 2004) in the domain of DLs.

However, this approach has many advantages. Lean
reasoners are small, and hence not hard to verify. In con-
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trast to complex systems, they can be easily modified and
adapted to particular applications (Amir and Maynard-
Zhang, 2004). Also, lean reasoners are surprisingly ef-
ficient for solving simple and less difficult problems be-
cause of lower overhead for handling internal components
than in the case of sophisticated systems. Moreover, they
can act as convenient test-beds for comparing various in-
ference techniques, where absolute execution efficiencies
are not as important as relative ones.

In this work we summarize and expand earlier re-
sults concerning a lean reasoning system for the ALC DL
presented by Meissner (2009a; 2009b). Our approach ex-
tends the idea of lean deduction by parallel processing.
Furthermore, the system is built in the relational model in
the Oz language (Van Roy and Haridi, 2004). The model
corresponds to logic programming (especially to Prolog)
with regard to its declarative semantics. However, the op-
erational semantics of relational programs, unlike in Pro-
log, are not fixed in the runtime environment but imple-
mented as a search engine—a special object which exe-
cutes a program. This makes it possible to run a program
in various ways, particularly in parallel on distributed ma-
chines.

We take advantage of this property and construct a
small reasoning procedure consisting of c.a. 50 lines of
code (Meissner, 2009b), mainly for implementing infer-
ence rules of the tableau calculus for the ALC DL. It is one
to two orders of magnitude shorter than sophisticated rea-
soners for description logics (Aslani and Haarslev, 2008;
Liebig and Müller, 2007). In order to run the procedure,
we use the parallel search engine (Schulte, 2000) avail-
able in the Mozart system (The Mozart Programming Sys-
tem, 2008), which is a programming platform for the Oz
language. Experiments show a reasonable speedup ob-
tained with the increasing number of processors added to
the computational environment.

Meissner (2009a) considers a modified version of
the system with a particular computation rule originating
from the inference algorithm given by Schmidt-Schauß
and Smolka (1991). It “is generally viewed as a sensible
way of organising the expansion and the flow of control”
within a sequential reasoning system for DLs (Baader
et al., 2003). We analyse and experimentally evaluate this
method with regard to parallel processing, pointing out
its advantages and drawbacks. In this paper, we addition-
ally define another computation rule in order to overcome
some disadvantages of the former approach. We test all
the rules for the efficiency and for the speedup that can be
obtained by parallelizing the computations.

The organisation of the paper is as follows. Section 2
contains the principles of tableau calculus for the ALC
DL. In Section 3 we characterise the key elements of the
inference algorithm, focusing particularly on the compu-
tation rules mentioned above. Section 4 specifies how
tableau-based reasoning for the ALC DL is represented

in the relational programming model. Some implemen-
tation details of the reasoning procedure are described in
Section 5. Section 6 presents and discusses the results of
experiments aimed at the comparison of the computation
rules. Section 7 concludes the paper with some final re-
marks.

2. Tableau calculus for the ALC DL

First, we outline the syntax and the semantics of the ALC
language. Then, we present one of basic inference prob-
lems for the ALC DL, that is to say, testing for the concept
of satisfiability. Finally, we describe the classical tableau-
based calculus in which the problem can be solved.

The ALC DL language contains two types of ele-
mentary expressions, i.e., atomic descriptions (or, syn-
onymously, names) of concepts and atomic descriptions
of roles. A concept is a set of individuals, called instances
of this concept. A role is a binary relation holding be-
tween individuals. Any element of a role is called an
instance of this role. Concepts, besides names, can also
be represented by complex descriptions, which are built
from simpler descriptions and special symbols called con-
cept constructors. We use the letter A to denote a con-
cept name and the letters C or D as symbols of any con-
cept descriptions; the letter R stands for a role descrip-
tion. All these symbols can possibly be subscripted. The
set of ALC DL concept constructors comprises five ele-
ments, namely, negation (¬C), intersection (C�D), union
(C � D), existential quantification (∃R.C) and value re-
strictions (∀R.C); expressions written in the parentheses
are schemes of relevant concept descriptions. If it does
not lead to a misunderstanding, in the sequel we use con-
structor names to call the descriptions created with them.
For example, the expression of the form C � D is called
a union. We also often identify descriptions with their
meaning (e.g., we say “a concept” instead of “a concept
description”). Expressions of the form C(x) and R(x, y)
are called concept assertions and role assertions, respec-
tively. An expression of the first type states that the indi-
vidual x is an instance of the concept C, while the latter
expression declares that the pair of individuals 〈x, y〉 is an
instance of the role R. The individual y is called a filler
of the role R for x. Furthermore, when an assertion is
built from an atomic concept, then it is called an atomic
assertion.

In order to define the semantics of concept and role
descriptions, we use an interpretation I, which consists of
the interpretation domain ΔI and the interpretation func-
tion (·)I . The interpretation function assigns a subset of
ΔI to every concept name and a subset of ΔI×ΔI to ev-
ery role description. The semantics of complex concepts
are given as follows:

(¬C)I = ΔI \ CI ,
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(C � D)I = DI ∩ CI ,

(C � D)I = DI ∪ CI ,

(∃R.C)I =
{
x ∈ ΔI | (∃y) 〈x, y〉 ∈ RI ∧ y ∈ CI}

,

(∀R.C)I =
{
x ∈ ΔI | (∀y) 〈x, y〉 ∈ RI → y ∈ CI}

.

Furthermore, there are two special concept descriptions,
namely,  (top) and ⊥ (bottom). The first one denotes
the most general concept, that is, I = ΔI , while the
second represents the empty concept, i.e., ⊥I = ∅. We
say that the interpretation I satisfies the description C if
it assigns a nonempty set to it. Such an interpretation is
called a model of the concept C. The concept is satisfiable
if there exists a model of it, otherwise it is unsatisfiable.

The (un)satisfiability of the concept C0 can be
checked by the classical tableau calculus (Baader et al.,
2003), which is sketched below. We assume that the con-
cept C0 (called an input concept) is initially converted to
negation normal form (NNF), where the negation symbol
appears directly before atomic concepts. The tableau for
the input concept C0 is the tree T , whose every node is la-
belled by a set containing, in general, concept and role as-
sertions. For the sake of brevity we often say “a formula in
the node” instead of “a formula in the label of the node”.
The label of the root of T is one-element set {C0(x0)},
where x0 is an arbitrarily given individual. Any other
node (symbolized as A′ or A′′) can be obtained from its
direct ancestor A by applying one of the following expan-
sion rules:

�-rule: if (a) (C1 � C2)(x) ∈ A and
(b) {C1(x), C2(x)} �⊂ A

then A′ = A ∪ {C1(x), C2(x)}
�-rule: if (a) (C1 � C2)(x) ∈ A and

(b) C1(x) /∈ A and C2(x) /∈ A
then A′ = A ∪ {C1(x)},A′′ = A∪ {C2(x)}

∃-rule: if (a) (∃R.C)(x) ∈ A and
(b) there is no y that {R(x, y), C(y)} ⊆ A

then A′ = A ∪ {R(x, z), C(z)} and z doesn’t
occur in A

∀-rule: if (a) (∀R.C)(x) ∈ A and
(b) R(x, y) ∈ A and C(y) /∈ A

then A′ = A ∪ {C(y)}.

We say that a rule and a concept assertion D(x) are
relevant to each other if D(x) matches the assertion oc-
curring in the condition (a) of this rule. The application
of the rule, however, may be blocked (in short: the rule is
blocked) if the conditions (b) are not satisfied. A node of
the tableau T is dangling if no expansion rule can be ap-
plied to it or if it contains a contradiction called a clash. In
the latter case, the node is called a clash node, otherwise
it is clash free. The clash can be detected by the following
clash rules:

clash1-rule: if ⊥(x) ∈ A or (¬)(x) ∈ A

then mark A as a clash node
clash2-rule: if A(x) ∈ A and (¬A)(x) ∈ A

then mark A as a clash node

The clash2-rule recognizes the presence of complemen-
tary assertions (i.e., A(x) and (¬A)(x)) in the node. It
should be remarked that the application of this rule is re-
stricted to literals, namely, to atomic concepts (positive
literals) and their negations (negative literals), since the
input concept is in NNF. Expansion rules and clash rules
are both called inference rules or tableau rules.

A branch of the tableau is closed if it is ended by a
clash node; otherwise, the branch is open. A tableau con-
taining only closed branches is called a closed tableau. A
concept C is unsatisfiable if and only if one can construct
a closed tableau for it. Otherwise the concept is satisfi-
able and every fully expanded node at the end of an open
branch is a straightforward representation of a model of
the concept C.

In Fig. 1 we present a tableau constructed for
the input concept resulting from the following exam-
ple. Let us assume that we want to check if the concept
(∃HasChild .Good ) � (∃HasChild .Wise) is included in
the concept ∃HasChild .(Good � Wise). Intuitively, the
former denotes the set of all individuals having at least
one child who is good and at least one child who is wise.
The latter, on the other hand, represents the set of individ-
uals with at least one child who is good and wise. Since
for any two sets S1 and S2 the set S1 is included in the
set S2 if and only if the intersection of S1 and the com-
plement of S2 is an empty set, then we have to examine if
the concept (∃HasChild .Good ) � (∃HasChild .Wise) �
¬∃HasChild .(Good � Wise) is unsatisfiable. Af-
ter transforming it to NNF, the input concept in the
tableau from Fig. 1 has the form (∃HasChild .Good ) �
(∃HasChild .Wise)�∀HasChild .(¬Good�¬Wise). For
the sake of brevity, the descriptions HasChild, Good and
Wise are symbolized in the figure by the letters H, G and
W, respectively.

Every node of the tableau is additionally labelled by a
numerical identifier followed by a colon. Also, the tableau
contains additional edge labels, each of them indicating
the expansion rule applied to a parent node in order to
obtain a child node. Moreover, for the sake of clarity,
we assume that the multiple application of the same in-
ference rule to subsequent nodes lying on the same path
can be denoted by one edge with the label containing
the number of applications of the given rule. For ex-
ample, an edge with the label �-rule×3 can be replaced
by the path representing a triple application of the �-rule
to subsequent nodes. Furthermore, also for clarity rea-
sons, we skip some of the already expanded assertions
in a node label which do not participate in further infer-
ences. It should be observed that the inclusion of con-
cepts, considered in the example, does not hold since
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Fig. 1. Open tableau for the example input concept.

the concept (∃HasChild .Good )�(∃HasChild .Wise) en-
compasses also individuals with no child who is good and
wise. Instead, they have at least two children comprising
one who is only good and one, who is only wise. In con-
sequence, the input concept is satisfiable and the clash-
free node 7 of the (open) tableau represents its model.
One has to notice that all role assertions are omitted in
the node for the sake of brevity, as has been said before.
The model is the interpretation with ΔI = {x0, x1, x2},
HasChildI = {(x0, x1), (x0, x2)}, GoodI = {x1} and
WiseI = {x2}.

It should be noted that the tableau calculus does not
define any particular algorithm for the creation of the
tableau. We discuss this issue in the next section.

3. Elements of the inference algorithm

When formulating an inference algorithm for the ALC
tableau calculus, a procedure which builds a tableau re-
quires considering two general issues.

1. The computation rule, determining the order in
which assertions from the given node are chosen as
premises for tableau rules.

2. The search strategy, i.e., the way the nodes of the
tableau are selected for expansion.

A computation rule can also be regarded as a strategy for
ordering the application of tableau rules. It can be proved
(see, e.g. (Baader and Sattler, 2001)), that the soundness
of the algorithm is independent of the computation rule.
In other words, the reasoning procedure returns correct
results for any rule that, however, may affect the reasoning
complexity.

As for the search strategy, an important property
of the ALC tableau calculus is that the whole knowl-
edge necessary for node expansion or for clash detec-
tion is contained in a given node. Thus, there is no in-
formation exchange between nodes belonging to different
branches. In consequence, branches of the tableau can be
constructed independently of one another, particularly in
parallel. Moreover, this is an example of the so-called em-
barrassingly parallel problem. It means that no particular

effort is needed to segment the tableau and it can be done
in many ways. The reasoning method described in this
paper takes advantage of this property.

As has been stated before, we consider three sim-
ple computation rules. The first of them, called the ar-
bitrary strategy (in short: A-strategy), assumes an arbi-
trary, “Prolog-like” order of premises. More precisely, a
node label is represented as a list of assertions and the
rule always selects the leftmost possible element. After
the selected assertion is expanded by a relevant inference
rule, the conclusions of the rule are monotonously added
to the node label. As has been mentioned, the premises
(i.e., expanded assertions) cannot be removed from the la-
bel, although the majority of them (excluding value re-
strictions) do not contribute any further conclusions. Nev-
ertheless, they act as rule blockers, preventing (possibly
infinite) reapplication of a rule to the same assertion.

This issue has been discussed by Herchenröder
(2006), who pays attention to a particular computation
rule in the satisfiability checking algorithm originally de-
fined by Schmidt-Schauß and Smolka (1991). The method
was also described by Baader et al. (2003), who called
it the trace technique. Regarding this, we call the ex-
amined computation rule the trace strategy (in brief:
T-strategy). The algorithm using the trace strategy is
PSPACE-complete, unlike the procedure with the arbi-
trary rule, which has an exponential time and space com-
plexity. The T-strategy imposes an ordering on the appli-
cation of tableau rules. In particular, if more than one rule
is relevant to the given node, then they are processed in the
following order: (i) clash rules, (ii) �-rules and �-rules,
(iii) the ∃-rule which has to be applied exhaustively to all
relevant assertions in the node, (iv) the ∀-rule that should
be handled like the ∃-rule. The trace strategy has a cru-
cial feature—every concept assertion in the node can be
expanded at most once. In other words, no inference rule
can be applied to it again in any successor of the node.

This approach yields two advantages except the
reduction of space complexity (Baader et al., 2003;
Herchenröder, 2006). First, expansion rules can be sim-
plified by skipping the conditions (b) in their definitions,
since no blocking is necessary. This is particularly con-
venient with regard to the implementation of rules in the
lean deduction style. Second, every assertion to which
an inference rule has been applied can be removed from a
node label as useless in the further reasoning process. This
decreases the cardinality of a label and therefore it should
reduce computational time. Moreover, a label can be addi-
tionally reduced by the following, less obvious optimisa-
tion. Let us assume a state when the ∃-rule is to be applied
to the given node. This means that the node contains no
clash and no other concept assertions than atomic ones or
those with existential quantification or with the value re-
striction constructor. One should notice that the applica-
tion of the ∃-rule always produces concept assertions with
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new individuals and the ∀-rule is possibly relevant only
to these newly created assertions. Hence, new assertions
cannot form any complementary pair with present atomic
assertions, even after expansion. In consequence, all the
latter assertions can be deleted from the node since they
do not contribute in any way to further deduction. Also,
the ∃-rule may be combined with the ∀-rule in the new
∃∀-rule (Baader et al., 2003) of the form given below:

∃∀-rule: if S∃R,x �= ∅ then
A′ = A \ S∃∀R,x ∪ {C(y)|S ∈ SR,x ∧ C ∈ S},

where S∃R,x = {C|(∃R.C)(x) ∈ A}, S∀R,x =
{C|(∀R.C)(x) ∈ A}, S∃∀R,x = S∃R,x ∪ S∀R,x and
SR,x = {{C} ∪ S∀R,x|C ∈ S∃R,x}. The symbol y de-
notes a new individual which does not occur in the node
before and is unique in every element C(y) of the defined
set. The remaining expansion rules, in turn, are specified
as follows:

�-rule: if (C1 � C2)(x) ∈ A then
A′ = A \ (C1 � C2)(x) ∪ {C1(x), C2(x)}

�-rule: if (C1 � C2)(x) ∈ A then
A′ = A \ (C1 � C2)(x) ∪ {C1(x)},
A′′ = A \ (C1 � C2)(x) ∪ {C2(x)}.

Unfortunately, the trace strategy has a drawback,
which is manifested particularly in case of unsatisfiable
concepts. This is a known effect (Baader et al., 2003)
that may occur during the expansion of nodes contain-
ing unions. It can be illustrated by the following exam-
ple. Let us assume the node label {A′

1 � A′′
1 , . . . , A′

n �
A′′

n, ∃R.⊥}. For the sake of clarity, we skipped individ-
uals in assertions leaving just concept descriptions. We
also assume that all concepts A′

i and A′′
i are satisfiable

for i = 1, . . . , n. Nevertheless, the label contains a clash
since the concept ∃R.⊥ is equivalent to ⊥. This contradic-
tion could be detected in two inference steps, namely, by
subsequent application of the ∃-rule and the clash1-rule.
However, the trace strategy processes existential quantifi-
cations only after all unions are expanded. This leads to
unnecessary creation of 2n clash nodes, as depicted in
Fig. 2. Every clash node has a direct ancestor of the form

Fig. 2. Tableau for the root {A′
1 � A′′

1 , . . . , A′
n � A′′

n,∃R.⊥}
and the T-strategy.

{A1, . . . , An, ∃R.⊥}, where Ai equals either A′
i or A′′

i

for i = 1, . . . , n. Hence, in the worst case, the reasoning

algorithm with the trace strategy performs O(2n) times
more inference steps then the method with arbitrary selec-
tion of premises if the latter starts from the assertion with
the concept ∃R.⊥. This effect, in some cases, lengthens
computational time even by a few orders of magnitude.
Admittedly, it can be reduced by pruning the tableau us-
ing various optimisation techniques, for example, back-
jumping (Baader et al., 2003). However, all these methods
work on global data structures, which breaks the embar-
rassingly parallel nature of the reasoning process.

Regarding this, we define a simple computation rule
called the delayed branching strategy (for brevity, DB-
strategy). It states that the �-rule can be applied to the
node only if no other rule is relevant to it. The order-
ing of the rest of tableau rules is the same as in the arbi-
trary approach. The DB-strategy does not support many
convenient features of the T-strategy, namely, in general,
it requires the blocking of inference rules and assertions
cannot be removed from tableau nodes in the reasoning
process (except some cases that are handled by optimisa-
tion presented in Section 5). However, this strategy re-
duces the disadvantageous effect described above and can
be implemented with no particular effort in the parallel
lean reasoner. The strategy behaves surprisingly well in
comparison with the trace strategy (and also to the arbi-
trary strategy) in tests whose results are given in Section 6.

4. ALC DL reasoning in the relational
model

In order to make the implementation of the tableau calcu-
lus independent of the search strategy, we express it in the
relational model in the Oz language. In this approach, a
program is a sequence of statements (in particular, proce-
dure calls) which can either cease normally and produce
results (namely, answers) or terminate by failure (i.e., with
no answer). A program can also create a choice point,
which causes the forking of computations into indepen-
dent paths producing alternative answers.

A program that is to be run should be stored in a com-
putation space (Van Roy and Haridi, 2004; Schulte, 2000).
A space, among other properties, encapsulates computa-
tions so that they are separated form the exterior, partic-
ularly from processes performed in other spaces. The set
of operations defined on spaces comprises the creation of
a space for a new process as well as the merging, cloning
and killing of spaces. These operations are performed by
search engines. A space can communicate with an en-
gine by appropriate statements. In particular, the state-
ment {Space.choose N}, executed in the given space,
tells the engine to create a choice point with N alternatives.
The engine in the response clones the space N times and
sends to each copy a numerical identifier ranging from
1 to N. The identifier becomes a value of the expression
{Space.choose N}. The process of subsequent cre-
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ation of spaces results in a search tree. Every leaf of the
fully expanded tree is either a solved or a failed space.
A solved space contains the result of normally terminated
computations. It should be noted that computations exe-
cuted inside spaces determine the shape and the content
of the search tree. However, they do not settle the order
in which spaces are created and processed—this depends
upon the search engine only. In this way the declarative
semantics of the program, corresponding to the structure
of the tree, can be separated from the operational seman-
tics represented by the search strategy.

Fig. 3. Search tree for the tableau from Fig. 1.

We use a search tree as a representation of a tableau.
Regarding this, we consider the assumptions given below.
The symbol A denotes any internal tableau node while SA
stands for the space in which the node A is computed.

1. The root space corresponds to the root of a tableau.

2. If A′ is the only one direct successor of the node A,
created by any expansion rule different from the �-
rule, then A′ replaces A in the space SA.

3. If nodes A′
1, . . . ,A′

n are direct successors of the
node A obtained by an application of the �-rule, then
for every node A′

i a new space SA′
i

is created, which
is a direct successor of the space SA in the search
tree, for i = 1, . . . , n.

4. A clash-free node is mapped to a solved space.
The result of computations can possibly represent a
model of the input concept.

5. A clash node is represented by a failed space.

The correctness of the second assumption follows
from the fact that every node A of the tableau having the
only one successor A′ does not participate in any further
inferences after the creation of the nodeA′, and thus it can
be replaced by A′ in the tableau construction process. In
Fig. 3 we show a search tree for the tableau from Fig. 1.
The upper and the lower rectangle in a space encloses a
label of the starting and, respectively, the resulting node

created in this space. If both the nodes are identical , then
they are depicted by one rectangle. Each space in the tree
is additionally labelled by a set of numbers which identify
tableau nodes corresponding to the space.

The Mozart programming system provides vari-
ous library classes of engines implementing different
search strategies. In particular, instances of the class
Search.parallel are parallel search engines de-
signed to work on distributed machines. The engine can
be regarded as a team of concurrent autonomous agents
comprising a manager and a group of workers. The man-
ager controls the computations by finding a work for idle
workers and collecting the results, whereas the workers
construct fragments of the search tree. Members of the
team communicate by exchanging messages. A detailed
description of this architecture, including the communica-
tion protocol, is to be found in the work of Schulte (2000).
Below, we give an example of the statement creating a new
parallel engine.

Eng = {New Search.parallel

init(w1:2\#ssh w2:3\#ssh)}.

It consists of the manager (initiated locally) and five work-
ers, started on remote computers via secure shell (ssh)
commands—two on the machine w1 and three on the
other machine w2. One can tell the engine to execute the
given procedure by the following statement:

{Eng ProcedureCall}.

The result of computations becomes a value of the expres-
sion written above. It should be remarked that the subex-
pression ProcedureCall is given in a pseudocode in order
to skip some technical details.

5. Implementation of the reasoning system

A key part of the reasoning system is the procedure
Prove. In this section we describe three variants of this
procedure, each of them implementing a different com-
putation rule. The system processes ALC expressions,
which are represented by Oz data structures. Furthermore,
we use subsequent numbers starting from 0 to encode in-
dividuals. Atomic descriptions (of concepts and roles)
are expressed as atoms and complex concept descriptions
as well as concept and role assertions are denoted by tu-
ples (Van Roy and Haridi, 2004). The correspondence be-
tween the notation considered and the standard ALC syn-
tax is given in Table 1. Primed symbols are Oz represen-
tations of their unprimed ALC counterparts—we use this
convention also in the sequel. Expressions of the form
C1 � . . . � Cn and C1 � . . . � Cn stand for nested inter-
sections and unions, respectively. It should be noticed that
the use of the negation constructor is restricted to atomic
concepts, since all concept descriptions are assumed to be
in NNF.
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Table 1. Oz representation of ALC expressions.

ALC syntax Oz notation

� top

⊥ bot

¬A neg(A′)

C1 � . . . � Cn and(C′
1 ... C′

n)

C1 � . . . � Cn alt(C′
1 ... C′

n)

∃R.C ex(R′ C′)

∀R.C all(R′ C′)

C(x) C′#x′

The first variant of the procedure Prove, given in
Fig. 4, realises the A-strategy. It is a straightforward im-
plementation of the computation rule described in Sec-
tion 3. The procedure constructs a tableau for a given
concept description and checks whether the description is
satisfiable, that is to say, if the tableau contains any open
branch. If so, the argument Model is bound to the list
representing a model of the input concept. The list en-
closes role assertions as well as assertions with literals in-
cluded in a given clash-free node. Otherwise, when the
tableau is closed, the execution of the procedure results
in a failure. In every subsequent call, the procedure han-
dles one node of the tableau and processes it in the current
space. For the sake of efficiency, a node label is split into
two disjoint subsets containing concept assertions and,
role assertions. The first one is represented by the list
Concs, while the latter by the list Roles. Every ele-
ment of the list Roles has the form R′#x′#[y′

1 ... y′
n],

which corresponds to the following set of role assertions:
{R(x, y1), . . . , R(x, yn)}. This representation is moti-
vated by practical reasons, namely, by the way the ∀-rule
is applied and implemented.

In order to speed up the detection of clashes, as-
sertions with positive and negative literals from the list
Concs are additionally stored in two lists, namely,
PLits and NList, respectively. The subsequent argu-
ment of the procedure Prove, i.e., I, is a number stand-
ing for the individual which has been added to the current
branch as the last one. This number, increased by one,
acts as a unique name for a new concept or role instance,
when it is introduced to the tableau. The argument N is
used for the detection of a clash-free node. It indicates
the current number of assertions from the list Concs to
which no expansion rule can be applied.

The reasoning process starts from the execution of
the procedure Prove with the following actual argu-
ments:

{Prove [C′#0] nil nil nil 0 0 Model},

where the symbol C′ stands for the input concept and the
symbol nil denotes an empty list. In every subsequent

call, the procedure takes the first element Conc of the list
Concs and tries to apply a relevant tableau rule to it. If
this is not possible (because the rule is blocked), the el-
ement is moved to the end of the list and the procedure
is recursively called with the argument N incremented by
1 (line 37). If the value of this argument is equal to the
length of the list Concs, then the current node is regarded
as clash free since no rule can be applied to it. In such a
case, the argument Model is bound to the representation
of the model of the input concept (line 4).

Otherwise, namely, when Conc is a concept as-
sertion to which a tableau rule can possibly be applied,
the procedure Prove first checks whether it can be the
clash1−rule (line 7) or the clash2−rule (lines 8–15). The
latter is implemented in two variants for assertions with
positive and negative literals, respectively. The execution
of the clash rules results in failure in the current space,
which is caused by the statement fail. In the other
case, namely, when there is no complementary counter-
part for the assertion Conc, it is moved to the end of the
list Concs in the next call of the procedure Prove (lines
10 and 14).

Lines 16–20 implement the �-rule. If the assertion
Conc is an intersection, then it is decomposed into ele-
ments and those which are not members of the list Concs
(lines 18–19) are added to this list (line 20). If there are
no such elements, then the rule is blocked. The imple-
mentation of the �-rule is given in lines 21–25. It breaks
the assertion Conc (containing a union) into components
which are collected on the list L (lines 22–23). If none of
the components is a member of the list Concs, then for
each of them a clone of the current space is created by the
statement {Space.choose {Length L}} (line 25).
In every clone, this expression evaluates to a distinct num-
ber, which is used in turn by the function Nth to select
the respective element from the list L. This component is
added to the list Concs in the subsequent call of the pro-
cedure Prove.

Lines 26–31 correspond to the ∃-rule, relevant to an
assertion of the form (∃R.C)(x). The execution of this
rule generally consists in inserting appropriate new ele-
ments to lists Concs and Roles in the next call of the
procedure Prove (line 31). However, it should be no-
ticed that no new elements are added to the list Concs if
the concept C equals . This follows from the fact that
assertions with the most general concept are unessential
for the reasoning process and therefore can be ignored.

Finally, in lines 32–35, the ∀-rule is implemented.
The execution of this rule (line 35) takes place if the
list Concs contains an assertion of the form (∀R.C)(x)
and the list Roles includes the assertion C.1#X#Inds,
where C.1 and X stand for R and x, respectively, and
Inds is a nonempty list of fillers of the role R for x (lines
32–33). Furthermore, the rule is not executed if C is the
most general concept (i.e., ), for the same reason as in
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Fig. 4. Definition of the procedure Prove with the A-strategy.

the case of the ∃-rule.

The second variant of the procedure Prove, which
implements the T-strategy as the computation rule, is pre-
sented in Fig. 5.

The procedure does not use the parameter N (present
in the previous version) since no inference rule can be
applied to any concept assertion more than once. Also,
unlike the previous version, the procedure does not
construct a model of the input concept. Instead, it assigns
the value sat to the argument Result if the concept
is satisfiable. The parameter Roles is a list of tuples
of the form R′#x′#[C′

1 ... C′
m]#[D′

1 ... D′
n],

which corresponds to the set of asser-
tions (∃R.C1)(x), . . . , (∃R.Cm)(x) and
(∀R.D1)(x), . . . , (∀R.Dn)(x). This representation
follows from the way the ∃∀-rule is implemented.

The execution of the procedure consists of two gen-
eral steps, which reflects the ordering imposed by the T-
strategy. At first, assertions from the list Concs are pro-
cessed (lines 1–23). In particular, clashes, intersections
and unions are treated similarly as in the procedure from
Fig. 4. However, unlike in that case, premises are deleted
from the list Concs after each reasoning step.

Assertions of the form (∃R.C)(x) and (∀R.C)(x)
are not handled by inference rules at this stage, but they
are moved to the list Roles. This is done by two
external procedures, namely, ToRoleEx (line 20) and
ToRoleAll (line 22), which transform the assertions
considered to the representation used on the target list.

In the next step, to wit, when the list Concs is empty,
the ∃∀-rule is applied to every element of the list Roles
(lines 25–28). This results in the construction of a new
content of the list Concs, which is processed in the sub-
sequent call of the procedure Prove (lines 27–28). The
reasoning process finishes when either the current node
contains a clash (lines 4, 6 and 9) or the lists Concs and
Roles are both empty. In the latter case, the value sat,
bound to the argument Result, is returned (line 29).

Finally, we describe the third variant of the proce-
dure Prove given in Fig. 6, which implements the DB-
strategy. It handles all concept assertions except unions
in a similar way as the procedure from Fig. 4. Reason-
ing about unions, on the other hand, is suspended un-
til expressions of all other types are processed. More
precisely, assertions with unions are initially moved to
the list Alts (lines 15–16), which is an additional ar-
gument of the procedure Prove. Elements of this list
are expanded as the last ones (lines 24–26). Also, we
somehow optimised the realisation of the ∃-rule and the
∀-rule. For this purpose, role assertions being elements
of the list Roles are represented as tuples of the form
R′#x′#[y′

1 ... y′
m]#[C′

1 ... C′
n]. The elements

y1, . . . , ym are fillers of the role R for x coming from
the processing of concept assertions (∃R.C)(x) belong-
ing to the list Concs. The concepts C1, . . . , Cn, in
turn, enter the list as results of the expansion of value
restrictions (∀R.C)(x). Furthermore, when an expres-
sion (∃R.C)(x) is expanded, the new filler y is added
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Fig. 5. Definition of the procedure Prove with the T-strategy as the computation rule.

Fig. 6. Definition of the procedure Prove with the DB-strategy as the computation rule.

to the list [y′
1 ... y′

m] and the sequence of assertions
C1(y), . . . , Cn(y) is appended to the list Concs (lines
17–19). The processing of a value restriction (∀R.C)(x)
(lines 20–22), on the other hand, results in adding the new
concept C to the list [C′

1 ...C′
n]. Also, the list of asser-

tions [C(y1)′ ... C(ym)′], called Exs, is constructed
by the external procedure ToRoleAll (line 21). Ele-
ments of this list extend the list Concs in the next call
of the procedure Prove (line 22). It should be observed
that the approach considered offers an advantage in that
none of the elements of the list Concs has to be reused
after the expansion and therefore can be removed from the
list. Hence, the condition of the termination of the reason-
ing process can be defined as emptiness of both the lists
Concs and Alts. In other words, no additional argu-
ment N is necessary as in the case of the procedure from
Fig. 4.

6. Evaluation

In this section we present and analyse results of exper-
iments intended for the comparison of the computation
rules described in the previous sections. The computa-
tional environment consisted of a machine which pro-
cessed the manager (Pentium-M 760, 2.0 GHz, 1 GB
RAM, 1GBit Ethernet, Windows XP Home 2002) and up
to five identical machines (Pentium P4D, 3.4 GHz, 1 GB
RAM, 1 GBit Ethernet, Windows 2000 Professional 5.00)
processing one worker each. If it does not lead to a confu-
sion, in the sequel we often identify a machine processing
a worker with this worker. All the computers were pow-
ered by the 1.3.2. Mozart system.

The testing data come from the benchmark set
T98-sat (Horrocks and Patel-Schneider, 1998) encom-
passing nine types of concepts. Each of them is given
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Table 2. T98-sat test results for the PS and DB strategies.

Problem A T DB Problem A T DB

k branch n 1 1 1 k branch p 1 1 1
k d4 n 1 2 3 k d4 p 2 2 3
k dum n 8 21 21 k dum p 5 3 6
k grz n 21 21 21 k grz p 1 0 3
k lin n 5 7 21 k lin p 17 5 21
k path n 5 6 6 k path p 1 1 2
k ph n 5 4 3 k ph p 3 3 3
k poly n 5 21 21 k poly p 13 8 21
k t4p n 0 1 1 k t4p p 0 0 2

in both a satisfiable and an unsatisfiable variant, which re-
sults in 18 files. The letter ending a file name indicates the
variant of the file contents; moreover, n stands for satis-
fiable concepts while p denotes unsatisfiable ones. Every
file contains 21 numbered concept examples of increasing
complexity. Furthermore, the computational time is ex-
pected to grow exponentially with a subsequent concept
example. The testing method consists in finding the num-
ber of the most complex example which can be evaluated
in no more than 100 seconds. We use this method, run-
ning the reasoning system on one machine, in order to
compare the A, T and DB strategies in terms of absolute
values. All problems were initially transformed to NNF.
The results of tests are collected in Table 2; the number 0
means that no example of the concept can be evaluated in
the given time limit.

When compared with the arbitrary strategy, the trace
strategy provides better results for six types of concepts
and worse outcomes in five cases. For seven concept
types the results are the same. Also, it should be no-
ticed that four out of five cases when the T-strategy
performs worse concern unsatisfiable concepts. Fur-
thermore, the strategy does not work better than the
arbitrary one for any unsatisfiable concept. This is
caused by the effect described in Section 3. Summing
up, the “pure”, unoptimised, T-strategy is only slightly
more efficient than the A one. On the other hand, the
DB-strategy appears considerably faster in the respected
test than both remaining computation rules. It gives better
results for eight concept types and at least as good out-
comes as the other strategies for nine types of concepts.
The DB-strategy performs somewhat worse only in one
case.

In the next testing step, we selected some particu-
lar T98-sat concept examples to estimate the speedup ob-
tained by executing the reasoning system in parallel with
the increasing number of workers in the computational en-
vironment. The speedup is a quotient of problem solving
time by one worker and by the given number of work-
ers, respectively. Every concept example is denoted by
its number in the file it belongs to, preceded by the file

name. For example, the identifier k path p 6 represents
the example number 6 in the file k path p. The exam-
ples were chosen under the general criterion that the time
of computations performed by one worker has to range
from 3 to 300 seconds. The relatively low left endpoint
of this interval follows from difficulties in finding suitable
testing data. Due to the exponential growth of computa-
tional time, only a few types of concepts have examples
satisfying the given criterion. For every test, computa-
tional time is a system clock time taken as an arithmetic
mean of five runs. Results obtained for satisfiable and un-
satisfiable concepts differ significantly one from another
and therefore are considered separately.

Table 3 contains computational time for satisfiable
concepts processed by three respective strategies in the
environment consisting of 1–5 workers. It should be re-
minded that the search engine stops after finding the first
open branch. Furthermore, every worker constructs its
part of the tableau in a depth-first manner from left to
right. Also, at any branching point it can convey a part
of work to any other worker, which is currently idle. In
consequence, computational time strongly depends on the
way the tableau is partitioned into subtrees. Moreover,
if the first open branch is located close to the left-hand
side of the tableau and all open branches are of simi-
lar length, then adding new machines cannot significantly
speed up the reasoning process. This may explain why
the computational time is nearly constant for problems
processed by the T-strategy and for particular problems
handled by the A-strategy (k poly n 5) and the DB-
strategy (k d4 n 3). Otherwise, namely, when the first
open branch is located further from the left-hand side of
the tableau, the computational time can shrink if this path
occurs as the first one in any of the subtrees. The computa-
tional time may also increase if the tableau is partitioned
in a less convenient way. This can be a source of such
anomalies as a super-linear speedup or slowdown, which
are observed in the case of the problems k path n 5 and
k t4p n 1 for the arbitrary strategy and for the problem
k t4p n 2 processed by the DB-strategy. Furthermore,
it should be remarked that introducing new workers to the
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Table 3. Computational time [s] for selected satisfiable T98-sat concepts.

Strategy Problem 1 worker 2 workers 3 workers 4 workers 5 workers

k lin n 6 142.56 142.7 145.62 147.06 150.29
k path n 5 97.2 67.72 81.37 70.31 72.45

A k poly n 5 83.83 82.74 82.83 82.88 82.31
k poly n 6 178.17 178.9 182.38 183.45 183.31
k t4p n 1 142.75 25.1 25.77 25.29 26.98
k lin n 7 21.53 19.88 19.89 18.73 19.01

T k poly n 21 14.28 14.25 14.35 14.29 14.26
k ph n 4 10.18 10.08 10.05 10.02 9.98
k t4p n 1 7.84 7.89 7.89 7.89 7.88
k d4 n 3 3.88 3.89 3.89 3.93 3.89

DB k path n 6 57.91 60.25 58.34 47.05 43.28
k poly n 17 32.75 30.98 30.82 30.99 30.57
k t4p n 2 273.84 274.72 244.17 244.79 246.92

Table 4. Speedup for selected unsatisfiable T98-sat concepts.

Strategy Problem 2 workers 3 workers 4 workers 5 workers

k dum p 5 1.98 2.92 3.87 4.73
k grz p 1 1.97 2.92 3.80 4.68

A k poly p 12 1.91 2.56 2.81 3.39
k poly p 13 1.83 1.97 2.63 3.88
k poly p 14 1.82 2.75 2.91 4.34
k dum p 3 2.00 2.94 3.87 4.79

T k lin p 5 1.97 2.85 3.80 4.57
k poly p 8 1.96 2.86 3.79 4.66
k poly p 9 1.97 2.94 3.88 4.76
k dum p 3 1.98 2.91 3.83 4.72

DB k grz p 4 2.00 2.98 3.92 4,87
k ph p 3 1.96 2.89 3.83 4.68
k poly p 21 1.04 1.04 1.04 1.03

environment increases timing costs of network communi-
cation among parts of the search engine. In certain cases
costs can exceed benefits coming from the partitioning of
the search tree. This may be a reason why computational
time systematically grows after connecting new workers
for the problems k lin n 6 and k poly n 6 in the case
of the A-strategy.

The other group of testing problems consists of un-
satisfiable concepts only, for which the whole tableau has
to be created since it does not contain any open branch.
Hence, adding new machines to the environment nearly
always yields a speedup, as confirmed by the results pre-
sented in Table 4.

As can be noticed, in the majority of cases the
speedup is nearly linear. For example, connecting the sub-
sequent worker (i.e., the second, the third, the fourth and
the fifth one) to the computational environment, which
processes the problem k dum p 5 by the A-strategy, re-
sults in the shortening of the computational time by 1.98,
2.92, 3.87 and 4.73, respectively. However, for concepts

of the type k poly p, processed by the same strategy, the
speedup apparently fluctuates. This may follow from the
fact that the distribution of the reasoning process depends
upon the structure of the search tree. In particular, trees
for the examined class of concepts are highly unbalanced
and therefore workers can be loaded unevenly. This issue
requires more thorough observations.

Also, a concept of the same type, namely,
k poly p 21, produces exceptional results for the strat-
egy DB, i.e., it practically yields no speedup. The
explanation of this effect lies in the behaviour of the
DB-strategy, which strongly restricts the branching of the
tableau for the k poly p concepts compared with the
T-strategy. Moreover, the tableau constructed by the strat-
egy T for the problem k poly p 9, which is a simpler
version of the problem k poly p 21, contains nearly 1.7
million of branches, while the number of branches for
the latter concept example, processed by the strategy DB,
equals only 313. This number is too small to cause any ob-
servable speedup. It should be remarked that an “eager”
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branching, performed by the T-strategy, on the one hand
enhances the possibility of the creation of the tableau in
parallel, although on the other hand it often augments the
negative effect concerning unnecessary copying of clash
nodes, described in Section 3. Summing up, the strategy
DB behaves generally better than the remaining strategies
in experiments discussed in this section. All the strate-
gies produce a similar speedup, but the DB approach fre-
quently results in a notably shorter computational time.

7. Final remarks

In this paper, we experimentally analysed three simple
computation rules, namely the A-strategy, the T-strategy
and the DB-strategy, in a tableau-based, parallel lean rea-
soning system for the ALC description logic. The sys-
tem is implemented in the relational programming model
in the Oz language and executed by the parallel search
engine on distributed machines. Empirical evaluation of
the rules, performed on the testing data coming from the
benchmark set T98-sat, gives similar outcomes for the
speedup. However, the DB-strategy is generally more ef-
ficient than the remaining computation rules, since for the
majority of tests it results in significantly shorter compu-
tational times. Nevertheless, a comprehensive analysis of
the issue considered requires more tests, particularly on
realistic data. These tests are intended for the future.
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