
Int. J. Appl. Math. Comput. Sci., 2011, Vol. 21, No. 1, 41–55
DOI: 10.2478/v10006-011-0003-4

DEFINING THE SEMANTICS OF RULE–BASED WEB APPLICATIONS
THROUGH MODEL–DRIVEN DEVELOPMENT

JOAQUÍN CAÑADAS ∗ , JOSÉ PALMA ∗∗ , SAMUEL TÚNEZ ∗

∗ Department of Languages and Computation
University of Almeria, Ctra. Sacramento s/n, 04120 Almeria, Spain

e-mail: {jjcanada,stunez}@ual.es

∗∗Department of Information and Communication Engineering
University of Murcia, Campus de Espinardo, 30100 Murcia, Spain

e-mail: jtpalma@um.es

Rule languages and inference engines incorporate reasoning capabilities to Web information systems. This paper presents
an approach for the specification and development of Web applications performing the usual functionalities of data ma-
nagement and incorporating a rule engine for reasoning capabilities. The proposed approach is based on the definition
of a high-level representation of the semantics of rule-based applications through a formalism for conceptual modeling
combining lightweight ontologies and production rules. These models are used as the source for a model-driven method
that applies several transformations to conceptual models generating the rule-based Web application code in an automatic
process. As a result, the rule-based Web application embeds a rule engine suitable for deducing information by applying an
inference process. The structure of the information managed by the Web application is based on ontology classes, whereas
the logical expressions applied in reasoning are obtained from production rules of the model. A rule-based Web application
has been developed and evaluated using a supporting tool that implements the ideas presented in this paper.

Keywords: model-driven development, rule-based systems, Web applications.

1. Introduction

The design of rule languages and inference engines to pro-
vide Web applications with reasoning capabilities is an
important Semantic Web research topic. Several propo-
sals have been defined, although there is no established
standard yet (Eiter et al., 2008). Rules are also used in so-
ftware engineering since business rules have proven their
usability for modeling business logic as part of specifi-
cations of software systems. Today, both points of view
have merged, favoring the widespread adoption of rule-
based systems and business rules in the implementation of
complex decision-making processes (Object Management
Group, 2008).

Each rule formalism enables the representation of
different semantics and expressiveness in relation to the
underlying logic supported, the reasoning methods and
the inference process that can be applied (Paptaxiarhis
et al., 2009). However, in spite of that powerful seman-
tic expressiveness, there is little methodological support
to assist developers in implementing rule-based systems

from rule models using proper technologies such as reaso-
ners or rule engines. It becomes necessary to define me-
thodologies and systematic approaches to map those rich
expressive rule models to rule-based systems. This paper
focuses on this goal.

Several rule types, such as integrity rules, derivation
rules, production rules and reaction rules, have been iden-
tified (Wagner, 2002). In this paper, we are concerned with
production rules. These (IF-condition-THEN-action) have
been successfully applied both in knowledge-based sys-
tems and information systems since they enable a dec-
larative representation of domain expert knowledge and
business logic. Rule engines deal with rule sets and exe-
cute inference methods for firing the right rules to deduce
information and obtain new results (Brachman and Leve-
sque, 2004).

This paper addresses the development of rule-based
systems embedded in Web applications. The integration
of rule engines enhances system functionality, providing
reasoning and inference capabilities to deduce new infor-

{jjcanada,stunez}@ual.es
jtpalma@um.es

42 J. Cañadas et al.

mation and reach intelligent conclusions from managed
data. A model-driven approach to automate the develop-
ment of rule-based Web applications is presented. Con-
ceptual models combined with rules are used to define
rule-based Web application semantics. Then, a set of mo-
del transformations are applied to convert those models
into code. An important advantage of Model-Driven De-
velopment (MDD) is that it enables the definition and au-
tomatic execution of transformations between models and
from models to code, substantially reducing the develop-
ment time. On the contrary, since models do not repre-
sent all aspects of a rule-based Web application, many ele-
ments must be predefined. Hence, in this work the functio-
nality for the rule-based Web application is predefined to
enable end users to create, retrieve, update and delete in-
stances (CRUD). In contrast to current tools for automatic
generation of CRUD systems that perform those functions
on relational databases, our contribution executes CRUD
operations on the rule engine working memory, enabling
the inference engine to execute a forward-chaining infe-
rence mechanism to drive the reasoning process.

To put our proposal into practice, we developed a
support tool using MDD tools provided by the Eclipse
Modeling Project1. The resulting Web application, based
on the Model-View-Controller (MVC) architectural pat-
tern, embeds the Jess rule engine (Friedman-Hill, 2003)
to provide inference features. The proposed approach ma-
terializes InSCo (del Águila et al., 2006), a methodology
intertwining knowledge engineering and software engine-
ering approaches for hybrid intelligent information sys-
tems development.

The rest of this paper is organized as follows. Sec-
tions 2 and 3 introduce the main technologies applied,
model-driven development, and rule-based systems and
rule modeling languages, respectively. Next, the rule-
based modeling approach for specifying Web applications
is described in Section 4. After that, the model-driven me-
thod for rule-based Web application development is expla-
ined in Section 5. The development process is evaluated
and a case study is presented in Section 6. Related work is
reviewed in Section 7. Finally, the main conclusions and
future work are summarized.

2. Model-driven development

Model-Driven Architecture (MDA) (Object Management
Group, 2003a) refers to a software development approach
that uses models as first class entities, enabling the defini-
tion and automatic execution of transformations between
models and from models to code. The term MDA was in-
itially coined by the Object Management Group (OMG)
and involved the use of several standards proposed by the
OMG. In general, the terms Model-Driven Development

1http://www.eclipse.org/modeling/.

(MDD) (Mellor et al., 2003) and Model-Driven Engine-
ering (MDE) (Schmidt, 2006) are used to refer to this so-
ftware development approach.

The creation of metamodels for specifying modeling
languages is a basic task in MDA/MDD. A metamodel de-
fines a modeling language through the concepts, relation-
ships, and integrity constraints available in the language.

The first model type that MDA defines is called a
Platform Independent Model (PIM), a highly abstract mo-
del that is independent of any implementation technology.
A PIM is transformed into one or more Platform Specific
Models (PSMs). A PSM specifies the system in terms of
implementation constructs that are available in a specific
implementation technology. For example, a relational da-
tabase PSM is a model of the system in terms of “table",
“column", “foreign key", and so on. Finally, the last step
in the development is transforming the PSM into code.

Model transformation consists of converting one mo-
del into another on a different abstraction level: from a
PIM to a PSM and from a PSM to code, as shown in Fig. 1.
Transformations between models are called model-to-
model (M2M) transformations, and model to code trans-
formations are called model-to-text (M2T). The main ad-
vantage of this approach to software development is that
MDD tools enable these transformations to be specified
and automatically executed, using MDA/MDD supporting
languages and tools.

Platform
Specific

Metamodel

P

S

M

latform
pecific
odel

Platform
Independent
Metamodel

P

I

M

latform
ndependent

odel

conforms
to

conforms
to

Model (M1)

Metamodel (M2)

Transformation

PSM-Code
Transformation

(M2T)

PIM-PSM
Transformation

(M2M)

Code

Fig. 1. Basic steps in the MDA/MDD development process.

This approach is currently being applied in many do-
mains, such as embedded systems (Karsai et al., 2008),
Web engineering (Moreno et al., 2008), ontology engine-
ering (Gasevic et al., 2006), and so forth. However, it has
some limitations because, being relatively new, MDD sup-
porting tools are not mature enough, and it also introduces
some rigidity since model writing is not as flexible as so-
urce code writing.

3. Rule-based systems and rule modeling

Rule-Based Systems (RBSs) have been the leading tech-
nology for the development of knowledge-based systems
since artificial intelligence emerged. An RBS is a kind of

http://www.eclipse.org/modeling/.

Defining the semantics of rule-based Web applications through model-driven development 43

software system in which the human expert’s knowledge
is applied to solve a complex task, such as diagnosis, mo-
nitoring, assessment, and so on, and it is represented as a
set of declarative production rules. Rule engines are able
to interpret the rules and reason using some inference me-
thod to come to a conclusion, just as the human expert
would (Durkin, 1993; Russell and Norvig, 1995).

In general, an RBS consists of a set of rules (rule ba-
se), a working memory and an inference engine. Rules en-
code domain knowledge and business logic as condition-
action pairs. The working memory represents system in-
put first, but the actions that occur when rules are fired can
cause the state of the working memory to change. The in-
ference engine runs a reasoning method to fire rules, typi-
cally forward and backward chaining mechanisms, which
involve inferring new data.

With Web evolution, interest in making the Web a
more effective platform for intelligence systems quickly
emerged (Grove, 2000). Rules and ontologies provide me-
aning and reasoning facilities to Semantic Web applica-
tions (Eiter et al., 2008). Although ontology formalisms
are quite well developed and the Web Ontology Language
(OWL) (Dean et al., 2004) has become a standard, rule
formalisms are still an active area of research, considera-
ble effort being made to develop rule languages and infe-
rence engines that add reasoning to complex information
systems.

The OMG proposed the ontology definition meta-
model (Object Management Group, 2009a) and the pro-
duction rule representation (Object Management Gro-
up, 2009b) as standard metamodels for introducing both
technologies in the context of MDA. Relevant initiati-
ves to standardize and exchange rules are the Rule Mar-
kup Initiative (RuleML) (Boley et al., 2001), the Seman-
tic Web Rule Language (SWRL) (Horrocks et al., 2004),
and the REWERSE Rule Markup Language (R2ML)
(Wagner et al., 2006). Along the same line, the World Wi-
de Web Consortium (W3C) urges rule-based interchan-
ge for the Web with the Rule Interchange Format (RIF)
(Kifer, 2008).

The software engineering community has also focu-
sed on rules as a proper formalism for representing bu-
siness logic in software systems. Today these two po-
ints of view have merged, favoring the widespread adop-
tion of RBSs and business rules in the implementation of
complex decision-making processes (Object Management
Group, 2008).

4. Modeling rule-based Web applications

The model-driven approach for rule-based Web applica-
tion development we propose focuses on the specification
of Web semantics using a formalism that combines rules
and lightweight ontologies.

Lightweight ontologies are comparable in expressi-

veness to conceptual models widely used in software engi-
neering, such as Unified Modeling Language (UML) class
diagrams (Kogut et al., 2002). They enable domain struc-
ture specification using concepts, concept taxonomies, re-
lationships between concepts and properties that descri-
be them. In contrast, heavyweight ontologies add axioms
and constraints to lightweight ontologies, clarifying the
meaning of the terms collected in the ontology. Hence,
heavyweight ontology formalisms are semantically richer
than conceptual models (Gómez-Pérez et al., 2004).

We use a knowledge modeling formalism proposed
in the CommonKADS methodology called the Concep-
tual Modeling Language (CML) (Schreiber et al., 2000),
which has several desirable features: (i) it enables uni-
fied representation of lightweight ontologies and rules, in
which rules and ontologies are naturally related by bin-
ding rules to ontology concepts; (ii) it meets the requ-
irements of rule representation formalisms, such as mo-
deling rule antecedent, rule consequent, named rules, and
rulesets, with an expressiveness comparable to the SWRL,
which is neither highly expressive nor decidable, but it re-
mains simple (Paptaxiarhis et al., 2009); (iii) models writ-
ten in this formalism are independent of any implementa-
tion technology and, therefore, can be used as the source
model in a model-driven approach; and (iv) the use of a
non-standard modeling language allows us to extend the
notation for representing some semantic features of rule-
based Web applications, as explained below.

4.1. Motivating example. We use a simple example to
illustrate our work, i.e., the family relationships use ca-
se (Horrocks et al., 2004). The concept Person is defined
by a set of attributes such as name, age, gender, father
and mother. Name and age are primitive types, String and
Integer, respectively. Gender is the literal male or fema-
le defined as an enumerated type. The type for father and
mother is the concept Person. Each of these attributes can
have only at most one value, so their cardinality is single.
Relative relationships for a person, such as siblings, bro-
thers, sisters, children, sons, daughters, uncles, aunts, and
so on, can be defined using either Person-to-Person binary
relationships or Person type attributes. The second option
was chosen for simplicity, using a cardinality of “many"
since there may be a list of values (siblings, brothers, etc.
of a person can be zero, one or many). Figure 2 shows a
UML class diagram for the family example.

Rules for deriving the values of relationships with re-
latives are defined in the Person class. For example, if two
Persons have the same father and the same mother, then
they are siblings. Using a pseudocode syntax, with varia-
bles x, y of the Person type, this rule can be expressed as
follows:

IF (x.father==y.father)
AND (x.mother==y.mother)

44 J. Cañadas et al.

THEN (x.siblings = y).

Similarly, the ‘uncle’ rule is defined by the expression

IF (x.father==y) AND (y.brother==z)
THEN (x.uncle = z).

4.2. Conceptual rule-based modeling. The CML for-
malism for knowledge modeling enables the specification
of lightweight domain ontologies and production rules. A
CML model is basically composed of two elements, do-
main schemata and knowledge bases. Domain concepts,
binary relationships, rule types and value types (enume-
rated literals) are modeled in a domain schema. A know-
ledge base consists of instances of concepts (individuals),
instances of relationships (tuples), and instances of rules.
Figure 3 shows the knowledge model components.

As presented next, the CML metamodel specifies
the primitives that can be used in the modeling langu-
age, using a simplified UML class diagram notation cal-
led MOF (Object Management Group, 2003b). The por-
tion of the CML metamodel defining Concept, ValueType
(enumeration) and BinaryRelation primitives is shown in
Fig. 4.

Fig. 2. UML family model.

Domain

Schema

Knowledge

Base

Concepts

Rule Types

Binary Relationships

Value Types

Instances of Concepts

Tuples

Instances of Rules

Fig. 3. Domain knowledge structure.

The main difference between this formalism and
other conceptual modeling approaches in software engine-
ering, such as UML class diagrams, is the ability of mode-
ling production rules due to the rule type and rule instance
primitives. A rule type, defined as part of a domain sche-
me, describes the structure of a set of rules through the
specification of the types bound to the rule’s antecedent
and consequent. The metamodel for rule type is shown in
Fig. 5. A set of rules with similar structures are modeled as
ImplicationRule that extends RuleType. Each implication
rule has ConnnectionSymbol, a word or text representing
the meaning of the rule in natural language, and an antece-
dent and a consequent that bind to one or several Concepts
or BinaryRelations.

Rule types are particularized into rule instances
which represent specific, logical dependencies between
the rule’s antecedent and consequent concept attributes.
A knowledge base contains instances of concepts, rela-
tions and rule types, which are respectively defined in the
metamodel by Instance, Tuple and RuleTypeInstance clas-
ses. Production rules are specified as RuleTypeInstances
by means of conditions or expressions related to the con-
cepts defined in the rule type antecedent and consequent
(Fig. 6). Conjunctions, disjunctions and negations can be
defined as antecedents of rule instances. Several binary
operators, summarized in Table 1, can be used in expres-
sions, some of them defined for single values and others
for lists of values. Both variables and literal values can be
used as operands in conditions and actions.

The family model can be specified conforming to the
metamodel described. The Person class is defined as a
concept with a set of attributes. Those with only one value
are defined with singleValued cardinality (father, mother,
. . .), whereas multiValued cardinality is applied to attribu-
tes with a list of values (brothers, sisters, . . .). The Gen-
der type is defined as an enumerated ValueType with two
literal values, male and female. PersonAbstraction is a ru-
le type defining the skeleton for rules that relate Person
properties in the antecedent with Person properties in the
consequent. Concrete rules for deriving each family rela-
tionship are defined as rule instances of that rule type. An
excerpt from the family model, created with an authoring
tool based on the proposed metamodel, is shown in Fig. 7.
This tool is described in Section 5.4.

4.3. Adding specific features for rule-based Web mo-
deling. Models specified using the formalism described
above represent the application domain, based on ontolo-
gy classes, using logical expressions from reasoning and
business logic based on production rules. Other formali-
sms combining rules and ontologies, such as those men-
tioned in Section 3, can be equally expressive. However,
since our models are intended for use in a model-driven
method for rule-based Web application development, the
formalism has been enriched to include some specific de-

Defining the semantics of rule-based Web applications through model-driven development 45

Fig. 4. Excerpt from the CML metamodel: concept and relationship.

Fig. 5. Excerpt from the CML metamodel: rule type.

Fig. 6. Excerpt from the CML metamodel: knowledge base and rule type instance.

46 J. Cañadas et al.

Table 1. Binary operators in the CML.
Operator Operands Result Description

< numeric logical less than
> numeric logical greater than
<= numeric logical less or equal than
>= numeric logical greater of equal than
== numeric logical equal
!= numeric logical distinct
+ numeric numeric plus
- numeric numeric minus

* numeric numeric product
/ numeric numeric division
= any any assignment of type compatible values

add list, element list adding an element to the list
remove list, element list removing an element from the list

includes list, element logical true, the list includes the element; false otherwise
excludes list, element logical true, the list does not include the element; false otherwise

includesAll list, list logical true, the first list includes all elements of the second list; false, otherwise
excludesAll list, list logical true, the first list does not include all elements of the second list; false, otherwise

union list, list list union of lists
intersection list, list list intersection of lists
difference list, list list difference of lists

sign features for this kind of software systems, such as
interaction and presentation characteristics.

Interaction features enable the specification of user
interactivity in the Graphical User Interface (GUI) thro-
ugh a set of properties associated with modeling primi-
tives. The following properties dealing with the attribute
metaclass (see Fig. 4) illustrate some interaction characte-
ristics:

• isDerived: set to true when the attribute value is in-
ferred by the rule engine, so it cannot be edited by
the user.

Fig. 7. Excerpt from the family model.

• notifiesTo: sets the attributes to be refreshed or upda-
ted in the user view when the attribute value changes.

• isNotifiedBy: the opposite of notifiesTo.

• valueFrom: sets the attribute that contains the list of
values to be chosen as the value for the current attri-
bute.

In the family example, the property isDerived is true
for all the attributes of Person whose values are inferred
from rules, such as siblings, brothers, sisters, children,
sons, daughters, uncles, aunts, and so on. The father attri-
bute notifiesTo informs all the other attributes that are af-
fected, such as siblings, brothers, sisters, uncles and aunts,
when the father of a person changes. The uncles attribu-
te isNotifiedBy is informed by father and mother. Finally,
if a new attribute called favoriteUncle is added to Person,
enabling one of the uncles to be selected as the favorite, it
obtains its possible values from uncles by the proper set-
ting of valueFrom.

Figure 8 shows an example of how the interaction
of the father with parents and siblings attributes is spe-
cified using the isDerived and notifiesTo properties, and
how it affects the generated Web forms generated for edi-
ting Person class instances. Parents and siblings are deri-
ved attributes so their values cannot edited by the end user
but deducted by the rule engine. Moreover, father notifies
to both parents and siblings, so when the father’s value
changes then an onChanged event makes the rule engine
run and the lists of parents and siblings are re-rendered,
updating them with the new values deduced by the rule
engine.

Presentation features specify the conceptual model
element’s visibility properties, enabling user interface cu-
stomization. For example, this makes it possible to select

Defining the semantics of rule-based Web applications through model-driven development 47

Conceptual Model Web page

notifiesTo

reRender

event = ”onchanged”

Fig. 8. Modeling interaction with the NotifiesTo property.

what concepts will appear in the application menu, and
what attributes are included as columns of tables showing
all instances of a concept type.

5. MDD for rule-based Web applications

5.1. General perspective. Figure 9 shows the propo-
sed MDD schema for rule-based Web applications, which
is divided into two processes. The first one (the bottom
flow in Fig. 9) generates the implementation of the rule
base in Jess, and the second one (the top flow in Fig. 9)
produces the code for the Web architecture.

The development starts with the specification of a
conceptual rule model defining the domain ontology and
the set of rules representing the decision logic, using a
platform-independent formalism such as the CML. The
application of the model-driven approach produces two
different results. On the one hand, ontology and rules are
transformed into Jess, which supports the development
and deployment of rule-based systems tightly bound to Ja-
va applications. As a result, a Jess rule base, i.e., a text file
containing the set of rules converted to Jess syntax, is ge-
nerated.

Furthermore, a Web-based architecture is generated
from the CML model extended by interaction and pre-
sentation features. The Web application code is based on
the MVC architectural pattern, the JavaServer Faces (JSF)
framework (Geary and Horstmann, 2007) and JBoss Rich-
faces components (JBoss, 2009b), producing a set of Ja-
vaBean classes and JSF pages.

Jess Rule
model

Jess rule base

CML Model

Java and JSF

Web model
Java

JSF

classes
pages

P

I

M

latform
ndependent
odel

P

S

M

latform
pecific
odels

Code

integration

Web Rule-based

application

M2M

Transformations
M2T

Transformations

Interaction &
Presentation

Fig. 9. MDD schema for rule-based Web system generation.

Although the two MDD processes are executed in-
dependently of each other, the final result must integrate
the rule base into the Web application. This is done by
the appropriate method calls to the Jess API (Application
Programming Interface) in the Java code generated, which
entails embedding the Jess rule engine into the Web appli-
cation.

Figure 10 shows the target architecture for the rule-
based Web applications generated. The embedded rule en-
gine manages the Jess rule base and the text file of persi-
stent instances of concepts, called facts. This rule engine
consists of three basic parts: the working memory conta-
ins all the information or facts, the rule set contains all the
rules, and the rule engine checks whether the rules match
the working memory and then executes them. A set of Ja-
va classes and JSF pages for creating, editing and listing
instances of each concept type comprises the Web archi-
tecture.

The Web application enables the user to perform four
basic predetermined functions: create new instances, read
the current lists of instances, update and delete instances.
These CRUD operations are executed on the Jess rule en-
gine working memory, enabling the inference mechanism
to fire appropriate rules when necessary. The rule engine
executes a forward-chaining inference mechanism to dri-
ve the reasoning process, firing the rules when conditions
are evaluated as true, and executing actions to modify the
existing information or infer new one.

Web
Browser

Apache Tomcat

Jess

JavaEE Platform

Jess
facts

Rule
set

working
memory
(facts)

rule
engine

JSF + RichFaces
pages

business logic
Java Classes

Fig. 10. Rule-based Web application architecture.

The Web application generated benefits from deci-
sion logic externalized from the core application code, sin-
ce uncoupling the rules from the source code increases the
scalability and maintainability of rule-based applications
(Frankel et al., 2004). In addition, our development appro-
ach makes it possible for the two MDD processes to be
executed separately and, therefore, any change in the rule
model affecting only rule logic (rule instances) but not the
information structure (concepts, relationships, . . .) can be
translated into a new rule base without having to modify
or regenerate anything else in the Web architecture. This
approach makes Web applications easier to maintain and
evolve.

48 J. Cañadas et al.

5.2. MDD of Jess rules. As previously mentioned,
the first model-driven process in our approach involves
the transformation of source models into the Jess code.
The first model-to-model (M2M) transformation involves
translating the CML source model into a platform-specific
model for Jess rules, for which a platform specific Jess
rules metamodel (Fig. 11) is designed, extending a sim-
ple rule metamodel for rule-based systems as described
by Chaur (2004).

In the Jess rules metamodel, a metaclass is defined
for each Jess language element. The root element of a Jess
rule model is RModule. A module contains fact templa-
tes, rules, functions, facts and queries. The RFactTemplate
metaclass models fact templates, the Jess constructor for
storing information.

RRule enables the representation of rules. A rule
has ruleName, a property called salience that determines
the order in which applicable rules are fired by the ru-
le engine, a containment reference condition representing
the rule’s condition (antecedent), and a reference called
actions representing the rule’s action (consequent). The
RPattern and RSlotMatchExp metaclasses define pattern
matching expressions in rule conditions. Actions are defi-
ned as RFunction calls that assert new facts, or retract or
modify the existing ones.

Facts are defined by the RDefFacts metaclass. And
acquired from instances of concepts in the CML source
model. Finally, RQuery models queries to consult the wor-
king memory at runtime.

Mapping from CML models to Jess rule models is
designed by an M2M transformation which maps CML
metamodel primitives to one or several Jess rule metamo-
del constructors. The following rules briefly summarize
this mapping:

• Domain Schema to Knowledge Base. A domain sche-
ma maps to a Jess knowledge base, that is, a .clp
file. The name of the domain knowledge is the same
as the name of the corresponding .clp file.

• Concept to Template. A Concept is transformed to
a fact template in Jess, that is, RFactTemplate. The
fact template name is the same as the concept na-
me. Each concept attribute maps to Slot in the Fact
Template. The slot name corresponds to that of the
attribute, single attribute cardinality maps to a slot
whereas multivalued attributes map to a multislot.

• Relation to Slot. Each binary relationship is transla-
ted into a slot in the concept related by the first argu-
ment in the relationship.

• Concept Instance to DefFact. An instance is mapped
to RDefFact, and instantiated attributes correspond to
slot values in the fact definition. When an instance
has a slot for a relationship, a tuple gives the value to
that slot.

• RuleType and RuleInstance to Rule. Each rule instan-
ce is mapped to Rule with Antecedent and Conse-
quent. Antecedent is composed of patterns and mat-
ching expressions referring the templates included in
the rule type definition. Pattern indicates the templa-
tes that must have a pattern matching expression in
the rule. Matching Expression represents a condition
in the antecedent of a rule, for example, a logical
comparator expression.

• Concept to Queries. Finally, two Queries are created
for each Concept, all instances query and Fact by-
Id query. The formed query is necessary for the JSF
Web interface to retrieve all the instances of a speci-
fic class, and the latter for it to search for a specific
instance by its identifier slot value.

The Jess rule model generated by the M2M trans-
formation is the source model for a model-to-text (M2T)
transformation which automatically generates the Jess ru-
le base source code, producing a Jess file (.clp) with a
code for every element included in the Jess rule model.

5.3. MDD of the JSF Web architecture. A second
MDD process is applied (see Fig. 9) to generate a Web ar-
chitecture embedding rules into a Web application. In this
process, Jess rules are integrated into the Web application,
since both the Jess rule base and the Web architecture are
generated from the same model. Integration issues are ma-
naged and resolved.

The Web application generated is divided into two
layers, a business and a user interface. The business layer
is composed of a JavaBean class package taken from input
model concepts, a set of helper Java classes to implement
some functionalities, and a JessEngineBean class that in-
tegrates Jess rules into the Web application using the Jess
API to achieve interaction with Jess. The user interface
layer is composed of a list of JSF Web pages that allow
the user to interact with the system and perform predeter-
mined functionalities.

A JSF Web architecture metamodel was designed
(Fig. 12). A JSF project is composed of a set of JSP pa-
ges, a configuration file (faces-config.xml) and a
set of JavaBeans. In the M2M and M2T transformations
from a CML model to a JSF model and finally to code,
each concept is mapped to several elements: a JavaBean
class, a JSF page for creating and editing instances, a JSF
page for listing all such instances, and a managed bean to
be included in the configuration file. Interaction and pre-
sentation features are taken into account at this level in
model-driven processes.

5.4. Tool support: InSCo-Gen. To put our proposal
into practice, the InSCo-Gen supporting tool (Cañadas
et al., 2009) applies the model-driven approach to rule

Defining the semantics of rule-based Web applications through model-driven development 49

Fig. 11. Jess rules metamodel.

Fig. 12. JSF architecture metamodel.

50 J. Cañadas et al.

models and automatically generates the implementation
of a functional rule-based Web application. It was develo-
ped using Eclipse Modeling Project tools for MDD. Me-
tamodels are defined using the Eclipse Modeling Frame-
work (EMF2). Models conforming to metamodels are cre-
ated using the built-in reflective EMF editor, which provi-
des an authoring tool for CML models. Model creation is
improved by customizing the reflective editor with Exeed
(EXtended Emf EDitor) (Kolovos, 2007), a plugin which
can modify editor default icons and labels by adding Exe-
ed annotations to the metamodel. A screenshot of a model
created with this editor is shown in Fig. 7.

Two M2M transformations were designed with the
Atlas Transformation Language (ATL3). The first one
maps a CML model to a Jess platform-specific model. The
second one transforms a CML model into a JSF-specific
model.

The outputs of both ATL transformations are the in-
puts of two M2T transformations implemented with Ja-
va Emitter Templates (JETs4). As a result, InSCo-Gen
automatically produces the Web application code, sour-
ce text files with Jess rules and facts on the one hand,
and, on the other, the Web application components, the
faces-config.xml and web.xml configuration fi-
les, the Java Beans for model classes, and a Jess-Engine
Bean which uses the Jess Java API to embed the rule en-
gine into the architecture. Moreover, a set of JSP/JSF Web
pages are generated for the user interface. These pages are
based on the RichFaces library (JBoss, 2009b), an open
source framework that adds AJAX capability to JSF ap-
plications.

6. Evaluation

6.1. Development process. The proposed approach
has some strengths and weaknesses. The main advanta-
ge is a drastic reduction in the development time and ef-
fort, since the tool does all the hard work. The incremen-
tal development is also favored with this approach becau-
se changes in the model can be directly reflected in sys-
tem implementation. In addition, models are now the ma-
in artifacts in software development, not only out-of-date
documentation, a common characteristic of MDA/MDD
approaches. Furthermore, the final code quality increases,
as good design and best practices are implemented in the
transformations, producing a free-of-error code.

There are also several limitations. Significant time
and effort necessary for developing the MDD supporting
tool must be considered in evaluating the tool’s benefits
versus the effort required for its construction. When the
goal is the development of only one rule-based system in

2http://www.eclipse.org/modeling/emf/.
3http://www.eclipse.org/m2m/atl/.
4http://www.eclipse.org/modeling/m2t

/?project=jet.

a specific domain, software construction from scratch is
the best option. However, when a kind of software solu-
tion can be applied to many similar systems and in many
domains, then the construction of an MDD supporting tool
like the one presented here is an appropriate solution.

Another important limitation concerns development
process evolution and related tools. Models are limited to
the expressiveness of the metamodels, and code genera-
tion is also limited to what can be expressed in the mo-
dels. Therefore, when a change in model expressiveness
or code generation is necessary, then changes in metamo-
dels, models and transformations must be derived, making
MDD tool evolution difficult.

6.2. Testing the Family Web application. To evaluate
the resulting Web application, we tested its performance
with the Family case study as described below. Later, the
usability of the Web application is discussed.

The rule-based Web application was tested using dif-
ferent numbers of individuals (10, 20, 50, 100, 200, 500,
1000) and two different rule sets, the first with only 5 rules
the second with 20 rules. The results are shown in Fig. 13.
Execution times in the figure plot the time it takes to char-
ge the knowledge base, that is, the time the rule engine
spends on executing the rules with all the individuals just
loaded for the first time. Since, at first, individuals only
have a few necessary properties, such as age, father and
mother, all the other family relationships are calculated
during charging. This becomes an expensive processing
task when the number of individuals increases, as the figu-
re shows. The number of rules also has an extreme effect
on the initial charge time. The time scale for the 5-rule test
(left-hand scale) is much shorter than that for the 20-rule
test (right-hand scale). However, both rule sets behave the
same as the number of individuals increases, and both cu-
rves show the same trend of exponential growth.

It is important to note that, once the initial charge has

0

10

20

30

40

50

60

70

0 100 200 300 400 500 600 700 800 900 1000

number of individuals

ch
ar

ge
 ti

m
e,

 in
 s

ec
on

ds
 (s

ca
le

 fo
r 5

 ru
le

s)

-100

0

100

200

300

400

500

600

700

800

900

1000

1100

1200

1300

1400

1500

1600

1700

ch
ar

ge
 ti

m
e,

 in
 s

ec
on

ds
 (s

ca
le

 fo
r 2

0
ru

le
s)

5 rules

20 rules

Fig. 13. Charging times for the Family Web application.

http://www.eclipse.org/modeling/emf/.
http://www.eclipse.org/m2m/atl/.
http://www.eclipse.org/modeling/m2t
/?project=jet.

Defining the semantics of rule-based Web applications through model-driven development 51

finished, the execution of the Web application remains in-
teractive, since creating, modifying or deleting instances
only affect one or a few individuals (family-related per-
sons). So when the user interacts with the application, the
rule engine fires the appropriate rules in milliseconds pro-
viding an immediate response to the user. This performan-
ce was tested in the use case evaluated. However, produc-
tion rule engines could offer a different response in other
cases, since, when a fact is matched at the top of many
rules in many combinations, it can take a long time to mo-
dify it (Friedman-Hill, 2003).

The resulting rule-based Web application can be ac-
cessed by end users. Its usability is improved by the use
of AJAX technology and the application of good design
practices. In fact, both rules and AJAX technology impro-
ve the creation and edition of instances in the Web ap-
plication. Since Web forms are implemented with AJAX
RichFaces components, each single form value can be va-
lidated and submitted individually as it is entered. This fa-
cility entails the rule engine firing suitable rules and infer-
ring new information that drives instance creation or edi-
tion, for example, updating choice-fields. A snapshot of a
Family Web application listing page is shown in Fig. 14
and an editing page in Fig. 15.

Fig. 14. Family Web application: list of all persons.

6.3. Case study in the agricultural domain. The pro-
posed approach was applied in SAVIA, a rule-based Web
information system for pest control in agriculture.

The productivity of present-day agricultural industry
has multiplied with the incorporation of new technolo-
gies and technological innovations in traditional agricul-
tural production systems. This is the case in south-eastern
Spain, where agriculture is one of the most important eco-
nomic sectors, especially in the Province of Almeria cal-
led “the Garden of Europe" because of its intensive gre-
enhouse farming. Almost its entire vegetable production
is exported to the rest of Europe. However, improper use
of pesticides during recent years, when pesticide residu-
es in some consignments were above the legal limits, led
to a negative image in Europe, and even blocking some
frontiers to products from Almeria.

Fig. 15. Family Web application: person edition.

Plant health is therefore a significant factor in the
economy of today’s agricultural industry and has an im-
portant effect on the environment. It is one of the major
concerns of both agricultural companies and authorities.
The Spanish government has developed an Integrated Pro-
duction (IP) quality regulation. IP is defined as agricul-
tural production systems that use natural production re-
sources and mechanisms to ensure long-term sustainable
agriculture. In IP, biological and chemical treatments are
carefully selected, keeping in mind consumer demands,
economics and environmental protection.

Information technologies and specifically
knowledge-based technologies applied to IP pest control
can improve process management and effectiveness. With
this goal, the SAVIA decision-support system applies
rule-based reasoning to help growers and agricultural
technicians grow their crops according to IP quality
regulations by informing them whether a given treatment
is necessary for pest control. It also provides online
decision support to avoid problems in their crops, such as
incorrect use of pesticides.

The pest control problem is formulated as a thera-
py administration task (del Águila et al., 2003), a com-
position of knowledge-intensive tasks such as monitoring,
diagnosis and assessment. A crop is considered a com-
plex system made up of land, plants, pests and any useful
fauna which can reduce damage. This system is affected
by external variables such as climate conditions, humidity,
product price, and so on. Controls that represent the least
possible hazard for the crop, useful fauna and the environ-
ment can be applied to keep their balance.

52 J. Cañadas et al.

The SAVIA knowledge model consists of several
concepts, such as Harmful Agent (Pest or Disease), Crop,
Phenological Stage, Grower, Agricultural Technician, and
so on. Instances of domain knowledge are described, for
example, Grapes and Tomatoes are instances of Crop;
Grape moth, Thrips and Botrytis are instances of Harm-
ful Agent; Dormant bud, Begin flowering and Cap falling
are instances of Phenological Stage. Rules specify logical
constraints on concepts attributes. An example of a rule
for the grape crop is as follows: If the date of a Sample is
in January, then the phenological stage is Dormant bud.

Crops must be monitored periodically. Data about the
crop growth stage, the presence of pests or their effects
and other useful information are collected by sampling.
The system manages all that information. A crop sam-
pling list is shown in Fig. 16. The rule logic implemented
in SAVIA provides decision support related to two clearly
differentiated tasks: (i) first, a decision about whether or
not to take action, and (ii) in the affirmative, the most ap-
propriate treatment (chemical, biological or mechanical).
Although the system advises on action to be taken, it is the
agricultural technician who ultimately decides what action
to take.

7. Related work

Our proposal uses the CML rule and ontology modeling
formalism as the MDD source model. To insert the CML
in the MDD framework, we defined a CML metamodel.
A UML profile for the specification of CML knowledge
models is addressed by Abdullah et al. (2007), who also
discuss the possibility of mapping the profile elements to
a Jess platform-specific model.

Some previous articles have proposed the genera-
tion of Jess rules from ontology and rule models, such as
the OWL (Mei et al., 2005) and the SWRL (O’Connor
et al., 2005). However, they focus on the definition of re-
asoners for OWL and Jess, where the main issue is to de-
rive certain facts based on OWL and SWRL semantics,
respectively. The most important difference between tho-
se proposals and ours is that they run the rule base ge-
nerated in a development tool such as Protege JessTab
(Eriksson, 2003), using a reasoner embedded in the envi-
ronment to execute rules, whereas we generate the Jess
rule base and also the code necessary to embed the Jess
rule engine into a functional Web application, providing a
Web application for end-users.

Web engineering defines processes, techniques and
models suitable for Web application development. Me-
thodologies such as UWE (Koch et al., 2008), WebML
(Fraternali et al., 2002) and WebDSL (Groenewegen
et al., 2008) approach the design and development of Web
applications by providing tools based mainly on conceptu-
al models (Ceri et al., 2002) and focusing on content, na-
vigation and presentation models as the most relevant con-

cerns (Moreno et al., 2008; Linaje et al., 2007). A model-
driven approach for Web application development based
on MVC and JavaServer Faces is described by Distante
et al. (2007). However, those methods do not consider rule
modeling to be a specific concern in Web application de-
velopment. Our proposal is innovative in that it introduces
rule modeling in this context. To simplify our description,
we have not considered other Web application modeling
concerns such as navigation, and we predefine functiona-
lity as CRUD operations and, therefore, types and naviga-
tion links are fixed and preset.

There is currently no defined methodology or deve-
lopment process for creating rule-based systems embed-
ded in (semantic) Web applications, and it is still a subject
of research. Diouf et al. (2007) describe how to merge
UML models and OWL ontologies for automatic business
rule generation. They propose the use of ontologies for
adding semantics to UML models and applying the MDA
approach to the extraction of implicit rules from models.
Their business rules are generated in the Semantics of
Business Vocabulary and Business Rules (SBVR) syntax
(Object Management Group, 2008). Although they pro-
pose a general architecture for applying MDA and OWL
ontologies for generating rulesets in a target rule engine
during the generation step, up to know, they have only ge-
nerated the first abstraction version of business rules.

Another related method, the HeKatE methodology
(Nalepa and Ligęza, 2010), describes an approach simi-
lar to MDD for the design and development of complex
rule-based systems. It uses extended tabular trees for rule
representation, a paradigm based on decision tables con-
nected into an inference network. Rules are translated into
a Prolog-based code, and integrated as a logic core module
in the final software system.

Regarding MDD for Web applications integrating ru-
les, Ribarić et al. (2007) describe MDD principles for
rule-based Web service modeling using R2ML and pro-
pose an MDD approach for generating Web services from
rule models. But whereas that proposal focuses on a Web
service architecture, our work is based on an MVC archi-
tecture using a JSF framework.

8. Conclusions

This paper describes how rule-based and model-driven de-
velopment techniques are intertwined for the development
of rule-based Web applications. The semantics of such so-
ftware applications are defined through a modeling for-
malism combining lightweight ontologies and rules, and
a model-driven approach establishes how the implemen-
tation is generated from models. The ideas proposed are
demonstrated by an MDD tool.

The resulting rule-based Web architecture imple-
ments the MVC architectural pattern using the JavaServer
Faces framework and incorporates rich JBoss Richfaces

Defining the semantics of rule-based Web applications through model-driven development 53

Fig. 16. Crop sampling list.

components to enhance the user interface with AJAX ca-
pabilities. The Jess rule engine is embedded in the Web
application to provide inference capabilities.

Due to the declarative nature of rules, the decision
logic is externalized from the core application code pro-
ducing Web applications that are easier to maintain and
evolve.

This approach has been evaluated with a simple
example and a real-world case study, the SAVIA system—
a Web decision-support system for pest control in agricul-
ture, which makes recommendations to growers and tech-
nicians about the necessity of treating a specific pest or
disease in their crops. The approach is planned to be ap-
plied in other domains such as medical diagnosis.

Future work will use other ontology and rule mode-
ling languages such as the OWL and the SWRL as source
models for the model-driven approach and define intero-
perability modules with other rule formalisms. Different
rule platforms, such as JBoss Rules (JBoss, 2009a), will
also be target rule technologies. The Web application ge-
nerated, which is aimed at enriching the architecture with
database facilities, will be improved to provide a complete
persistence layer.

Acknowledgment

The authors wish to thank the Spanish Ministry of Edu-
cation and Science for funding received under Projects
TIN2009-14372-C03-01 and PET2007-0033, and Junta
de Andalucia (Andalusian Regional Governitent) for sup-
port under Project P06-TIC-02411.

References
Abdullah, M.S., Benest, I.D., Paige, R.F. and Kimble, C. (2007).

Using unified modeling language for conceptual model-
ling of knowledge-based systems, in C. Parent, K.-D. Sche-
we, V.C. Storey and B. Thalheim (Eds.), 26th International
Conference on Conceptual Modeling, ER 2007, Auckland,
New Zealand, Lecture Notes in Computer Science, Vol.
4801, Springer-Verlag, Berlin/Heidelberg, pp. 438–453.

Boley, H., Tabet, S. and Wagner, G. (2001). Design rationale
for RuleML: A markup language for Semantic Web rules,
in I.F. Cruz, S. Decker, J. Euzenat and D.L. McGuinness
(Eds.), Proceedings of SWWS’01, The First Semantic Web
Working Symposium, Stanford University, California, USA,
pp. 381–401.

Brachman, R.J. and Levesque, H.J. (2004). Knowledge Repre-
sentation and Reasoning, Morgan Kaufmann, San Franci-
sco, CA.

Cañadas, J., Palma, J. and Túnez, S. (2009). InSCo-Gen: A
MDD tool for Web rule-based applications, in M. Gaed-
ke, M. Grossniklaus and O. Díaz (Eds.), Web Engineering:
9th International Conference, ICWE 2009, San Sebasti-
án, Spain, Lecture Notes in Computer Science, Vol. 5648,
Springer-Verlag, Berlin/Heidelberg, pp. 523–526.

Ceri, S., Fraternali, P. and Matera, M. (2002). Conceptual mo-
deling of data-intensive Web applications, IEEE Internet
Computing 6(4): 20–30.

Chaur G. Wu (2004). Modeling rule-based systems with EMF,
Eclipse Corner Articles, http://www.eclipse.org
/articles/.

Dean, M., Schreiber, G., Bechhofer, S., van Harmelen, F.,
Hendler, J., Horrocks, I., McGuinness, D.L., Patel-

http://www.eclipse.org
/articles/

54 J. Cañadas et al.

Schneider, P.F. and Stein, L.A. (2004). OWL Web
Ontology Language Reference, W3C Recommendation,
http://www.w3.org/TR/owl-ref.

del Águila, I.M., Cañadas, J., Bosch, A., Túnez, S. and Marín,
R. (2003). Knowledge model of a therapy administra-
tion task applied to an agricultural domain, in V. Palade,
R.J. Howlett and L.C. Jain (Eds.), Knowledge-Based Intel-
ligent Information and Engineering Systems, 7th Interna-
tional Conference, KES 2003, Oxford, UK, Lecture No-
tes in Computer Science, Vol. 2774, Springer-Verlag, Ber-
lin/Heidelberg, pp. 1277–1283.

del Águila, I.M., Cañadas, J., Palma, J. and Túnez, S. (2006). To-
wards a methodology for hybrid systems software develop-
ment, Proceedings of the International Conference on So-
ftware Engineering and Knowledge Engineering (SEKE),
San Francisco, CA, USA, pp. 188–193.

Diouf, M., Maabout, S. and Musumbu, K. (2007). Merging mo-
del driven architecture and Semantic Web for business ru-
les generation, in M. Marchiori, J.Z. Pan and C. de Sain-
te Marie (Eds.), Web Reasoning and Rule Systems, First
International Conference, RR 2007, Innsbruck, Austria,
Lecture Notes in Computer Science, Vol. 4524, Springer-
Verlag, Berlin/Heidelberg, pp. 118–132.

Distante, D., Pedone, P., Rossi, G. and Canfora, G. (2007).
Model-driven development of Web applications with
UWA, MVC and JavaServer Faces, in L. Baresi, P. Fra-
ternali and G.-J. Houben (Eds.), Web Engineering, 7th In-
ternational Conference, ICWE 2007, Como, Italy, Lectu-
re Notes in Computer Science, Vol. 4607, Springer-Verlag,
Berlin/Heidelberg, pp. 457–472.

Durkin, J. (1993). Expert Systems: Catalog of Applications, In-
telligent Computer Systems Inc., Akron, OH.

Eiter, T., Ianni, G., Krennwallner, T. and Polleres, A. (2008).
Rules and ontologies for the Semantic Web, in C. Baro-
glio, P.A. Bonatti, J. Maluszynski, M. Marchiori, A. Polle-
res and S. Schaffert (Eds.), Reasoning Web, Lecture No-
tes in Computer Science, Vol. 5224, Springer-Verlag, Ber-
lin/Heidelberg, pp. 1–53.

Eriksson, H. (2003). Using JessTab to integrate Protege and Jess,
IEEE Intelligent Systems 18(2): 43–50.

Frankel, D., Hayes, P., Kendall, E. and McGuinness,
D. (2004). The model driven Semantic Web, 1st
International Workshop on the Model-Driven Se-
mantic Web (MDSW2004), Monterey, CA, USA,
http://www.sandsoft.com/edoc2004/
FHKM-MDSWOverview.pdf.

Fraternali, P., Bongio, A., Brambilla, M., Comai, S. and Matera,
M. (2002). Designing Data-Intensive Web Applications,
1st Edn., Morgan Kaufmann, San Francisco, CA.

Friedman-Hill, E. (2003). Jess in Action: Rule-based Systems in
Java, Manning Publications, Greenwich, CT.

Gasevic, D., Djuric, D. and Devedzic, V. (2006). Model Driven
Architecture and Ontology Development, Springer-Verlag
New York, Inc., Secaucus, NJ.

Geary, D. and Horstmann, C.S. (2007). Core JavaServer Faces,
2nd Edn., Prentice Hall, Upper Saddle River, NJ.

Gómez-Pérez, A., Fernández-López, M. and Corcho, O. (2004).
Ontological Engineering, Springer-Verlag New York, Inc.,
Secaucus, NJ.

Groenewegen, D.M., Hemel, Z., Kats, L.C.L. and Visser, E.
(2008). WebDSL: A domain-specific language for dyna-
mic Web applications, in G.E. Harris (Ed.), 23rd Annu-
al ACM SIGPLAN Conference on Object-Oriented Pro-
gramming, Systems, Languages, and Applications, OOP-
SLA 2008, Nashville, TN, USA, ACM, New York, NY,
pp. 779–780.

Grove, R. (2000). Internet-based expert systems, Expert Systems
17(3): 129–135.

Horrocks, I., Patel-Schneider, P., Boley, H., Tabet, S., Gro-
sof, B. and Dean, M. (2004). SWRL: A Seman-
tic Web Rule Language Combining OWL and RuleML,
http://www.w3.org/Submission/SWRL/.

JBoss (2009a). Drools documentation,
http://www.jboss.org/drools/
documentation.html.

JBoss (2009b). RichFaces, http://www.jboss.org
/jbossrichfaces/.

Karsai, G., Neema, S. and Sharp, D. (2008). Model-driven archi-
tecture for embedded software: A synopsis and an exam-
ple, Science of Computer Programming 73(1): 26–38.

Kifer, M. (2008). Rule interchange format: The framework, in
D. Calvanese and G. Lausen (Eds.), Web Reasoning and
Rule Systems, Second International Conference, Karlsru-
he, Germany, Lecture Notes in Computer Science, Vol.
5341, Springer-Verlag, Berlin/Heidelberg, pp. 1–11.

Koch, N., Knapp, A., Zhang, G. and Baumeister, H. (2008).
UML-based Web engineering. An approach based on stan-
dards, in G. Rossi, O. Pastor, D. Schwabe and L. Ol-
sina (Eds.), Web Engineering: Modelling and Implemen-
ting Web Applications, Human-Computer Interaction Se-
ries, Springer, London, pp. 157–191.

Kogut, P., Cranefield, S., Hart, L., Dutra, M., Baclawski, K.,
Kokar, M. and Smith, J. (2002). UML for ontolo-
gy development, Knowledge Engineering Review 17(01):
61–64.

Kolovos, D.S. (2007). Exeed: EXtended Emf EDitor—User Ma-
nual, http://www.eclipse.org/gmt/epsilon
/doc/Exeed.pdf.

Linaje, M., Preciado, J.C. and Sanchez-Figueroa, F. (2007).
Engineering rich internet application user interfaces over
legacy Web models, IEEE Internet Computing 11(6):
53–59.

Mei, J., Bontas, E.P. and Lin, Z. (2005). OWL2Jess: A trans-
formational implementation of the OWL semantics, in
G. Chen, Y. Pan, M. Guo and J. Lu (Eds.), Parallel
and Distributed Processing and Applications—ISPA 2005
Workshops, Nanjing, China, Lecture Notes in Computer
Science, Vol. 3759, Springer-Verlag, Berlin/Heidelberg,
pp. 599–608.

Mellor, S., Clark, A. and Futagami, T. (2003). Model-driven
development—Guest editors’ introduction, IEEE Software
20(5): 14–18.

http://www.w3.org/TR/owl-ref
http://www.sandsoft.com/edoc2004/
FHKM-MDSWOverview.pdf
http://www.w3.org/Submission/SWRL/
http://www.jboss.org/drools/
documentation.html
http://www.jboss.org
/jbossrichfaces/
http://www.eclipse.org/gmt/epsilon
/doc/Exeed.pdf.

Defining the semantics of rule-based Web applications through model-driven development 55

Moreno, N., Meliá, S., Koch, N. and Vallecillo, A. (2008).
Addressing new concerns in model-driven Web engine-
ering approaches, in J. Bailey, D. Maier, K.-D. Schewe,
B. Thalheim and X.S. Wang (Eds.), Web Information Sys-
tems Engineering—WISE 2008, 9th International Confe-
rence, Auckland, New Zealand, Lecture Notes in Compu-
ter Science, Vol. 5175, Springer-Verlag, Berlin/Heidelberg
pp. 426–442.

Moreno, N., Romero, J.R. and Vallecillo, A. (2008). An ove-
rview of model-driven Web engineering and the MDA, in
G. Rossi, O. Pastor, D. Schwabe and L. Olsina (Eds.), Web
Engineering: Modelling and Implementing Web Applica-
tions, Human-Computer Interaction Series, Springer, Lon-
don, pp. 353–382.

Nalepa, G.J. and Ligęza, A. (2010). The HeKatE methodolo-
gy. Hybrid engineering of intelligent systems, Internatio-
nal Journal of Applied Mathematics and Computer Science
20(1): 35–53, DOI: 10.2478/v10006-010-0003-9.

Object Management Group (2003a). MDA Guide Version 1.0.1,
OMG document: omg/2003-06-01.

Object Management Group (2003b). Meta Object Facility
(MOF) 2.0 Core Specification, OMG document: ptc/03-10-
04.

Object Management Group (2008). Semantics of Bu-
siness Vocabulary and Business Rules (SBVR),
http://www.omg.org/spec/SBVR/1.0.

Object Management Group (2009a). Ontology Definition Meta-
model (ODM), http://www.omg.org/spec/
ODM/1.0/.

Object Management Group (2009b). Production Rule Represen-
tation (PRR), http://www.omg.org/spec/
PRR/1.0/.

O’Connor, M.J., Knublauch, H., Tu, S.W., Grosof, B.N., De-
an, M., Grosso, W.E. and Musen, M.A. (2005). Sup-
porting rule system interoperability on the Semantic Web
with SWRL, in Y. Gil, E. Motta, V.R. Benjamins and
M.A. Musen (Eds.), International Semantic Web Conferen-
ce, ISWC 2005, Galway, Ireland, Lecture Notes in Compu-
ter Science, Vol. 3729, Springer-Verlag, Berlin/Heidelberg,
pp. 974–986.

Paptaxiarhis, V., Tsetsos, V., Karali, I. and Stamotopoulos, P.
(2009). Developing rule-based Web applications: Metho-
dologies and tools, Handbook of Research on Emerging
Rule-based Languages and Technologies: Open Solutions
and Approaches, IGI Global, Hershey, PA, pp. 371–392.

Ribarić, M., Gašević, D., Milanović, M., Giurca, A., Lukichev,
S. and Wagner, G. (2007). Model-driven engineering of
rules for Web services, in R. Lämmel, J. Visser and J. Sa-
raiva (Eds.), Generative and Transformational Techniques
in Software Engineering II, International Summer School,
GTTSE 2007, Braga, Portugal, Lecture Notes in Compu-
ter Science, Vol. 5235, Springer-Verlag, Berlin/Heidelberg,
pp. 377–395.

Russell, S.J. and Norvig, P. (1995). Artificial Intelligence: A
Modern Approach, Prentice-Hall, Inc., Upper Saddle Ri-
ver, NJ.

Schmidt, D.C. (2006). Guest editor’s introduction: Model-driven
engineering, Computer 39(2): 25–31.

Schreiber, G., Akkermans, H., Anjewierden, A., de Hoog, R.,
Shadbolt, N., de Velde, W.V. and Wielinga, B. (2000).
Knowledge Engineering and Management: The Common-
KADS Methodology, MIT Press, Cambridge, MA.

Wagner, G. (2002). How to design a general rule markup lan-
guage?, in R. Tolksdorf and R. Eckstein (Eds.) XML Tech-
nologien für das Semantic Web—XSW 2002, Proceedings
zum Workshop, 24-25 Juni 2002, Berlin, Lecture Notes in
Informatics, Vol. 14, GI, Bonn, pp. 19–37.

Wagner, G., Giurca, A. and Lukichev, S. (2006). A usable inter-
change format for rich syntax rules integrating OCL, Ru-
leML and SWRL, Proceedings of the Workshop on Reaso-
ning on the Web (RoW2006), Edinburgh, UK.

Joaquín Cañadas received a B.S. degree in com-
puter science from the University of Granada,
Spain, in 2000. He is an assistant professor of
computer science in the Department of Langu-
ages and Computation at the University of Alme-
ria, and a member of the Data, Knowledge and
Software Engineering (DKSE) research group.
He currently pursues his Ph.D. under the super-
vision of Profs. José Palma and Samuel Túnez.
His research interests are knowledge engineering,

model-driven development and Web-based decision support systems.

José Palma received a B.Sc. degree from the
University of Las Palmas de Gran Canaria, Spa-
in, in 1990, and a Ph.D. degree from the Univer-
sity of Murcia, Spain, in 1999, both in compu-
ter science. He has been an associate professor
of computer science in the Department of Infor-
mation Engineering and Communications at the
University of Murcia since 2000, teaching at this
department as an aggregate professor since 1996.
He is currently a member of the AIKE group.

Prior to joining the University of Murcia, he worked for 11 years in
the Department of Computer Science and Systems of the University of
Las Palmas de Gran Canaria. He has authored/co-authored various jour-
nal articles, book chapters and conference papers. His research activity
is focused on medical informatics, specifically intelligent data analysis,
medical knowledge-based systems and clinical knowledge management.
The main techniques used in this research are fuzzy-logic, knowledge
engineering methodologies, ontologies and temporal reasoning.

Samuel Túnez received a Ph.D. degree in phy-
sics from the University of Santiago de Compo-
stela, Spain. He is an associate professor of com-
puter science in the Department of Languages
and Computation at the University of Almeria,
and the head of the Data, Knowledge and So-
ftware Engineering (DKSE) research group. He
has participated as the head researcher in seve-
ral national and international projects. His rese-
arch interests focus on knowledge-based systems,

knowledge engineering, information systems and, in particular, the ap-
plication of these techniques to the design of decision support systems
in agricultural production.

Received: 15 April 2010
Revised: 22 November 2010

http://www.omg.org/spec/SBVR/1.0.
http://www.omg.org/spec/
ODM/1.0/.
http://www.omg.org/spec/
PRR/1.0/.

	Introduction
	Model-driven development
	Rule-based systems and rule modeling
	Modeling rule-based Web applications
	Motivating example
	Conceptual rule-based modeling
	Adding specific features for rule-based Web modeling

	MDD for rule-based Web applications
	General perspective
	MDD of Jess rules
	MDD of the JSF Web architecture
	Tool support: InSCo-Gen

	Evaluation
	Development process
	Testing the Family Web application
	Case study in the agricultural domain

	Related work
	Conclusions

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org?)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Versita Adobe Distiller Settings for Adobe Acrobat v6)
 /POL (Versita Adobe Distiller Settings for Adobe Acrobat v6)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [597.600 842.400]
>> setpagedevice

