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ON GENERALIZED INVERSES OF SINGULAR MATRIX PENCILS
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Linear time-invariant networks are modelled by linear differential-algebraic equations with constant coefficients. These
equations can be represented by a matrix pencil. Many publications on this subject are restricted to regular matrix pencils.
In particular, the influence of the Weierstrass structure of a regular pencil on the poles of its inverse is well known. In this
paper we investigate singular matrix pencils. The relations between the Kronecker structure of a singular matrix pencil and
the multiplicity of poles at zero of the Moore–Penrose inverse and the Drazin inverse of the rational matrix are investigated.
We present example networks whose circuit equations yield singular matrix pencils.
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1. Introduction

Various physical systems, especially electrical networks,
can be modelled by differential-algebraic equations
(DAEs),

E ẋ(t) = Ax(t) + B u(t), x(0) = x0. (1)

In the case of a regular matrix pencil (E, A), the numeri-
cal properties of (1) are strongly influenced by the rational
matrix (E − hA)−1. For instance, if we apply the back-
ward Euler method with a step size h to (1), we obtain the
recurrence relation

x(tn) = (E − hA)−1E x(tn−1)

+ (E − hA)−1 B u(tn). (2)

Analytical and numerical properties of (1) and (2) depend
essentially on the index of the matrix pencil (E, A) (Sin-
covec et al., 1981; Sannuti, 1981; Gear and Petzold, 1982;
1984; Hairer et al., 1989; Riaza, 2004). As for (2), the
asymptotic behaviour of (E − hA)−1 for h → 0 is deter-
mined by the index.

In the case of a singular matrix pencil (E, A), the
inverse of E − hA has to be replaced by a suitable gen-
eralized inverse (E − hA)−, (Rao and Mitra, 1971; Boul-
lion and Odell, 1971; Ben-Israel and Greville, 1974). In
this paper, we will investigate the qualitative behaviour of
generalized inverses of E − hA for h → 0. Although one
would hardly use the corresponding generalization of (2)

for a numerical solution of (1), these asymptotic prop-
erties are directly related to important system and con-
trol theoretical problems. To see this, we consider the
Laplace-transformed form of (1), i.e.,

(sE − A)X(s) = E x0 + B U(s). (3)

If sE −A is regular, the input-output behaviour of (3) can
be described by the transfer function

T (s) = C (sE − A)−1 B. (4)

If sE − A is singular, we can replace the inverse oc-
curring in (4) by a generalized inverse and obtain a gen-
eralized transfer function (Dziurla and Newcomb, 1987;
Hou and Müller, 1992; Hou, 1995; Hou et al., 1997). For
a singular matrix pencil, the system (1) might not be solv-
able, nor have a unique solution. Note that most publica-
tions on linear DAEs are restricted to the case of regular
pencils, (e.g., Griepentrog and März, 1986; Brenan et al.,
1996). Some results on singular pencils can be found in
the works of Kronecker (1890), Gantmacher (1959), van
Dooren (1981), Pandolfi (1981), Kublanovskaya (1983),
or Röbenack and Reinschke (1998; 2000). In particular,
the numerical solution of possibly singular DAEs is ad-
dressed by Kunkel et al. (1997), Kunkel and Mehrmann
(2006), and Karcanias (1987). Even if the original pencil
is regular, several control problems result in singular pen-
cils (Kunkel and Mehrmann, 1990; Mehrmann, 1991). A
further reason to study DAEs with singular pencil (E, A)
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is the fact that the property of regularity is not feedback
invariant (Özcaldiran and Lewis, 1990).

All standard circuits such as classical oscillators and
amplifiers result in regular DAE models (Reinschke and
Schwarz, 1976; Günther and Feldmann, 1999a; 1999b;
Riaza 2008). Singular circuit equations or equations with
higher index usually do not occur if the circuit is designed
by hand. The above mentioned singularities are often
the result of over-idealized modelling. Today, electronic
circuits are usually designed with computer-aided design
software. There, the interconnection of over-idealized
subcircuits may result in a higher index or singular DAEs.
An application where singular circuit equations occur is
analogue fault detection (Straube et al., 2001). There, one
simulates the response of a circuit to injected faults. Typi-
cal faults are short-circuits and disconnections, which are
idealized models of physically possible faults. The faulty
network is simulated and not checked manually. There,
singularities indeed occur and may result in a wrong re-
sponse of the circuit simulator.

Moreover, the kernel of the numerical solution of
nonlinear DAEs is the solution of a linear system (Gear,
1971; Brenan et al., 1996). Singularities and certain bi-
furcations of nonlinear DAEs often result in a higher in-
dex or singular pencils of the associated linearized DAEs
(Reißig, 1996; Reißig and Boche, 2003). These prob-
lems occur in power systems (Kwatny et al., 1995; Ayasun
et al., 2004; Marszalek and Trzaska, 2005). Additionally,
circuit equations of large scale systems may analytically
be regular, but ill-conditioned matrices could result in a
system which is singular from a numerical point of view
(e.g., Bandler and Zhang, 1986).

Section 2 contains definitions and notations used in
this paper. Moreover, this section gives some network
examples that result in a higher index, as well as singu-
lar matrix pencils with arbitrarily large Kronecker indices.
In addition, we recall an important result on the poles of
(E − hA)−1 at h = 0 for the regular matrix pencil case.

We provide extensions of the regular case to singu-
lar matrix pencils in connection with generalized inverses.
The Moore–Penrose inverse will be considered in Sec-
tion 3. The Drazin inverse case will be investigated in
Section 4. Conclusion are provided in Section 5.

2. Matrix pencils and index

2.1. Weierstrass and Kronecker structure. In this
section we introduce some definitions used in the paper.
Let M ∈ F

n×n denote an n × n-matrix over a field F.
Then there exists a regular matrix1 T ∈ GL(n, F) such

1The property regular of the matrix G is synonymous to non-
singular, i.e., T is square and det T �= 0. The regular n × n-matrices
over a field F form the general linear group GL(n, F).

that

T M T−1 =
[

G 0
0 N

]
, (5)

where G is a regular matrix and N = diag(N1, . . . , Nd)
is a nilpotent block-diagonal matrix consisting of νi × νi-
dimensional Jordan blocks associated with the eigenvalue
zero:

Ni =

⎛
⎜⎜⎜⎜⎝

0 1 · · · 0
...

. . .
. . .

...
...

. . . 1
0 · · · · · · 0

⎞
⎟⎟⎟⎟⎠ ∈ R

νi×νi .

The index of the matrix M is defined as the
size of the greatest Jordan block Ni, i.e., ind(M) =
max{ν1, . . . , νd, 0}. The index of a regular matrix is zero.
In general, the index of a square matrix can be computed
as follows:

ind(M) = min{i ∈ N : rankM i = rankM i+1} , (6)

where N denotes the set of nonnegative integers. In ac-
cordance with our definition and Eqn. (6), the index of a
0 × 0-matrix is zero due to the absence of Jordan blocks.

Let E, A ∈ R
l×n. A matrix pencil2 (E, A) is said to

be regular if l = n and det(E − hA) �≡ 0. Otherwise,
the matrix pencil is called singular. Each regular matrix
pencil can be transformed into the Weierstrass canonical
form (Weierstrass, 1868; Gantmacher, 1959),

P (E − hA)Q =
[

I − hW 0
0 N − hI

]
, (7)

with P, Q ∈ GL(n, R). The matrix W is a square matrix,
the identity matrix is denoted by I , and the matrix N is
a nilpotent matrix. The index of a regular matrix pencil
(E, A) is defined as the index of the underlying matrix N :

ind(E, A) = ind(N). (8)

The index of a regular matrix pencil is zero if and only if
E is regular. This means that the matrix N has dimension
0 × 0, i.e., the block N − hI does not occur in (7).

Using the concept of the normal form, one can obtain
an expression for the index of the matrix pencil in terms
of the original system matrices. Let h ∈ C and det(E −
hA) �= 0. Then we have

ind(E, A) = ind((E − hA)−1E), (9)

(see Griepentrog and März, 1986, Appendix A). As for
regular matrix pencils, the condition det(E − hA) �= 0

2A matrix pencil of E and A is often denoted by sE−A or E−hA,
i.e., as a one-parametric subset of the space of matrices. In order to
distinguish these matrix pencils from polynomial or rational matrices,
we denote a pencil as an ordered pair (E, A).
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holds in the whole of C except on a finite set, or from a
topological point of view, for all h belonging to an open
and dense subset of C. This implies that ind(E, A) =
ind((E − hA)−1E) remains true even if h is not fixed
at a particular value and the index ind((E − hA)−1E) is
computed over the field R(h) of rational functions in h
with real coefficients.

Example 1. The rational matrix

E − hA =

⎡
⎣ h 0 0

0 h 1
0 0 h

⎤
⎦

has an index ind(E − hA) = 0 because of its regularity,
whereas the associated matrix pencil (E, A) has an index
ind(E, A) = 2:

ind(E, A) = ind((E − hA)−1E)

= ind

⎡
⎣ 0 0 0

0 0 h−1

0 0 0

⎤
⎦

= 2.

�
Each singular matrix pencil (E, A) can be trans-

formed into the Kronecker canonical form3,

P (E − hA)Q

= diag(Er − hAr, Eε − hAε, Eη − hAη)
(10)

with P ∈ GL(l, R) and Q ∈ GL(n, R) (cf.
Kronecker, 1890; Gantmacher, 1959). The matrix pen-
cil (Er, Ar) is regular. The singular matrix pencils
Eε − hAε = diag

(
Lε1 , . . . , Lερ

)
and Eη − hAη =

diag
(
L�

η1
, . . . , L�

ησ

)
consist of κ × (κ + 1)-dimensional

pencils Lκ of the form

Lκ =

⎡
⎢⎣

h 1 0 0

0
. . .

. . . 0
0 0 h 1

⎤
⎥⎦ .

The nonnegative integers εi (resp. ηj) are called right
(resp. left) Kronecker indices. We define the index of a
singular matrix pencil (E, A) as the index of the regu-
lar part: ind(E, A) = ind(Er , Ar). If the regular part
Er − hAr is not present in (10), the index of the singular
matrix pencil is zero.

The nilpotent matrix N in (7) or in the regular part
of (10) consists of Jordan blocks of the sizes ν1, . . . , νd

associated with the (generalized) eigenvalues of E − hA
at h = 0 or, equivalently, with the finite elementary divi-
sors hν1 , . . . , hνd of E − hA. In sE − A = s(E − 1

sA),

3Note that the Kronecker canonical form (10) is only unique up to a
permutation of its diagonal blocks.

the numbers νi are the Jordan block sizes of eigenvalues
at s = ∞. In other words, the infinite elementary divisors
of sE − A correspond to the finite elementary divisors
at zero of the dual pencil E − hA (Karcanias and Hay-
ton, 1981; Hayton et al., 1988).

The Kronecker canonical form (10) can be used to
state an explicit solution of an arbitrary DAE (1) (see
Gantmacher, 1959, Section 12.7). Each finite eigenvalue
si ∈ C of sE − A corresponds to an explicit linear or-
dinary differential equation (ODE) with Euler-type solu-
tions of the homogeneous part (e.g., esit). The inhomo-
geneous solution results from an integration (convolution)
of the input signal u. Contrary to that, the infinite eigen-
values correspond to implicit ODEs having impulse solu-
tions (Müller, 2005), where the input signal might be dif-
ferentiated. In the time domain, each νi × νi Jordan block
Ni can be interpreted as a chain of νi successive differ-
entiators. The index of the matrix pencil is the maximum
length of such a chain of differentiators. The Lεi and L�

ηj

blocks of the singular part correspond to underdetermined
and overdetermined ODEs, respectively.

The numerical computation of the Kronecker canoni-
cal form (10) is not recommended because the transforma-
tion matrices P and Q can become ill conditioned. This
problem can be circumvented using the quasi Kronecker
canonical form,

P̃ (E − hA) Q̃

=

⎛
⎜⎝

Ẽε−hÃε ∗ ∗
0 Ẽr−hÃr ∗
0 0 Ẽη−hÃη

⎞
⎟⎠ ,

(11)

involving orthogonal matrices P̃ and Q̃ (see Wilkinson,
1979; Beelen and van Dooren, 1988; Demmel and
Kågström, 1993). The matrix pencils Ẽε−hÃε, Ẽr−hÃr

and Ẽη−hÃη are equivalent to the pencils Eε−hAε, Er−
hAr and Eη −hAη, respectively, of the Kronecker canon-
ical form (10). In particular, we have ind(Ẽr, Ãr) =
ind(Er , Ar) = ind(E, A).

Alternatively to the Weierstrass/Kronecker approach,
one can analyze the elementary divisor structure at infin-
ity using the Smith–MacMillan form (Vardulakis et al.,
1982). In the general case of a rational matrix F (s) ∈
R(s)l×n with � = rankF (s) over the field R(s), there
exist biproper matrices4 Y (s) ∈ R(s)l×l and Z(s) ∈
R(s)n×n such that

Y (s)F (s)Z(s)

= diag(sq1 , . . . , sqπ , s−q̂π+1 , . . . , s−q̂� , 0(l−�)×(n−�))
=: S∞

F (s)(s),
(12)

4A rational function is called proper if the numerator degree does not
exceed the denominator degree. A square rational matrix with proper en-
tries is called biproper if both the determinant and its inverse are proper
functions, i.e., biproper matrices are units in the ring of proper matrices.
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where q1 ≥ · · · ≥ qπ > 0 and 0 ≤ q̂π+1 ≤ · · · ≤
q̂�. We say that F (s) has π poles at infinity, each one of
order qi. In addition, assume that τ ≥ π is a number such
that q̂π+1 = · · · = q̂τ = 0 and q̂τ+1, . . . , q̂� > 0. Then,
we say that F (s) has (� − τ) zeros at infinity, each of
order q̂j with j = τ + 1, . . . , �.

Now, we consider the special case of a matrix pen-
cil sE − A with E, A ∈ R

l×n, π = rankE, and � =
rank(sE −A) over R(s). The construction of the Smith–
MacMillan form (12) results in a natural ordering of de-
creasing degrees of potencies. In order to be consistent
with (12), we assume an increasing order of the Jordan
block sizes ν1 = · · · = νς = 1 and 1 < νς+1 ≤ · · · ≤ νd,
where ς = τ − π. The Smith–MacMillan form of sE −A
at infinity reads as

S∞
sE−A(s)

= Y (s)(sE − A)Z(s)

= diag(sIπ , s−ν1+1, . . . , s−νd+1, 0(l−�)×(n−�))

= diag(sIπ , Iς , s
−νς+1+1, . . . , s−νd+1, 0(l−�)×(n−�)),

(13)

with π first order poles at s = ∞ (see Vardulakis and
Karcanias, 1983, Proposition 2). The d = π − � Jordan
blocks of sE−A at infinity result in d− ς zeros at infinity
of order q̂τ+1 = νς+1 − 1, . . . , q̂� = νd − 1. If sE −
A has at least one zero at infinity, we have ind(E, A) =
max{ν1, . . . νd} = max{q̂τ+1 +1, . . . , q̂� +1} = q̂� +1,
i.e., the index of (E, A) is the greatest order of a zero of
sE−A at infinity increased by one. In the case of a regular
matrix pencil, the zero diagonal block is omitted.

Example 2. Consider the matrix pencil (E, A) with the
matrices

E =

⎡
⎢⎢⎢⎢⎣

e11 0 0 0 0
0 0 0 0 0
0 0 0 e34 0
0 0 0 0 0
0 0 e53 0 0

⎤
⎥⎥⎥⎥⎦

and

A =

⎡
⎢⎢⎢⎢⎣

a11 a12 0 0 0
0 0 a23 0 0
0 0 0 0 a35

0 0 0 0 0
0 a52 0 0 0

⎤
⎥⎥⎥⎥⎦ .

The matrix pencil (E, A) has the following Kronecker
canonical form:

P (E − hA)Q =

⎡
⎢⎢⎢⎢⎢⎣

1 − ha11
e11

0 0 0 0

0 h 1 0 0
0 0 h 0 0
0 0 0 h 1
0 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎦

.

The regular block has a 2 × 2-dimensional Jordan block
associated with the eigenvalue zero, i.e., ind(E, A) =
2. The singular part consists of an 1 × 2-dimensional
L1-block and an 1× 0-dimensional L�

0 -block. Hence, the
Kronecker indices are ε1 = 1 and η1 = 0. On the other
hand, if we consider E − hA a rational matrix over R(h),
we have rank(E − hA) = rank(E − hA)2, and there-
fore ind(E − hA) = 1. Considering the pair (E, A) as a
rational matrix sE − A, we obtain the Smith–MacMillan
form (13) at s = ∞ as S∞

sE−A(s) = diag(s, s, s, 1/s, 0).
In particular, we have a first order zero at s = ∞. �

2.2. Network examples. We consider linear time-
invariant networks containing resistors, capacitors, induc-
tors, operational amplifiers, as well as independent volt-
age and current sources. Assume that the network consists
of b branches. Let p ∈ R

r denote the vector containing all
parameters of the network, i.e., resistances, capacitances,
and inductances. The circuit equations are given by

E(p) ẋ(t) = A(p)x(t) + B u(t), (14)

where E and A are parameter dependent 2b×2b-matrices,
x denotes the 2b-dimensional vector,

x = (v1, . . . , vb, i1, . . . , ib)�,

of the branch voltages v1, . . . , vb and the branch cur-
rents i1, . . . , ib, and u denotes the vector of the indepen-
dent sources. The matrix B describes which independent
source influences which equation.

Neglecting the initial values, the Laplace-
transformed version of (14) has the form

⎛
⎜⎜⎜⎜⎜⎜⎝

K

M0(p) + s M1(p)

⎞
⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

V1(s)
...

Vb(s)
I1(s)

...
Ib(s)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

= B U(s), (15)

with the complex variable s. The Laplace-transformed
signals are written in capital letters. Here, K denotes the
incidence matrices used to formulate Kirchhoff’s voltage
and current laws. The matrices M0 and M1 symbolize the
network element relations. In particular, an independent
voltage source ui represented by a branch z has the net-
work element relation

(
1 0

) (
vz

iz

)
= ui(t),

and, in the case of an independent current source uj , we
have (

0 1
) (

vz

iz

)
= uj(t).
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The operational amplifiers are assumed to be ideal,
i.e., for the input branch z1, both the branch voltage
vz1 = 0 and the branch current iz1 = 0, as well as the
branch voltage vz2 and the branch current iz2 of the out-
put branch z2 are determined by the remaining network
elements (see Fig. 1). Overall, the contribution of such
ideal operational amplifiers to the circuit equations (14)
can be written as

(
1 0 0 0
0 0 1 0

) ⎛
⎜⎜⎝

vz1

vz2

iz1

iz2

⎞
⎟⎟⎠ =

(
0
0

)
.

On the level of the network graph, ideal operational am-
plifiers are usually depicted as pairs of nullators and nora-
tors, where the nullator is the input branch and the norator
the output branch (Davies, 1966; Fosséprez, 1992).

Fig. 1. Modelling of an operational amplifier.

The matrix pencil properties of the generalized in-
verses considered in Sections 3 and 4 depend essentially
on the nilpotency index of the regular part and the Kro-
necker indices of the singular part. Most networks occur-
ring in practical applications have network equations with
regular matrix pencils of index one. However, various ex-
amples of a regular higher index as well as singular DAEs
can be found in the literature (Fosséprez, 1992; Dziurla
and Newcomb, 1989; Reißig, 1998; Röbenack, 1999; Tis-
chendorf, 1996; 1999, Estévez Schwarz and Tischendorf,
2000; Riaza, 2006). These structures are often a result of
overly simplifying assumptions. We will show with ex-
amples that these indices can be arbitrarily large, even for
a network with only one active element.

When we consider network properties (e.g., singu-
larity, index, Kronecker indices), we mean generic prop-
erties of the matrix pencils of the associated equation (14),
i.e., properties which hold on an open and dense subset of
the parameter space R

r. Note that many (generic) net-
work properties can be checked by inspecting the network
graph. Results related to the network equations (14) can
be found in the works of Hasler (1986), Fosséprez (1992)
or Reißig (1999; 1998).

In the case of regular pencils, the generic index plays
an important role. An example network with an arbitrar-
ily large index is given by Reißig and Feldmann (1996),
see Fig. 2. With k inductors and k − 1 capacitors, the
network has b = 2k + 1 branches. The associated circuit
equations (14) have the dimension n = 4k+2. The under-
lying matrix pencil is generically regular. The Weierstrass
canonical form (7) reads as

P (E − hA)Q = diag(N1 − hI,−h, . . . ,−h︸ ︷︷ ︸
2k + 2

),

where N1 is a nilpotent index 2k matrix.

Fig. 2. Network with an arbitrarily large index (Reißig and
Feldmann, 1996).

Now, we consider networks with singular circuit
equations. Each network shown in Fig. 3 consists of
b = 2k + 2 branches. Hence, the vector x of (14) has
the dimension n = 4k +4. In both cases, the generic rank
of the associated matrix pencil E − hA is n − 1 over the
field R(h), which confirms that the pencils are indeed sin-
gular. The matrix pencil of the network shown in Fig. 3(a)
has the Kronecker normal form,

P (E − hA)Q = diag(−h, . . . ,−h︸ ︷︷ ︸
2k+4

, L2k−1, L
�
0 ),

whereas the network shown in Fig. 3(b) has the normal
form,

P (E − hA)Q = diag(−h, . . . ,−h︸ ︷︷ ︸
2k+4

, L0, L
�
2k−1).

In the case of the first class of networks we have an arbi-
trarily large right Kronecker index 2k− 1, and the second
class of networks has an arbitrarily large left Kronecker
index 2k − 1.

2.3. Pole multiplicity of inverses of regular matrix
pencils. We remind the reader about the following rela-
tion between the index ind(E, A) and the rational matrix
(E − hA)−1. Let (E, A) be regular with ind(E, A) = k.
Using the Weierstrass canonical form (7), we obtain

(E − hA)−1

= Q

[
(I − hW )−1 0

0 (N − hI)−1

]
P

= Q

⎡
⎣ (I − hW )−1 0

0 − 1
h

k−1∑
l=0

N l

hl

⎤
⎦ P.

(16)



166 K. Röbenack and K. Reinschke

(a) (b)

Fig. 3. Networks resulting in singular matrix pencils: with arbitrarily large right Kronecker indices (a), with arbitrary large left Kro-
necker indices (b).

The result is stated in the following theorem.

Theorem 1. (Brenan et al., 1996, Theorem 2.3.4) Let
(E, A) be regular with k = ind(E, A). Then the maxi-
mum multiplicity of a pole at h = 0 of (E − hA)−1 is
equal to k.

Theorem 1 only states the maximum multiplicity,
which reflects qualitative properties of the associated
DAE (1). Let the nilpotent matrix N in (7) have Jordan
blocks of the sizes ν1 ≤ ν2 ≤ . . . ≤ νd. Then (E−hA)−1

has poles of order ν1, ν2, . . . , νd at h = 0, see (16). In a
similar manner, from (13) we conclude that (sE − A)−1

has the Smith–MacMillan form

S∞
(sE−A)−1(s) = diag(sνd−1, . . . , sν2−1, sν1−1, s−1Iπ).

Every νi > 1 corresponds to a pole of order νi − 1 at
s = ∞.

To treat the singular matrix pencil case, we intro-
duce a generalized inverse M− of M defined by M =
MM−M (cf. Rao and Mitra, 1971; Boullion and Odell,
1971; Ben-Israel and Greville, 1974). The next example
shows that Theorem 1 cannot be extended to the singular
matrix pencil case for all generalized inverses.

Example 3. Consider the matrix pencil (E, A) of Exam-
ple 1 and

Ê − hÂ =

⎡
⎣ h 0 0

0 0 0
0 0 0

⎤
⎦ ,

with ind(Ê, Â) = ind(Êr , Âr) = 1. The matrix

(E − hA)−1 =

⎡
⎣ h−1 0 0

0 h−1 −h−2

0 0 h−1

⎤
⎦

= (Ê − hÂ)−

is a generalized inverse of Ê − hÂ. Obviously, the matrix
(E − hA)−1 has a second order pole at h = 0. Equiv-
alently, the rational matrix (sE − A)−1 has the Smith–
MacMillan form S∞

(sE−A)−1(s) = diag(s, 1, 1/s) and
therefore a first order pole at s = ∞. �

We proceed to show that a generalization of Theo-
rem 1 is possible if we consider the Moore–Penrose in-
verse.

3. Moore–Penrose inverse case

For a matrix M ∈ F
l×n over the field F = C, the

Moore–Penrose inverse M+ ∈ F
n×l is uniquely de-

termined by the following equations (Penrose, 1955):
M M+ M = M , M+ M M+ = M+, (M M+)∗ =
M M+, (M+ M)∗ = M+ M , where M∗ ∈ F

n×l de-
notes the conjugate transpose of M . We will use these
equations to define a Moore–Penrose inverse over the field
F = R(h) with h ∈ R or h ∈ C. Note that for rational
functions the conjugate value h̄ of h may differently be
defined as the standard conjugate value in C. This is due
to a different definition of a conjugate matrix for dynami-
cal systems, i.e., if the rational matrix is used as a transfer
function, (see Varga, 1998; 2001).

In the proof of Theorem 1 we used the Weierstrass
canonical form and the identity (P (E − hA)Q)−1 =
Q−1(E − hA)−1P−1. Unfortunately, we cannot use
the same direct approach to prove Theorem 2 because
(P (E − hA)Q)+ �= Q+(E − hA)+P+ in general for
singular matrix pencils. As a preparation for the Moore–
Penrose inverse case we also would like to remind the
reader about some facts concerning singular value de-
composition. For a real-analytic matrix valued function
M : [a, b] → R

l×n, an analytic singular value decompo-
sition is a factorization

M(t) = U(t) · Σ(t) · V �(t), t ∈ [a, b], (17)

where U : [a, b] → GL(l, R) and V : [a, b] → GL(n, R)
are orthogonal, Σ : [a, b] → R

l×n is a diagonal matrix,
and U(·), Σ(·) and V (·) are analytic. We need the follow-
ing result.

Proposition 1. (Bunse-Gerstner et al., 1991) Let M :
[a, b] → R

l×n be analytic. Then there exists an analytic
singular value decomposition (17) on the interval [a, b].

The following theorem extends Theorem 1 to the
Moore–Penrose inverse case.

Theorem 2. Let E, A ∈ R
l×n and k = ind(E, A). Then

the maximum multiplicity of a pole at h = 0 of (E−hA)+

is equal to k.

Proof. For h = 0 we have h = h̄. This implies that the
multiplicity of a pole over R(h) is the same for h ∈ R

and h ∈ C. Without loss of generality we use h ∈ R in
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the proof. For E, A ∈ R
l×n, the pencil E − hA can be

transformed into the Kronecker canonical form (10). The
block Er − hAr is regular over R(h). For all h ∈ R, the
singular blocks Eε−hAε and Eη−hAη have full row rank
and full column rank, respectively. The matrix E−hA can
be written as the product of a column-regular matrix G
and a row-regular matrix H (over the field R(h)):

E − hA = P−1

⎡
⎣ I 0 0

0 Eη − hAη 0
0 0 Er − hAr

⎤
⎦

︸ ︷︷ ︸
=: G

×
⎡
⎣ Eε − hAε 0 0

0 I 0
0 0 I

⎤
⎦ Q−1

︸ ︷︷ ︸
=: H

.

(18)

Under these circumstances, we have (E − hA)+ =
(GH)+ = H+G+ (Boullion and Odell, 1971, Sec-
tion 2.1; Campbell and Meyer, 1979, Corollary 1.4.2).
The matrix H has constant rank for all h ∈ R, in par-
ticular for all h ∈ [−1, 1]. Clearly, the affine-linear
mapping h 
→ H(h) is analytic. According to Prop-
sition 1, there exists an analytic singular value decom-
position H(h) = U(h) · Σ(h) · V (h)� with Σ(h) =
diag (σ1(h), . . . , σρ(h), 0, . . . , 0) on the interval [−1, 1].
Because the matrix H has constant rank for all h ∈
[−1, 1], the Moore–Penrose inverse H(h)+ = V (h) ·
Σ(h)+ · U(h)� has no poles at h = 0.

The matrix G can be written as the product of a
column-regular matrix J and a row-regular matrix K:

G =P−1

⎡
⎣ I 0 0

0 Eη − hAη 0
0 0 I

⎤
⎦

︸ ︷︷ ︸
=: J

×
⎡
⎣ I 0 0

0 I 0
0 0 Er − hAr

⎤
⎦

︸ ︷︷ ︸
=: K

.

(19)

We obtain G+ = (JK)+ = K+J+. The analytic matrix
valued function J has constant rank for all h ∈ [−1, 1].
Hence, the Moore–Penrose inverse J+ has no poles at
h = 0. It remains to analyze the matrix K . Using (19),
we obtain the following expression of the Moore–Penrose
inverse of K:

K+ =

⎡
⎣ I 0 0

0 I 0
0 0 (Er − hAr)+

⎤
⎦

=

⎡
⎣ I 0 0

0 I 0
0 0 (Er − hAr)−1

⎤
⎦

= K−1.

(20)

The last expression indicates that K is regular over
the field R(h). Obviously, the poles of K−1 at h = 0 are
exactly the poles of the regular part (Er − hAr)−1 at h =
0. Here, we can apply Theorem 1. Since ind(E, A) =
ind(Er , Ar) (by definition), the maximum multiplicity of
a pole at h = 0 of the entries of (E−hA)+ is equal to the
index ind(E, A). �

Equation (9) can be generalized to the
Moore–Penrose inverse case of a singular pencil as
follows.

Proposition 2. Let E, A ∈ R
l×n be singular and k =

ind(E, A). Then we have

max{k, 1} ≤ ind((E − hA)+E) ≤ k + 1. (21)

Proof. We calculate (E − hA)+E directly using the
quasi Kronecker canonical form (11). Since P̃ and Q̃ are
orthogonal, we obtain

(E − hA)+E

= Q̃

⎛
⎝ Δε(h) ∗ ∗

0 Δr(h) ∗
0 0 Δη(h)

⎞
⎠ Q̃−1,

(22)

with the diagonal matrices

Δε(h) = (Ẽε − hÃε)+Ẽε,

Δr(h) = (Ẽr − hÃr)+Ẽr,

Δη(h) = (Ẽη − hÃη)+Ẽη

(23)

due to the results of Campbell and Meyer (1979, Theo-
rem 1.2.1 and Theorem 3.4.1).

Because Ẽη − hÃη is column regular for all h ∈ C,
we have Ẽ+

η Ẽη = I and (Ẽη − hÃη)+(Ẽη − hÃη) = I .

Therefore, (Ẽη − hÃη)+Ẽη is regular over R(h), i.e.,
ind((Ẽη − hÃη)+Ẽη) = 0. Since Ẽr − hÃr is reg-
ular by construction, we have (Ẽr − hÃr)+ = (Ẽr −
hÃr)−1. This implies ind((Ẽr−hÃr)+Ẽr) = ind((Ẽr−
hÃr)−1Ẽr) = ind(E, A) due to (9). In the trivial case
of a matrix pencil Ẽε − hÃε with zero rows, we have
ind((Ẽε − hÃε)+Ẽε) = 0. Otherwise, Ẽε − hÃε is row
regular for all h ∈ C. Therefore, (Ẽε−hÃε)+(Ẽε−hÃε)
is an orthogonal projector. In particular, the projector has
only 0 and 1 as eigenvalues, each of Jordan block size
1 × 1, i.e., ind((Ẽε − hÃε)+(Ẽε − hÃε)) = 1.

Due to the projector property and the row regularity
of Ẽε −hÃε, we have rank((Ẽε −hÃε)+(Ẽε −hÃε)) ≥
rank((Ẽε − hÃε)+Ẽε). Hence, the perturbed matrix
(Ẽε − hÃε)+Ẽε (locally with respect to h) will still have
1 × 1 Jordan blocks associated with the zero eigenvalues,
i.e., over R(h) we have ind((Ẽε − hÃε)+Ẽε) = 1. Hav-
ing established the indices of the diagonal matrices (23)
of (22), the bounds (21) for the index of the block diagonal
matrix result from Meyer and Rose (1977, Theorem 2.1).

�
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Example 4. The matrix pencil of Example 2 has index
ind(E, A) = 2. This can also be verified by investigating
the Moore–Penrose inverse shown in Fig. 4. The maxi-
mum multiplicity of a pole at h = 0 of (E − hA)+ is 2.
In addition, we have ind((E − hA)+E) = 2. The ra-
tional matrix (sE − A)+ has the Smith–MacMillan form
S∞

(sE−A)+(s) = diag(s, 1
s , 1

s , 1
s , 0) with maximum multi-

plicity ind(E, A) − 1 = 1 of poles at s = ∞. �

4. Drazin inverse case

For a square matrix M ∈ F
n×n with the decomposi-

tion (5), the Drazin inverse MD ∈ F
n×n is given by

MD = T−1

[
G−1 0

0 0

]
T. (24)

Whereas the Moore–Penrose inverse can be computed by
inverting the non-vanishing singular values, the Drazin
inverse can be computed via the inversion of the non-
vanishing eigenvalues. The Drazin inverse MD of M
is a generalized inverse (in the sense of Section 2.3, i.e.,
M = MMDM ) if and only if ind(M) ≤ 1 (Campbell
and Meyer, 1979, Theorem 7.2.4). If M is the system ma-
trix of a linear system of equations (as in the case of the
network examples discussed in Section 2.2), the condition
ind(M) ≤ 1 can always be achieved without changing
the solution or the solvability of the system, e.g., by row
reduction.

The decompositions (5) and (24) illustrate another
characterization of the Drazin inverse (Campbell and
Meyer, 1979, Definition 7.2.2): For k = ind(M), the
vector space F

n can be written as a direct sum F
n =

im Mk ⊕ kerMk, i.e., every vector z ∈ F
n has a

unique representation z = x + y with x ∈ im Mk and
y ∈ kerMk. Let M : F

n → F
n denote a linear

map described by the matrix M and let M̃ = M|im Mk

be the restriction of M to the subspace im Mk. Since
M̃ : im Mk → im Mk is bijective, there exists the in-
verse map M̃−1. The Drazin inverse map MD is defined
by MDz = M̃−1x, and the Drazin inverse MD is the
matrix associated with the map MD.

The next example shows that, in contrast to the
Moore–Penrose inverse, the poles of (E − hA)D are not
uniquely determined by the index of the matrix pencil.

Example 5. Both matrix pencils (E1, A1) and (E2, A2)
have the same Kronecker canonical form with index
ind(Ei, Ai) = 2 (i = 1, 2):

E1 − hA1 =

⎡
⎣ h 1 0

0 h 0
0 0 0

⎤
⎦ ,

E2 − hA2 =

⎡
⎣ 0 h 1

0 0 h
0 0 0

⎤
⎦ .

Whereas the Drazin inverse of the first pencil contains a
second order pole at h = 0, the Drazin inverse of the sec-
ond matrix pencil is the zero matrix because the rational
matrix E2 − hA2 is nilpotent:

(E1 − hA1)D =

⎡
⎣

1
h − 1

h2 0
0 1

h 0
0 0 0

⎤
⎦ ,

(E2 − hA2)D =

⎡
⎣ 0 0 0

0 0 0
0 0 0

⎤
⎦ .

Similarly, both pencils have the same Smith–MacMillan
form S∞

sE1−A1
(s) = S∞

sE2−A2
(s) = diag(s, 1

s , 0) at
s = ∞, but their Drazin inverses have different structures:
S∞

(sE1−A1)D (s) = diag(s, 1
s , 0) and S∞

(sE2−A2)D(s) =
diag(0, 0, 0).

Even when ind(E − hA) = 1, the poles of (E −
hA)D are not uniquely determined by the Kronecker
structure of (E, A). In the next case, each matrix pen-
cil (E3, A3) and (E4, A4) only consists of one L2 block
together with one L�

0 block:

E3 − hA3 =

⎡
⎣ h 1 0

0 h 1
0 0 0

⎤
⎦ ,

E4 − hA4 =

⎡
⎣ 1 h 0

0 1 h
0 0 0

⎤
⎦ .

Neither of the matrix pencils has a regular part. However,
the rational matrix (E3 − hA3)D has poles at h = 0 and
(E4 − hA4)D has no poles.

(E3 − hA3)D =

⎡
⎢⎢⎣

1
h − 1

h2 − 2
h3

0 1
h

1
h2

0 0 0

⎤
⎥⎥⎦ ,

(E4 − hA4)D =

⎡
⎣ 1 −h −2h

0 1 h
0 0 0

⎤
⎦ .

Likewise, both pencils have the same Smith–
MacMillan form S∞

sE3−A3
(s) = S∞

sE4−A4
(s) =

diag(s, s, 0) at s = ∞, but their Drazin inverses dif-
fer significantly: S∞

(sE3−A3)D (s) = diag(s2, 1, 0) and

S∞
(sE4−A4)D (s) = diag(1

s , 1
s , 0). �

The following theorem gives lower and upper bounds
to the multiplicity of poles at h = 0 of the rational matrix
(E − hA)D . We restrict ourselves to ind(E − hA) =
1 (over R(h)), where the Drazin inverse is a generalized
inverse.

Theorem 3. Let ind(E − hA) = 1 and k = ind(E, A).
Furthermore, let εi and ηj denote the right and left Kro-
necker indices, respectively. Then the maximum multiplic-
ity δ of poles at h = 0 in the entries of (E − hA)D is
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(E − hA)+ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
e11 − a11h

a12e53

a23a52(a11h − e11)
0 0

a12

a52(a11h − e11)

0 − e53

a23a52h2
0 0 − 1

a52h

0 − 1
a23h

0 0 0

0 0
e34

e2
34 + a2

35h
2

0 0

0 0 − a35h

e2
34 + a2

35h
2

0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(E − hA)D =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
e11 − h a11

a12 e53

h a23 a52 (h a11 − e11)
0

a12 e34

h a35 a52 (e11 − h a11)
a12

a52 (h a11 − e11)

0 − e53

h2 a23 a52
0

e34

h2 a35 a52
− 1

h a52

0 − 1
h a23

0 0 0

0 0 0 0 0

0 0 − 1
h a35

0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Fig. 4. Generalized inverses of the matrix pencil from Example 2 used in Examples 4 and 6.

bounded by the inequality

k ≤ δ ≤ max
i,j

{k, εi + 1, ηj + 1} . (25)

Proof. Let M = E − hA, ind(M) = 1, and k =
ind(E, A). To analyze the properties of the Drazin in-
verse MD, we consider the endomorphism

M : R
n → im M ⊂ R

l : x 
→ Mx.

The mapping M is surjective by definition. The subspace
im M can be written as a direct sum,

im M = im(E − hA)

=P−1 [ im(Er − hAr) ⊕ im Lε1 ⊕ · · ·
· · · ⊕ im Lερ ⊕ im L�

η1
⊕ · · · ⊕ im L�

ησ

]
Q−1,

associated with the block-diagonal representation (10)
of M . In order to analyze the poles of MD, we inves-
tigate the inverse mappings of M for each block. We start
with the regular block Er − hAr. The inverse mapping of
this block is characterized by (Er−hAr)−1. According to
Theorem 1, the maximum order of a pole of (Er−hAr)−1

at h = 0 is equal to the index k. This gives us a lower
bound k ≤ δ.

Now, let us consider a singular block Lεi . We ana-
lyze the associated linear mapping u 
→ v = Lεi u with⎡

⎢⎣
h 1 0

. . .
. . .

0 h 1

⎤
⎥⎦

⎡
⎢⎣

u1

...
uεi+1

⎤
⎥⎦ =

⎡
⎢⎣

v1

...
vεi

⎤
⎥⎦ .

The solution of this system of linear equations is a
one-dimensional linear manifold. With the additional con-
straint (αεi+1 + βεi+1h, αεi + βεih, . . . , α1 + β1h), we
select one solution from this manifold. The matrix

M0 + h M1

=

⎡
⎢⎢⎢⎣

h 1 0
. . .

. . .
0 h 1

αεi+1 + βεi+1h · · · α2 + β2h α1 + β1h

⎤
⎥⎥⎥⎦

of the resulting system should be regular and its inverse
should have a pole at h = 0 with maximum multiplicity.
A determinant term hεi+1 occurs only for β1 �= 0. For
this reason, we set β1 = 1. The remaining terms of the
determinant

det(M0 + hM1) = αεi+1 + (βεi+1 − αεi)h + · · ·
+ (β2 − α1)hεi + hεi+1

cancel out each other if αεi+1 = 0 and βεi+1 = αεi , . . . ,
β2 = α1. We obtain N = M−1

1 M0 with

N =

⎡
⎢⎢⎢⎢⎣

0 1 0
. . .

. . .

. . . 1
0 0

⎤
⎥⎥⎥⎥⎦ .

The matrix N has index ind(N) = εi + 1. The inverse of



170 K. Röbenack and K. Reinschke

the matrix M0 + hM1 has the following form:

(M0 + hM1)−1 = (hI + N)−1 M−1
1

=

[
1
h

εi∑
i=0

(−N)i

hi

]
M−1

1 .

Due to this expression, the multiplicity of poles at h = 0
of the inverse mapping is at most εi +1. Since (MD)� =
(M�)D, the same can be applied to every L�

ηj
block.

Hence, the maximum multiplicity of a pole at h = 0 of
(E−hA)D induced by the singular part is less or equal to
maxi,j{εi + 1, ηj + 1}. This proves Eqn. (25). �

The proof also reveals that when ind(E − hA) = 1,
each nilpotent ν� × ν�-Jordan block of the regular part
Er − hAr results in a pole of (E − hA)D at h = 0 of
order ν�. The occurrence of poles at h = 0 induced by the
Kronecker structure of the singular part depends essen-
tially on the relation between the coordinates of the equiv-
alence transformation (10) and the similarity transforma-
tion in (5) and (24). The Smith–MacMillan form (12) of
(sE−A)D will have poles of order ν�−1 at s = ∞. There
might be additional poles at s = ∞ resulting from the sin-
gular part with the maximum multiplicity maxi,j{εi, ηj}.

Example 6. For the multiplicity of the poles at h = 0
of the rational matrix (E − hA)D of Example 2 we get
the bound 1 ≤ δ ≤ max{2, 1 + 1, 0 + 1} = 2. In fact,
the upper bound occurs in the Drazin inverse as shown
in Fig. 4. The Smith–MacMillan form S∞

(sE−A)D (s) =
diag(s, 1, 1, 1

s , 0) confirms that the maximum multiplicity
of poles of (sE − A)D at s = ∞ is δ − 1 = 1. �

5. Conclusions

This paper was devoted to special problems of DAEs
with a singular matrix pencil. We discussed the mul-
tiplicities of poles of generalized inverses of the pen-
cils. Our results are important for qualitative behaviour
of the DAE such as solvability and uniqueness of the
solution. Moreover, the discussed generalized inverses
are the basis for generalized transfer functions (Hou and
Müller, 1992; Hou, 1995; Hou et al., 1997). Additionally,
these generalized transfer functions may also be of inter-
est for autonomous systems. In particular, a generalized
inverse of sE − A can be interpreted as a transfer matrix,
where the component of row i and column j is the trans-
fer function of the disturbance acting on the j-th equation
to the ith variable. These properties are of interest for the
perturbation index (Hairer et al., 1989). Three very sim-
ple network examples illustrate the occurrence of high in-
dex DAEs as well as singular DAEs with non-trivial Kro-
necker structure.
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