
Int. J. Appl. Math. Comput. Sci., 2010, Vol. 20, No. 4, 781–788
DOI: 10.2478/v10006-010-0060-0

COUPLED ANALYTICAL AND NUMERICAL APPROACH TO UNCOVERING
NEW REGULATORY MECHANISMS OF INTRACELLULAR PROCESSES

JAROSŁAW ŚMIEJA

Institute of Automatic Control
Silesian University of Technology, ul. Akademicka 16, 44–100 Gliwice, Poland

e-mail: Jaroslaw.Smieja@polsl.pl

The paper deals with the analysis of signaling pathways aimed at uncovering new regulatory processes regulating cell
responses. First, general issues of comparing simulation and experimental data are discussed, and various aspects of data
normalization are covered. Then, a model of a particular signaling pathway, induced by Interferon-β, is briefly introduced.
It serves as an example illustrating how mathematical modeling can be used for inferring the structure of a regulatory
system governing the dynamics of intracellular processes. In this pathway, experimental results suggest that a hitherto
unknown process is responsible for a decrease in the levels of one of the important molecules used in the pathway. Then,
equilibrium points of the model are analyzed, allowing the rejection of all but one explanation of the phenomena observed
experimentally. Numerical simulations confirm that the model can mimic the dynamics of the processes in the pathway
under consideration. Finally, some remarks about the applicability of the method based on an analysis of equilibrium points
are made.
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1. Introduction

Recent advances in experimental procedures used to ga-
ther biological data have led to much better understan-
ding of the nature of intracellular processes. Though our
knowledge of these processes has rapidly been expanded,
still much more remains to be uncovered. Researchers’ ef-
forts are hampered by at least several factors, high costs of
experiments being not the least of them.

Various approaches to mathematical modeling of
biological processes have been developed. Capturing the
dynamics of these processes through mathematical analy-
sis can facilitate further experimental developments. Ho-
wever, many more models have been developed for the
analysis of population dynamics than for complex intra-
cellular processes. One of the reasons for that is the lack
of precise knowledge about regulatory mechanisms gover-
ning those processes. However, it is mathematical and/or
numerical analysis that provides tools for testing hypothe-
tical regulatory mechanisms before devoting significant
resources for experimental work.

There are various ways in which signaling pathways
can be modeled, depending on the goal of modeling. In
this paper, a deterministic approach is used, in which the
dynamics of intracellular processes are described by me-

ans of ordinary differential equations.

Contrary to standard approaches for the identifica-
tion of processes and their parameters, used, e.g., in con-
trol theory and its applications, models of pathways can-
not be built as input-output ones. They must relate directly
to biochemical processes involved in regulatory networks.
There are two main reasons for such an approach. First,
to uncover new mechanisms regulating intracellular pro-
cesses, they must be explicitly described. Second, these
mechanisms vary from one cell type to another (Fig. 1). If
one chose an input-output representation, it had to be built
from scratch for each cell type and it would be impossible
to use knowledge gained in other experiments.

Before any conclusions are drawn, however, one sho-
uld be aware of experimental procedures used in molecu-
lar biology and their limitations. The first, and one of the
most important questions to be asked, is if the experimen-
tal results represent the dynamics of processes in indivi-
dual cells, or average population behavior. If the latter is
the answer, then these results should be handled very care-
fully. The heterogeneity of cells might lead to false conc-
lusions about the nature of time responses in the analyzed
systems (see Fig. 2). Although the analysis of equilibrium
points, e.g., by means of Lyapunov theory, can provide us
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Fig. 1. Exemplary experimental results showing levels of a cy-
toplasmic IRF1 protein in HeLa cells (circles) and A549
cells (crosses), illustrating different regulatory mechani-
sms involved in controlling this protein in different cell
types.
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Fig. 2. Dynamical artifacts in experimental data, when the pro-
cedure does not trace the behavior of individual cells:
actual oscillations in individual cells are cancelled on
the population level (a); misleading oscillations obse-
rved when the replicate cell plates have been used in the
order shown by numbers in the plot (b).

with information about their character, before comparing
simulation results to experimental data, we must make su-
re that the latter represent real dynamics. Only then will
the investigation of the pathway presented in subsequent
sections yield meaningful results.

The general concept of deterministic modelling and
fitting model parameters into data coming from Western
Blots, EMSA blots, Real-Time PCR, and so forth is ba-
sed on the notion of the homogeneity of the cell popu-
lation used in experiments. In fact, even if all cells are

cloned from the same ancestor, they are not homogeno-
us in the sense of the dynamics of intracellular processes.
The heterogeneity can be attributed to stochastic distribu-
tion of initial conditions (e.g., interpreted as the number
of molecules of a given type at time 0) or differences in
kinetic parameters of analyzed processes. As a result, dif-
ferent dynamics of intracellular processes may be obse-
rved. This can lead to deceptive artifacts, considering that
experimental procedures consist in growing cell cultures
on different plates, each of which is subsequently used to
get measurement for one time point (see Fig. 2(b)). Due
to differences in initial conditions and kinetic constants
for different cells (even of the same type), such procedu-
res can lead to quantitatively (but not qualitatively) diffe-
rent responses in cell subpopulations, grown on a replicate
plates one for each time point measurement. The charac-
ter of the genuine system response can be distorted fal-
sely implying oscillatory behaviour. A clear experimental
example is shown in Fig. 7, where initial, highly variable
levels of molecules most likely do not represent genuine
oscillations in the system (which was confirmed by other
experiments). The most likely explanation of the observed
phenomenon is the variability in dynamics between repli-
cate cell plates.

The even more important aspect of heterogeneity
of the cell population was analyzed by Lipniacki et al.
(2006). If there are large oscillations in single cells, da-
ta gathered during the experiments do not reflect real dy-
namics at all and therefore cannot be used for parameter
fitting. When cells are exposed to an external excitation,
the initial response can be relatively well synchronized.
However, in the course of the experiment, cells lose their
initial synchronicity, and the actual oscillations characte-
ristic for the dynamics of a given pathway are lost through
the averaging nature of the experiment (Fig. 2(a)). Once
again, as in the preceding subsection, the problem lies in
the heterogeneity of the cell population. As a consequen-
ce, single cell experiments are then required. Moreover,
in such cases it does not make any sense to build models
based on averaging experimental techniques.

2. Normalization of results

Models of signaling pathways most often use the molar
concentration of molecules, or the average number of mo-
lecules of a given type as state variables. However, expe-
rimental procedures offer only relative results obtained
from measurements. There exist virtually no databases
containing information about the actual content of cells
in terms of typical concentrations of known proteins, com-
plexes or other molecules. Though it is theoretically possi-
ble to perform experiments that would provide such data,
the cost involved is too high and, as a result, in most cases
available data allow comparing only the levels of a given
molecule to the initial level of molecules of the same ty-
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Fig. 3. Effect of normalization on results comparison: when
normalized to the area under the plot, most of the varia-
tion disappears: original (a) and normalized oscillatory
response (b), and original (c) and normalized (d) aperio-
dic response.

pe. Therefore, to allow a comparison of experimental data
coming from different sources and simulation results, the
normalization of the results, both experimental and nume-
rical, is necessary.

Two most common approaches consist in normaliza-
tion either to the maximum value or to the area under the
plot representing the time course of a given variable. If
the latter is used, it is possible to minimize the influence
of distorted measurements. However, this also restricts re-
search to qualitative analysis only, as systems exhibiting
the same type of dynamics, but differing in parameters,
after normalization can even be indistinguishable (Fig. 3).
Therefore, one should also check original results (before
normalization) in order to form more sophisticated hypo-
theses.

It should be noted, however, that if experimental da-
ta come from different sources, usually the time horizon
for each set of data is different. Then, either only partial
results can be taken into account, or other normalization
procedures should be considered (see Fig. 4).

It is a standard approach in the analysis of dynami-
cal systems to search for the best models in an automated
way, whenever possible, usually minimizing a square error
between the simulation and experimental results, calcula-
ted at discrete time points. However, taking into account
phenomena described in preceding subsections, one sho-
uld allow for relatively large values of such an error, due
to the uncertainty of measurements. Then, fully automatic
procedures could lead to false conclusions about the dyna-
mics of investigated processes (Fig. 5). This is particularly
important in view of a small number of time points taken
into account in experiments.
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Fig. 4. Comparing results normalized to the area under the plot
when different time scales are involved: although all
plots represent the same function, they look different.
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Fig. 5. Two cases, when instead of dynamics that are quantita-
tively similar to the actual ones (shown using the dotted
line) the other could be chosen due to a smaller square
error calculated at points shown by circles.

Despite all the obstacles, some of which are listed
above, mathematical models can provide valuable insight
into the mechanisms regulating cell responses on the in-
tracellular level. Subsequent sections show how initial and
late cell responses can be analyzed in a particular pathway.

3. Rough introduction into the Interferon-β
signaling pathway

Interferons (IFNs) are very important components of the
immunodefense system (Janeway, 2001; Bekisz et al.,
2004; Pestka et al., 2004). Their role and elements of
interferon-induced signaling pathways are subjects of on-
going research (see, e.g., the reviews by Sen (2001), Levy
and Darnell (2002), Kalvakolanu (2003) or Shuai and Liu
(2003)).

The graphical representation of the pathway is pre-
sented in Fig. 6. The most important molecules mediating
cell responses after IFN (both type I and II) stimulation
are STAT (Signal Transducer and Activator of Transcrip-
tion) proteins. In particular, two members of this family of
proteins, STAT1 and STAT2, mediate the responses taken
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Fig. 6. Early processes in the Interferon-β activated pathway.

into account in the analyzed pathway. Binding of IFN-β
to a cell receptor results in the phosphorylation of STAT
proteins. The intermediate stages of this process are not
directly modeled. Instead, the process is assumed to fol-
low simple first-order dynamics. Subsequently, phospho-
rylated STATs form hetero- and homodimers. In the cyto-
plasm, STAT1–STAT2 heterodimers form a complex with
an IRF9 protein, called ISGF3. Both STAT1 homodimers
and the ISGF3 complex are very rapidly transported into
the nucleus, where they serve as active transcription fac-
tors of, among others, IRF1 and IRF7 genes, respective-
ly. Phosphorylated STATs are dephosphorylated by pho-
sphatases both in the nucleus and in the cytoplasm. De-
phosphorylation results in the dissociation of complexes
leading to nuclear export of STATs and making them ava-
ilable to subsequent phosphorylation/dephosphorylation
cycles.

Newly produced IRF1 mRNA is translated into an
IRF1 protein, which in turn is a transcription factor for
the STAT1 gene. In this way, a positive feedback loop is
created in this signaling pathway. Other positive feedback
loops also exist (acting through, e.g, an IRF7 protein), but
they are activated in the presence of a viral infection and
therefore are not taken into account here.

The original model of an IFN-β stimulated pathway
was developed and presented by Śmieja et al. (2008). It
provided a good fit to experimental data. There, a new
process that regulates the homodimer level in the nucleus
was postulated (Fig. 8). However, one could argue that
the justification for the hypothesis about activated pho-
sphatases is far fetched and that alternative explanations,

if paired with appropriate kinetic constants in correspon-
ding models, could be accepted. Moreover, the model fa-
iled to explain the source of cytoplasmic IRF1 accumula-
tion, observed in the experiments, which took place about
1.5 to 2 hours after reaching its peak value in the nucleus
(see Fig. 7). None of the known negative feedbacks co-
uld explain this phenomenon. In the following sections we
show that the analysis of equilibrium points in the model
can confirm the hypothesis stated by Śmieja et al. (2008),
and numerical simulations provide a testable hypothesis
about the other unknown regulatory process.

Fig. 7. Comparison of cytoplasmic (circles) and nuclear (cros-
ses) levels of an IRF1 protein in Hela cells treated with
IFN-β.

4. Early stages of the Interferon-β
activated pathway

The dynamics of the STAT1 homodimer nuclear level cle-
arly show that there must be a regulatory mechanism re-
sponsible for its decrease after reaching a peak value after
approximately 90 minutes of IFN treatment (see Fig. 8).
Though several negative feedbacks in this pathway are wi-
dely known (see, e.g.,the findings of Alexander and Hilton
(2004) or Wormald and Hilton (2004)), they cannot expla-
in such a sharp decrease, as proved by numerical simula-
tions and analytical deliberations further in this section.

In the work of Śmieja et al. (2008) it was postulated
that the control mechanisms rely on increased dephospho-
rylation of homodimers in the nucleus. It was justified by
numerical simulations that were run for various sets of pa-
rameters. In this section, the analysis concentrates on equ-
ilibrium points of the model, without making any assump-
tions about parameter values.

Two possible scenarios are taken into account. In the
first one, the rate of homodimer degradation increases,
while the second one consists in an increased rate of ho-
modimer dephosphorylation.

The general form of models that are introduced in
this section is based on the results of Śmieja et al. (2008).
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Fig. 8. Time course of homodimers of phosphorylated STAT1.
Experimental data have been normalized to the area un-
der the plot.

However, they need to be simplified if the analysis is to
concentrate on equilibrium points in the most general ca-
se, when no assumptions about parameter values are ma-
de. The underlying idea of the simplification is that the
process regulating homodimer behavior is too fast to re-
ly on the synthesis of new mRNA molecules. Therefore,
the process should be based on molecules existing in the
cytoplasm and/or nucleus cell during the initial phase of
the cell response to IFN. If so, then it would work also in
cells in which the IRF1 gene is switched off. This yields
the following simplifications in the original model:

• Much fewer variables are taken into account, sin-
ce some processes rely on IRF1 produced in the
initial phase of cell response. This includes both
IRF1 mRNA, an IRF1 protein, and transcripts, whose
transcription factor is an IRF1 protein or its complex.

• Since the STAT1 gene belongs to those whose trans-
cription is activated by IRF1, only its constitutive
transcription should be taken into account. As a re-
sult, only a constant production of an STAT1 protein
is to be included in the model, and STAT1 mRNA
can be neglected.

• It results from the previous assumption that the posi-
tive feedback in STAT1 production is broken in cells
with the IRF1 gene switched off. Therefore, there
will be no saturation in the phosphorylation rate for
STAT1.

• The dephosphorylation of dimers in the cytoplasm
is neglected, as they are very efficiently transported
into the nucleus; the dynamics of this transport are
also neglected.

• According to the experimental results, much more
phosphorylated STAT2 is in the ISGF3 complex than
in a heterodimer with phosphorylated STAT2. There-
fore, heterodimers are neglected in the model.

• The system that will be investigated is under constant
IFN treatment. This means that IFN is no longer an
input. Instead, it is hidden in the phosphorylation ki-
netic rate as a constant parameter.

Then, if both possible hypotheses about additional
regulatory mechanisms are incorporated in the model, the
pathway dynamics are described by the following equ-
ations (the variable meaning is given in Table 1):

d(S1)
dt

= ks1_prod − ks1_deg · (S1) − is1 · (S1)

+ es1 · (S1)n − ks1_phos · (S1)
+ ks1_deph · (S1p), (1)

d(S2)
dt

= ks1_prod − ks1_deg · (S1) − is2 · (S2)

+ es2 · (S2)n − ks2_phos · (S2)
+ ks2_deph · S2p, (2)

d(S1p)
dt

= ks1_phos · (S1) − ks1_deph · (S1p)

− 2ks1s1 · (S1p)2

− kS12 · (S1p) · (S2p), (3)

d(S2p)
dt

= ks2_phos · (S2) − ks2_deph · (S2p)

− kS12 · (S1p) · (S2p), (4)

d(S1)n

dt
= kvis1 · (S1) − kves1 · (S1)n

+ 2kinv_s1s1_n · (S11)n

+ kinvS12 · (S12)n

+ 2kdx · (S11)n · (Xact), (5)

d(S2)n

dt
= kvis2 · (S2) − kves2 · (S2)n

+ kinvS12 · (S12), (6)

d(S12)n

dt
= kvkS12 · (S1p) · (S2p)

− kinvS12 · (S12)n, (7)

d(S11)n

dt
= kvks1s1 · (S1p)2 − kinv_s1s1 · (S11)n

− kdx · (S11)n · (Xact)
− kdy · (S11)n · (Yact). (8)

All other symbols not mentioned above are model pa-
rameters, with kv representing the cytoplasmic-to-nuclear
volume ratio, as in the work of Ciliberto et al. (2005).

In the last equation, the last line contains terms repre-
senting two possible hypotheses that could explain the dy-
namics of the nuclear homodimer level, observed in expe-
riments. First of them corresponds to an increased depho-
sphorylation rate, while the second term represents indu-
ced degradation of homodimers. Both require the intro-
duction of unknown molecules whose binding to homodi-
mer results in a desired end effect. It will be assumed, as in
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Table 1. Proteins and corresponding variable names.
Protein or complex location variable name

STAT1 cytoplasm (S1)

STAT2 cytoplasm (S2)

STAT1 nucleus (S1)n

STAT2 nucleus (S2)n

phosphorylated STAT1 cytoplasm (S1p)

phosphorylated STAT2 cytoplasm (S2p)

homodimer of phosphorylated STAT1 nucleus (S11)n

ISGF3 complex nucleus (S12)n

inactive X phosphatase nucleus (Xin)n

active X phosphatase nucleus (Xact)n

inactive inducer of homodimer degradation nucleus (Yin)n

active inducer of homodimer degradation nucleus (Yact)n

the original model, that these molecules are activated by
the nuclear ISGF3 complex and that their total (i.e., both
active and inactive molecules) level is constant:

d(Xin)n

dt
= −kXact · (S12)n · (Xin)n

+ kXin · (Xact)n, (9)

d(Xact)n

dt
= kXact · (S12)n · (Xin)n

− kXinact · (Xact)n, (10)

d(Yin)n

dt
= −kYact · (S12)n · (Yin)n

+ kYin · (Yact)n, (11)

d(Yact)n

dt
= kYact · (S12)n · (Yin)n

− kYinact · (Yact)n. (12)

Let us assume that the system described by
Eqns. (1)–(12) has an equilibrium point, at which

(S11)n|0 = 0, (13)

as suggested by the experimental results. Then, regardless
of the mechanism behind the control of the homodimer
level and the model parameters, from (8) it stems that the
amount of phosphorylated STAT1 in the cytoplasm is also
equal to zero, which contradicts the experimental results.
This means that the assumption (13) is too strong. Addi-
tionally, this shows that models assuming a constant amo-
unt of molecules of some type, neglecting their production
and degradation (which is an approach often applied in the
modeling of signaling pathways) does not allow a more
formal analysis, as they will always need the zero equili-
brium point (e.g., in the model presented above, if in (1)
and (2) there was neither production, nor degradation, it
would result in an equilibrium point in which all variables
are equal to zero).

Let us now assume that the level of the STAT1 ho-
modimer at the equilibrium is very small, but nonzero. If

(S1p)0 denotes the value of the cytoplasmic phosphoryla-
ted STAT1 protein, this could be written as

(S11)n|0 = α(S1p)|0, (14)

where α is a small positive parameter.
Then, if the only regulatory mechanisms were these

described in the literature, i.e., only constitutively active
phosphatases were taken into account, in (8) the parame-
ters kdx = 0 and kdy = 0. This means that from (8)

(S11)n|0 =
ks1s1

kinv_s1s1
(S1p)2|0. (15)

Combining (14) with (15) leads to

kinv_s1s1 =
ks1s1 · (S1p)|0

α
. (16)

All variables are molar concentrations. Realistic values of
the phosphorylated STAT1 protein level should be at le-
ast 0.1 [μM ] to have the desired effect on gene transcrip-
tion processes. The value of the parameter ks1s1 determi-
ning the rate of creating homodimers is of the magnitude
0.1 − 10, if the dimers appear in large quantities quic-
kly after the pathway induction. Then, the resulting lower
bound of the kinv_s1s1 value would be equal to 0.01/α.
Even for a relatively large α of 0.1, which would suggest
a relatively large amount of the homodimers at the equili-
brium, this translates into the upper bound for the homo-
dimer half-life time of approximately 7 seconds, which is
completely unrealistic. This implies the need to include
other regulatory processes in the model.

Similarly, the hypothesis about an induced degrada-
tion rate, when in (8) the parameters kdx = 0, would le-
ad to very low levels of both STAT1 and phosphorylated
STAT1, not observed in experimental data. In turn, when
induced dephosphorylation is applied, with kdx �= 0 and
kdx = 0,

ks1s1 · (S1p)|0 = α(kinv_s1s1 · +kdx · (Xact)|0), (17)
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which can be satisfied for a wide range of biologically ac-
ceptable parameters.

Of course, to confirm this hypothesis, appropriate
experimental work should take place. However, there are
at least several known phosphatases that are responsible
for STAT dephosphorylation (Hoeve et al., 2002) and se-
veral others are postulated (Yamada et al., 2003). It would
be extremely difficult, if possible at all, to conduct experi-
ments in which specific phosphatases would be blocked.

5. Regulatory mechanisms in late responses

As mentioned in the preceding sections, the original mo-
del of the Interferon-β stimulated pathway, presented by
Śmieja et al. (2008), provided a good fit to experimental
data. However, it failed to explain the source of cytopla-
smic IRF1 accumulation, observed in the experiments (7),
which took place about 1.5 to 2 hours after the nuclear pe-
ak was observed. None of the known negative feedbacks
could explain this phenomenon. The behavior of the sys-
tem has been checked first for varying values of each of
the most important parameters (an example is shown in
Fig. 9). Following that, a careful analysis of system dyna-
mics was performed for different sets of parameter values
in a massive simulation effort. The results obtained sug-
gest that there is an additional, unknown process of nega-
tive regulation in the pathway.

Having checked various models, one of them proved
to be the most promising. It is known that the IRF1 protein
should be activated to act as a TF. This most likely invo-
lves phosphorylation by a yet unidentified phosphatase. In
the previous models it was assumed that the dynamics of
such a process are very fast compared with other proces-
ses involved in the pathway and therefore can be neglec-
ted. Since the changes introduced there have not yielded
desired results, another hypothesis is introduced. It will be
assumed that the activation of the process is mediated by a
kinase that is constitutively present in the cytoplasm. Ho-
wever, this activation can be blocked by another protein
that is produced in the pathway, either by binding the ki-
nase or by promoting its degradation. Contrary to the pre-
vious models, the dynamics of IRF1 activation are mode-
led explicitly. Therefore, it is assumed that the translation
process yields an inactive IRF1 protein. The activation of
the IRF1 protein in the cytoplasm is blocked by an unk-
nown X protein and in its absence is a first order process.
This protein would be coded by a gene whose transcrip-
tion is induced in the IFN-β activated pathway (Fig. 10). It
may be assumed that the Transcription Factor (TF) for this
gene should exhibit dynamics similar to those other genes
activated in this pathway, so it is not necessary to intro-
duce the variable representing the concentration of such a
TF to the model. However, the production of the protein
should be delayed with respect to IRF1 dynamics. Such
a delay might result from the activation process of the X
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Fig. 9. Example of different dynamics of a cytoplasmic IRF1
protein when a single parameter was varying: for the
original model (a), for the model whose modification is
shown in Fig. 10 (b). Experimental data are indicated by
circles, simulation results for the original model are re-
presented by the dotted line.

protein. In order to avoid introducing too many unknown
molecules into the model, it was assumed that the produc-
tion of the X protein is similar to that of the IRF1 pro-
tein, and its activation is a second-order time-lag process
(Śmieja, 2009).

The behavior of the system has been checked first for
varying values of each of the most important parameters
(an example is shown in Fig. 9). Following that, a careful
analysis of system dynamics was performed for different
sets of parameter values in a massive simulation effort.
The results, presented in Fig. 10(b), suggest that the pro-
posed mechanism can indeed regulate IRF1 cytoplasmic
accumulation.

6. Conclusions

The paper shows how mathematical modeling can be ap-
plied to advance knowledge about regulatory mechanisms
in signaling pathways. For early responses, even a rough
analysis of equilibrium points can help accept or reject hy-
potheses about possible regulatory mechanisms. For later
responses this is not possible due to the complexity of the
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0 5 10 15 20 25
0

0.5

1

1.5

2

2.5

3
x 10

4

N
um

be
r 

of
 m

ol
ec

ul
es

time [h]

cytoplasmic IRF1

(a) (b)

Fig. 10. Hypothesis about the mechanism controlling the cellular content of the IRF1 protein (a), experimental results (circles), original
model (black dashed line) and modified model results for slightly varying parameter sets (grey lines) (b).

models, but then numerical analysis is useful when per-
formed for varying parameters. As a result, the number
of experiments necessary to explain the phenomena obse-
rved so far and thus build a structural view of the pathway
can be reduced.

Acknowledgment

This work was partially supported by the Polish Mini-
stry for Science and Higher Education under Grant No. N
N514 415334 for the years 2007–2010 and was first pre-
sented during the 15th National Conference on Appli-
cation of Mathematics in Biology and Medicine held in
Szczyrk, Poland, in 2009.

References

Alexander, W. and Hilton, D. (2004). The role of suppres-
sors of cytokine signaling (socs) proteins in regulation of
the immune response, Annual Review of Immunology 22:
503–529.

Bekisz, J., Schmeisser, H., Hernandez, J., Goldman, N. and
Zoon, K. (2004). Human interferons alpha, beta and ome-
ga, Growth Factors 22(4): 243–251.

Janeway, C. (2001). Immunobiology 5: The Immune System in
Health and Disease, Garland Pub., New York, NY.

Ciliberto, A., Novak, B. and Tyson, J. (2005). Steady states
and oscillations in the p53/mdm2 network, Cell Cycle 4:
488–493.

Levy, D.E. and Darnell Jr., J. (2002). Stats: Transcriptional con-
trol and biological impact, Nature Reviews Molecular Cell
Biology 3: 651–662.

Kalvakolanu, D.V. (2003). Alternate interferon signaling path-
ways, Pharmacology & Therapeutics 100: 1–29.

Hoeve, J.D., Ibarra-Sanchez, J., Fu, Y., Zhu, W., Tremblay, M.,
David, M. and Shuai, K. (2002). Identification of a nuclear
stat1 protein tyrosine phosphatase, Molecular and Cellular
Biology 22(16): 5662–5668.

Shuai, K. and Liu, B. (2003). Regulation of JAK–STAT signal-
ling in the immune system, Nature Reviews Immunology
3: 900–911.

Pestka, S., Krause, C. and Walter, M. (2004). Interferons,
interferon-like cytokines, and their receptors, Immunolo-
gical Reviews 202: 8–32.

Sen, G. (2001). Viruses and interferons, Annual Review of Mi-
crobiology 55: 255–281.
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