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Workflow graphs, consisting of actions, events, and logical switches, are used to model business processes. In order to
easily identify the actions within a workflow graph, it is useful to number them in such a way that the numbering reflects
the structure of the workflow. However, available tools offer only rudimental numbering schemes. In the paper, a set of
natural requirements is defined that a logical numbering should fulfill. It is investigated under what conditions there is
an appropriate numbering at all, when it is uniquely defined by the set of requirements, and when it can be computed
efficiently. It is shown that for an important special class of workflow graphs, namely, structured workflow graphs, the
answer to all these questions is affirmative. For general workflow graphs, a set of requirements is presented that can always
be fulfilled, but the numbering is not necessarily unique. An algorithm based on a depth-first search can be used to compute
an appropriate numbering efficiently.
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1. Introduction

For the graphical representation of business processes,
several flavours of flowcharts are in use, with slight dif-
ferences in syntax and semantics. In this paper, we will
use the standard workflow model of Kiepuszewski et al.
(2003), a quite general class of workflow graphs. In
our experiments we used a specific modeling language,
the so-called event-driven process chain (EPC) (Scheer
et al., 2005; van der Aalst, 1999).

Informally, a workflow graph is a sequence of ac-
tions. Each action may be assigned an actor, some input
documents, some output documents, and further attributes
(see Fig. 1). If the process is not merely consecutive but
consists of parallel and/or alternative paths, these paths are
connected through logical switches of type AND, OR, or
XOR. Moreover, every path starts with an event specify-
ing the precondition for that path. Figure 2 shows a simple
example of a business process of a store selling computer
peripherals.

The optimization of business processes involves a lot
of discussions about the corresponding workflow graphs.
Reasoning about a workflow graph is eased significantly
if the actions are numbered in some logical order. Logical

Fig. 1. Action and its attributes in a workflow graph.

order means that the numbering reflects the structure of
the workflow graph and the order in which humans usually
read workflow graphs, just like in Fig. 2. Of course, the
graph in the figure is small, but with bigger graphs span-
ning several pages a logical numbering greatly improves
orientation. Therefore, it is common sense in the business
process optimization community that such a numbering is
necessary. Keeping the numbering consistent after addi-
tion and deletion of actions is tedious, and hence computer
support would be welcome, especially since business pro-
cesses are usually modeled with computer tools anyway.
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Fig. 2. Exemplary workflow graph.

However, available business process modeling tools
offer only very rudimental support for numbering. For
instance,

• ARIS (Scheer, 2000) offers no specific support for
numbering but only allows the user to input the num-
ber as part of the action’s name or as an attribute.

• Visio (Microsoft Corporation, 2010) offers an auto-
numbering feature. However, this works by number-
ing the actions in the order in which they are created.
Maintaining a logical numbering that would reflect
the structure of the workflow graph is not supported.

• RFFlow (RFF Electronics, 2004) lets the user spec-
ify the number for each action. It has an automatic
renumbering feature, which makes the numbers con-
secutive without changing their order. While this is

certainly a useful feature, it is still the user’s task to
define the order of the nodes, as it is never changed
by the program.

The reason for this lack of appropriate tool support
is that it is by no means trivial to define precisely what a
logical numbering should be like. Hence, in this paper, we
start by defining a set of requirements that a logical num-
bering should fulfill. To do so, we take into account the
structure of the graph as well as the way it is drawn in the
plane, because these are the two most important factors for
the human reader. After defining the set of requirements,
we investigate if an appropriate numbering can always be
found and if this numbering is uniquely defined by the set
of requirements. Moreover, we investigate if the number-
ing can be computed efficiently. We will do this first for an
important subset of workflow graphs, the so-called struc-
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tured workflow graphs. As turns out, the answer to all
these questions is positive in this case. In a second step,
we investigate how much this can be transferred to general
workflow graphs.

To our knowledge, the numbering of vertices in a
workflow graph with the aim of improving readability has
not been considered yet in the scientific literature. Of
course, there are well-known basic algorithms for number-
ing vertices of a graph, e.g., topological order, the number-
ings generated by a depth-first search and a breadth-first
search, a preorder/inorder/postorder search etc. In this pa-
per, we will adapt a depth-first search to suit our particular
goals. To our knowledge, this is the first work offering a
mathematical approach to the problem of numbering ver-
tices in a workflow graph with the aim of improving read-
ability.

In some specific application domains, numbering
problems somewhat similar to the problem covered in
this paper have been studied. The most relevant ex-
ample is in the field of workflow graph parsing. Re-
cently, Vanhatalo and colleagues introduced the refined
process structure tree to represent the structure of any
workflow graph by decomposing it into a hierarchy of
sub-workflows (Vanhatalo et al., 2009). While the pro-
cess structure tree can be used for numbering purposes,
it suits the needs of automatic processing of workflow
graphs more than the needs of a human reader. In partic-
ular, the process structure tree does not take into account
the geometry of the workflow graph’s embedding into the
plane, which is a vital clue for the human reader.

Another related work is the algorithm called M-
propagation by Weber et al. (2008). M-propagation is part
of a bigger algorithm, aiming at determining the consis-
tency of workflow graphs that are annotated with seman-
tic constraints. M-propagation incorporates a numbering
with the aim of determining which pairs of actions can be
active in parallel in a workflow graph. Again, this num-
bering is more for automatic processing than for human
readers, and it does not take into account the geometry of
the graph in the plane.

2. Preliminaries

For our purposes, a workflow graph can be modeled as
follows:

Definition 1. A workflow graph is a directed graph
G = (V, E). The in-degree of vertex v will be denoted
by d−(v), its out-degree by d+(v). In a workflow graph,
there are the following types of vertices1:

• Actions with d−(v) = d+(v) = 1,

1The other vertex types (events, actors, input and output documents
etc.) can be ignored because they are not relevant for the numbering.
Likewise, it is indifferent if a split or join is of type AND, OR, or XOR.

• Splits with d−(v) = 1, d+(v) > 1,

• Joins with d−(v) > 1, d+(v) = 1,

• A start vertex with d−(v) = 0, d+(v) = 1,

• An end vertex with d−(v) = 1, d+(v) = 0.

By denoting the set of actions with A, the set of splits
with S, the set of joins with J , the start vertex with s and
the end vertex with e, we have V = A ∪ S ∪ J ∪ {s, e},
where the sets A, S, J , and {s, e} are pairwise disjoint.

It is assumed that each vertex is reachable from s and
e is reachable from each vertex.

The workflow graph is embedded in the plane, but
the crossing of edges is allowed. Each vertex v has its cor-
responding coordinates x(v) and y(v). We will consider
the graph as being acyclic and all edges as being directed
downwards: uv ∈ E ⇒ y(u) > y(v) (see the explanation
below).

The restriction that the graph has a single start and
end vertex is purely technical. It makes the presentation
more readable, and it is not a real restriction. For example,
a workflow graph with multiple start vertices can be ex-
tended with a new, single start vertex, which is connected
through a new split to the old start vertices.

The other assumption that we made is that the graph
should be acyclic. This might seem too restrictive, but
actually it is not restrictive at all. The downward orienta-
tion of edges is a common convention in business process
modelling. If there is a cycle of length k in a process,
then this is usually depicted with k−1 edges going down-
wards, describing the „main flow”, completed by one up-
ward arrow indicating the repetitions. Given our aim to
define a logical order of the actions, we can ignore the
single upward arrow, because it does not contain any in-
formation that should be taken into account in the num-
bering. In other words, we do not restrict ourselves to
acyclic workflow graphs. Rather, the convention that the
main flow is given by downward arrows implies that—for
the purposes of defining a logical numbering—upward ar-
rows can be ignored, thus making the remaining workflow
graph acyclic.

The embedding of the graph in the plane implies an
order on the outgoing edges of a split and the incoming
edges of a join.

Definition 2. If v is a split with outgoing edges
e1, e2, . . . , ek, then we write e1 < e2 < . . . < ek if e1

is the leftmost, e2 the second from the left, and so on (see
Fig. 3), and similarly for incoming edges of joins.

Definition 3. A workflow graph is called structured if it
can be constructed using the following rules:

1. If S = J = ∅, then the workflow graph is structured.
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Fig. 3. Ordered set of edges going out from a split.

2. Let G be a structured workflow graph and e ∈ EG

an edge in G. The workflow graph G′ is constructed
from G as follows: e is substituted by a split x and a
join y such that the number of edges going out from x
equals the number of edges coming to y and the first
edge going out from x is the first edge that comes into
y, the second edge going out from x is the second
edge that comes into y etc. (see Fig. 4(a)). Then G′

is also structured.

3. Let G be a structured workflow graph and e ∈ EG

an edge in G. The workflow graph G′ is constructed
from G as follows: e is substituted by a chain of new
actions a1, a2, . . . , ak with edges a1a2, . . . , ak−1ak

between them (see Fig. 4(b)). Then G′ is also struc-
tured.

(a) Rule 2

(b) Rule 3

Fig. 4. Transformations for constructing structured workflow
graphs.

As an example, the workflow graph of Fig. 2 is struc-
tured. However, not every workflow graph is structured.

For instance, the workflow graph in Fig. 5 cannot be struc-
tured because it contains three splits but only two joins.
Structured workflow graphs are analogous to goto-free
computer programs, in which branching is realized by
then and else instruction blocks of if-then-else
statements. In contrast, a non-structured workflow graph
is analogous to a program containing goto instructions.
Just as goto-free programs are preferable over programs
containing goto instructions, it is good practice to model
processes by structured workflow graphs, and hence struc-
tured workflow graphs represent an important special case
of workflow graphs.

Fig. 5. Example of a non-structured workflow graph.

Definition 4. A numbering of a workflow graph is a
bijective function n : A → {1, 2, . . . , |A|}, where A de-
notes the set of actions within the workflow graph and |A|
denotes the cardinality of the set A.

3. Numbering structured workflow graphs

A structured workflow graph is characterized by the corre-
sponding split—join pairs and two or more branches be-
tween the split and the join of each pair. The order of
outgoing edges of the split defines an order on the set of
branches between a corresponding split–join pair.

Definition 5. Let x and y be a split and the correspond-
ing join, respectively. The branches between them are de-
noted by B1, B2, . . . , Bk, the edge between x and Bi is
denoted by ei (see Fig. 6). Then Bi < Bj if ei < ej .

In this section, it is investigated what a logical num-
bering of a structured workflow graph should be like. The
numbering should be in line with the order in which a
workflow graph is usually read. Basically, this means go-
ing from top to bottom and from left to right. More for-
mally, the numbering should fulfill the following require-
ments:

Requirement 1. If a1, a2 ∈ A and there is a directed path
from a1 to a2, then n(a1) < n(a2).
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Fig. 6. Order of branches in a structured workflow graph.

Requirement 2. Let x and y be a split and the correspond-
ing join, respectively. Let B1 and B2 be two branches
between them with B1 < B2. Let a1 ∈ A ∩ B1 and
a2 ∈ A ∩ B2 be two actions in the respective branches.
Then n(a1) < n(a2).

Please note how the requirements combine graph-
theoretic and geometric notions to describe the required
behavior.

Note also that Requirement 1 requires the number-
ing to be a topological order (although not on all vertices
but only on the actions). Since the workflow graph is
acyclic, Requirement 1 can be fulfilled. Moreover, it is
well known that a depth-first search (DFS) can be used to
construct a topological order in an acyclic graph (Cormen
et al., 2001). With a suitable extension to accommodate
the left-to-right rule, the DFS can be adapted to also fulfill
Requirement 2. The result is shown as Algorithm 1.

It is worth mentioning that in Algorithm 1 the chil-
dren of a vertex are visited intentionally from right to left.
This is because the numbers are assigned in decreasing
order.

Theorem 1. For a structured workflow graph, Algo-
rithm 1 results in a numbering that fulfills Requirements 1
and 2.

Proof. It is clear that the result is indeed a numbering,
i.e., each action gets a number between 1 and |A| and each
number is used exactly once.

It is well known that this numbering fulfills Require-
ment 1 (Cormen et al., 2001).

In order to prove that the numbering fulfills Require-
ment 2, consider the situation depicted in Fig. 6. Let yi

be the end vertex of edge ei. When the algorithm visits
x, none of the yis can be visited because the workflow
graph is structured. The algorithm first visits yk. The
call DFS(yk) terminates only when all vertices in Bk have
been visited. Since the workflow graph is structured, the
vertices of the other branches are still not touched. Then

Algorithm 1 Tailored DFS algorithm to number struc-
tured workflow graphs
procedure DFS(x)
{

visited(x):=true
Let xy1 < . . . < xyk be the edges going out of x
for(i = k; i > 0; i − −)

if not visited(yi)
DFS(yi)

if x ∈ A
{

n(x) := num
num −−

}
}

procedure main
{

foreach vertex x
visited(x):=false

num:=|A|
DFS(s)

}

comes the call DFS(yk−1), which terminates when all ver-
tices in Bk−1 are visited, and so on. As a consequence,
the actions in Bk get the highest numbers, the actions in
Bk−1 get lower numbers, the actions in Bk−2 get even
lower numbers, and so on. �

Corollary 1. In a structured workflow graph, there is
always a numbering that fulfills Requirements 1 and 2.

The next target is to investigate if the numbering is
uniquely determined by the set of requirements. As we
will see, for structured workflow graphs the answer is af-
firmative.

Definition 6. Let G be a structured workflow graph. The
number of split–join pairs in G is denoted by p(G).

Theorem 2. For a structured workflow graph, there can
only be one numbering that fulfills Requirements 1 and 2.

Intuitively, the statement of the theorem is easy. If
there is a directed path between two vertices, then Re-
quirement 1 determines which of them should receive the
smaller number. Otherwise, they are in different branches,
and then Requirement 2 determines which of them should
receive the smaller number. However, in a structured
workflow graph, branchings can be nested into each other
at arbitrary depth, and this complex structure makes it a
bit more tricky to analyze the relation between two ver-
tices. The following proof uses induction to handle this
potentially nested structure.
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Proof. We use induction according to p(G).
If p(G) = 0, then the workflow graph consists of a

single directed path. In this case, Requirement 1 guaran-
tees the uniqueness of the numbering.

Let G be a structured workflow graph with p(G) =
t > 0 and let us assume that the theorem is already proven
for smaller values of p. Let x be the split nearest to s
and let y be the corresponding join. Let the branches be-
tween x and y be denoted by B1, . . . , Bk. Let the part
of the workflow graph between s and x be denoted by
Gx, the part between y and e by Gy , as in Fig. 7. It is
clear that Gx, Gy, B1, . . . , Bk are all structured workflow
graphs with a smaller p value. The set of actions in these
workflow graphs will be denoted by Ax, Ay, A1, . . . , Ak,
respectively, and let AB := A1 ∪ . . . ∪ Ak .

Fig. 7. Blocks in a structured workflow graph.

Because of Requirement 1, any action in Ax must
have a smaller number than any action in AB , and any
action in AB must have a smaller number than any action
in Ay . Hence, the numbers 1, . . . , |Ax| must be used for
Ax, the numbers |Ax|+ 1, . . . , |Ax|+ |AB | must be used
for AB , and the numbers |Ax| + |AB| + 1, . . . , |A| must
be used for Ay .

Because of Requirement 2, any action in A1 must
have a smaller number than any action in A2, any action
in A2 must have a smaller number than any action in A3,

etc. Hence, from the numbers to be used for AB (|Ax| +
1, . . . , |Ax|+|AB|), the first |A1| numbers have to be used
for A1, the next |A2| numbers must be used for A2, etc.

Thus, Requirements 1 and 2 determine uniquely the
interval of numbers to be used for each of the workflow
graphs Gx, Gy, B1, . . . , Bk. Since these are all structured
workflow graphs for which the theorem is already proven,
it follows that the number of each action within each of
these workflow graphs is uniquely determined. �

To sum up the results for structured workflow graphs:

• There is always a numbering that fulfills the require-
ments.

• The numbering is unique.

• The numbering can be found efficiently.

4. Numbering general workflow graphs

The above results are based on the characteristics of struc-
tured workflow graphs, namely, the fact that split–join
pairs define branches and there are no connections be-
tween distinct branches. In general workflow graphs,
splits and joins are not in pairs and there are no defined
independent branches. This invalidates for general work-
flow graphs not only the above results, but also the set
of requirements, because Requirement 2 is based on the
notion of branches. When considering real-life workflow
graphs, this is also true: in contrast to structured work-
flow graphs where the logical order of the actions is clear,
this is not always the case for non-structured workflow
graphs. This situation is illustrated in Fig. 8, where it
can be seen that it is not clear how the numbers of ac-
tions v and w should relate to each other. On the one
hand, according to the order of the edges going out from
y, n(v) < n(w) would seem logical. On the other hand,
there is a path from x to w starting with edge e1 and a
path from x to v starting with edge e2, and since e1 < e2,
n(w) < n(v) should follow, which is a contradiction.
Hence, the numbering problem is much more challenging
for general workflow graphs than for structured workflow
graphs.

In what follows, the goal is to transfer the ideas of
Section 3 to general workflow graphs as much as possi-
ble. Requirement 1 can be transferred without problems.
However, instead of Requirement 2, other requirements
are needed to describe the left-to-right rule without us-
ing the notion of branches. Lacking the global structure
of structured workflow graphs, this leads to a more fine-
grained set of requirements, describing at a local level how
the numbers assigned to adjacent vertices relate to each
other. In other words, the requirements describe how num-
bers propagate from action to action—possibly through
several splits and joins. For this, we will assign auxiliary
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Fig. 8. Non-structured workflow graph, in which the logical or-
der of actions is not obvious. Dashed lines indicate
paths.

numbers to splits and joins as well. Informally, the num-
ber of a split or join is the last number used for an action
until that point.

Definition 7. An extended numbering of a workflow
graph is a function n : V → {0, 1, 2, . . . , |A|}, such
that n is bijective between the subsets A ⊆ V and
{1, 2, . . . , |A|}.

Now the proposed set of requirements (for an ex-
tended numbering of a general workflow graph) is as fol-
lows:

Requirement I. If v1, v2 ∈ V and there is a directed path
from v1 to v2, then n(v1) ≤ n(v2).

Requirement II. Let x be a split and let xy1 < xy2 <
. . . < xyk denote those outgoing edges whose end
vertex is not a join. Then n(y1) ≤ n(y2) ≤ . . . ≤
n(yk).

Requirement III. Let xy ∈ E be an edge. Then the fol-
lowing statements are true:

III(a): If x ∈ A and y ∈ A, then n(y) = n(x) + 1.

III(b): If x ∈ A and y ∈ S, then n(y) = n(x).

III(c): If x ∈ J and y ∈ A, then n(y) = n(x) + 1.

III(d): If x ∈ J and y ∈ S, then n(y) = n(x).

III(e): If x ∈ S, y ∈ A, and xy is the left-most of the
edges going out of x, then n(y) = n(x) + 1.

III(f): If x ∈ S, y ∈ S, and xy is the left-most of the
edges going out of x, then n(y) = n(x).

III(g): If there holds y ∈ J with incoming edges
x1y, x2y, . . . , xky and x1, x2, . . . , xk 
∈ S, then
n(y) = max{n(xi) : i = 1, 2, . . . , k}.

In the following, we shall give some justification to
this set of requirements.

Requirement I is very similar to the earlier Require-
ment 1. There are only two minor differences resulting
from the fact that now we are looking for an extended
numbering: Requirement I is valid for all vertices, not
only for actions, and the numbers of two distinct vertices
can be equal.

Requirement II is an adaptation of Requirement 2.
Since, in the case of general workflow graphs, the no-
tion of branches is not defined, we can only claim the
left-to-right rule for the direct successors of a split. As
for the indirect successors, Requirement III describes how
the numbers must propagate along the edges. If the start
vertex of an edge is not a split and its end vertex is not
a join, then the numbers of the two vertices determine
each other unambiguously (Requirements III(a–d)). If the
start vertex of the edge is a split, then there is a similar
relation between the split and its left-most child (Require-
ments III(e–f)). This is because the numbering must go on
with the left-most child. Thus this vertex must receive the
next number. The number of the other children of the split
are not determined directly by the number of the split. The
case when the end vertex is a join is described by Require-
ment III(g). There is a notable difference between the lat-
ter two cases: the split’s number is related to the number
of its left-most child, whereas the join’s number is related
to the maximum of its parents’ numbers. In order to make
the two more similar, we could call the left-most child of
the split also the child with a minimum number, because
of Requirement II. However, it is not true that the join’s
parent with a maximum number is the right-most one, not
even for structured workflow graphs, as Fig. 9 shows.

Fig. 9. Example of a join whose parent with a maximum num-
ber is not the right-most one.

Note also that in the case of an edge between a split
and a join, special care is needed. As can be seen above,
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Fig. 10. Example showing why joins are excluded from Re-
quirement II and Requirements III(e–f).

joins are excluded from Requirement II and there is no
rule like Requirements III(e) and III(f) for the case when
y ∈ J . This is because, in the case of an edge from a
split to a join, the number of the join is influenced by its
other parents as well, not only by the split. Thus, imposing
such rules on the join could lead to a contradiction. This
is shown in Fig. 10, where the left-most child of the split
is a join, and yet this join has a higher number than its
sibling to the right and a much higher number than the
split. This is why joins are excluded from Requirement
II and there is no rule like Requirements III(e) and III(f)
for the case when y ∈ J . Furthermore, it can also be
seen that, in Requirement III(g), the case when one of the
parents of a join is a split is excluded. The reason is that,
in such a case, the number of the join is not necessarily
determined by the numbers of its parents. Figure 11 shows
an example. Here, the actions are already numbered with
the only logical numbering that is also in line with the
requirements. According to Requirement I, the splits x
and y can have only the number 0 or 1. On the other hand,
according to Requirement III(c), the join v must have the
number 4, although its parents have numbers 0 and/or 1.
This is why the case when one of the parents of a join is a
split is excluded from Requirement III(g).

As can be seen from this discussion, defining a useful
and consistent set of requirements for general workflow
graphs is not easy. It is not obvious that Requirements I–
III can always be fulfilled. However, in the following, we
shall prove that Requirements I–III can be fulfilled with
the help of a slightly modified version of Algorithm 1 that
is shown as Algorithm 2.

Remark 1. The only difference between Algorithm 1 and
Algorithm 2 is that, in the former, the command “n(x) :=
num” is within the “if x ∈ A” block, whereas in the latter
this command is carried out for all vertices. Otherwise the
algorithm is the same.

Theorem 3. For any workflow graph, Algorithm 2 results
in an extended numbering that fulfils Requirements I–III.

Fig. 11. Example where the number of a join is not determined
by the numbers of its parents.

Algorithm 2 Tailored DFS algorithm to compute ex-
tended numbering of general workflow graphs
procedure DFS(x)
{

visited(x):=true
Let xy1 < . . . < xyk be the edges going out of x
for(i = k; i > 0; i −−)

if not visited(yi)
DFS(yi)

n(x) := num
if x ∈ A

num−−
}

procedure main
{

foreach vertex x
visited(x):=false

num:=|A|
DFS(s)

}

Proof. The result is indeed an extended numbering.
It is clear that each vertex receives a number not greater
than |A|. Since num is decreased with each action that
receives a number, all actions receive different numbers.
If the current vertex is not an action, then num remains
unchanged, thus the actions receive the numbers |A|, |A|−
1, . . . , 1. When the last action has received its number,
num reaches 0 and thus every further vertex receives the
number 0.

Requirement I. This follows from the well-known prop-
erties of DFS (Cormen et al., 2001).
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Requirement II. The yis are not joins, and therefore their
only parent is x. Consequently, when the algorithm visits
x, none of the yis can already have been visited. The al-
gorithm first visits yk. During the call DFS(yk), the other
yis cannot be visited. Thus, when DFS(yk) terminates, the
next vertex to visit is yk−1. Similarly, after DFS(yk−1) is
terminated, yk−2 will be visited, and so on. Thus, yk gets
the highest number, yk−1 receives a lower number, yk−2

gets an even lower number, and so on.

Requirement III(a–f). Since y is not a join, it has exactly
one parent, namely x. Hence, the call DFS(y) can only
occur from within the call DFS(x). Consequently, after y
receives its number n(y) and the call DFS(y) terminates,
the algorithm must be within the call DFS(x). Since x is
either not a split or, if it is a split, then y is its left-most
child, it follows that x has no further children to be visited
after y. Thus, x receives right after this its own number.
If y is an action, then num was decreased, so in this case
n(x) = n(y)− 1. Otherwise, i.e., if y is a split, then num
was not decreased, so that n(x) = n(y).

Requirement III(g). The call DFS(y) is started from one
of the DFS(xi) calls, say, from DFS(xi0 ). Consider the
moment when y receives its number n(y). Until this mo-
ment, none of the DFS(xi) calls can have ended. Now the
call DFS(y) ends. Since xi0 is not a split, it has no further
children to visit, and hence xi0 receives its number imme-
diately. Thus, n(y) = n(xi0). All other xis will receive
their numbers later, and hence their numbers will be not
higher than n(xi0 ), thus n(y) = n(xi0) = max{n(xi) :
i = 1, 2, . . . , k}. �

Corollary 2. In any workflow graph, there is always an
extended numbering that fulfills Requirements I–III.

Fig. 12. Two numberings of the same workflow graph.

Similarly to the special case of structured workflow
graphs, we managed to prove that a numbering fulfill-
ing the defined set of requirements always exists and can
be found efficiently. However, in contrast to Require-
ments 1–2 for structured workflow graphs, the number-
ing is not uniquely determined by Requirements I–III, not
even for structured workflow graphs. This can be seen in

Fig. 12, which shows two numberings of the same struc-
tured workflow graph, both fulfilling Requirements I-III.

Finally, as a positive result, we can prove that Re-
quirements I–III are a generalization of Requirements 1–2
in the following sense.

Theorem 4. Let G be a structured workflow graph and
n : A → {1, 2, . . . , |A|} a numbering that fulfills Re-
quirements 1–2. Then there is an extended numbering n′ :
V → {0, 1, . . . , |A|}, such that ∀x ∈ A : n′(x) = n(x)
and n′ fulfills Requirements I–III.

Proof. According to Theorems 1 and 2, Algorithm 1
produces the numbering n. Let n′ be the numbering pro-
duced by Algorithm 2. According to Remark 1, the only
difference between the two algorithms is that Algorithm 2
also numbers the non-action nodes. However, the ac-
tions receive the same numbers in both cases, and thus
∀x ∈ A : n′(x) = n(x). Because of Theorem 3, it is also
clear that n′ fulfills Requirements I–III. �

5. Case study

We implemented the presented Algorithm 2 as an ex-
tension to ARIS. ARIS is a full-featured business pro-
cess modelling and management tool that uses a central
database to store all items of all process models with all
their attributes. The rich feature set of ARIS can be ex-
tended with custom scripts. For this purpose, ARIS pro-
vides a script language based on Visual Basic and a simple
programming environment. ARIS also provides an object
model, through which the script can access practically ev-
erything that a user can access: the workflow graphs, ver-
tices and edges of the graphs, attributes of all objects, etc.

With this machinery in place, it was quite straight-
forward to implement the algorithm. As usual in DFS im-
plementations, instead of the recursive variant presented
in Algorithm 2, we implemented an iterative variant that
uses a stack data structure to store the vertices whose pro-
cessing has started but has not yet finished.

The runtime of the algorithm is obviously linear in
the size of the graph. However, the ARIS implementation
was quite slow, requiring 2–3 seconds to process a graph
with 40–50 vertices. This is due to technical issues:

• Initializing the script interpretation engine seems to
incur a significant up-front time penalty.

• The algorithm needs continually access to the ver-
tices and edges of the graph, requiring frequent
database access. In our installation, the database was
on a remote computer, and thus network latency had
an impact on the runtime of the algorithm.

Despite the slowness (that could be mitigated with
appropriate measures if needed), the implementation is a
useable prototype. Indeed, we used it successfully in a
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Table 1. Summary of results.
Structured
workflow
graph,
Require-
ments 1–2

General
work-
flow graph,
Requirements
I–III

Requirements can always
be fulfilled

yes yes

Requirements determine
numbering uniquely

yes no

Appropriate numbering can
be computed efficiently

yes yes

business process consultancy project at a Hungarian bank,
in which we created process models (EPCs) of about 100
business processes. Most processes contained 10–20 ac-
tion vertices, but there were also processes with about 50
action nodes, spanning 5–6 pages.

The experts involved in the project—both external
consultants and employees of the bank—found the num-
bering generated by the algorithm logical and easy to fol-
low. The consultants found it especially useful that, after
changes to the process model, they could restore the logi-
cal numbering by pressing a button.

6. Conclusions and future work

This paper is a first attempt to define what a logical num-
bering of the actions in a workflow graph should be like.
Two sets of requirements were defined: one for the impor-
tant special case of structured workflow graphs and one
for general workflow graphs. Table 1 summarizes the re-
sults.

As a future research direction, it would be desir-
able to enhance the set of requirements for general work-
flow graphs. One specific goal could be to propose a
modified set of requirements for general workflow graphs
that maintains the positive characteristics of Requirements
I–III and at the same time determines the numbering
uniquely (i.e., to change the ‘no’ in the last column of Ta-
ble 1 also to ‘yes’). Alternatively, it would also be useful
if the requirements for structured workflow graphs could
be generalized to general workflow graphs in such a way
that, at least for structured workflow graphs, the number-
ing would remain unique.
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