
Int. J. Appl. Math. Comput. Sci., 2010, Vol. 20, No. 1, 35–53
DOI: 10.2478/v10006-010-0003-9

THE HEKATE METHODOLOGY. HYBRID ENGINEERING OF INTELLIGENT
SYSTEMS

GRZEGORZ J. NALEPA, ANTONI LIGĘZA

Department of Automatics
AGH University of Science and Technology, Al. Mickiewicza 30, 30–059, Kraków, Poland

e-mail: {gjn,ligeza}@agh.edu.pl

This paper describes a new approach, the HeKatE methodology, to the design and development of complex rule-based
systems for control and decision support. The main paradigm for rule representation, namely, eXtended Tabular Trees
(XTT), ensures high density and transparency of visual knowledge representation. Contrary to traditional, flat rule-based
systems, the XTT approach is focused on groups of similar rules rather than on single rules. Such groups form decision
tables which are connected into a network for inference. Efficient inference is assured as only the rules necessary for
achieving the goal, identified by the context of inference and partial order among tables, are fired. In the paper a new
version of the language—XTT2—is presented. It is based on ALSV(FD) logic, also described in the paper. Another
distinctive feature of the presented approach is a top-down design methodology based on successive refinement of the
project. It starts with Attribute Relationship Diagram (ARD) development. Such a diagram represents relationships between
system variables. Based on the ARD scheme, XTT tables and links between them are generated. The tables are filled
with expert-provided constraints on values of the attributes. The code for rule representation is generated in a human-
readable representation called HMR and interpreted with a provided inference engine called HeaRT. A set of software tools
supporting the visual design and development stages is described in brief.

Keywords: rule-based expert systems, intelligent control, system design.

1. Introduction

Rule-based systems constitute one of the most pow-
erful and most popular knowledge representation for-
malisms (Liebowitz, 1998; van Harmelen et al., 2007).
They offer a relatively easy way of knowledge encod-
ing and interpretation. The formalization of knowledge
within a rule-based system can be based on mathematical
logic (e.g., propositional, attributive, first-order, or even
higher order ones) or performed on the basis of engineer-
ing intuition. Rule-based systems have found numerous
applications in various domains of engineering, science,
medicine, law, computer science and application software
(Laffey et al., 1988; Liebowitz, 1998).

The never-ending story of rule-based systems started
with the very first attempts to formally codify rules of hu-
man behavior. Perhaps one of the best known sets of such
rules, the Ten Commandments, has been with us since the
times of Moses (see (Ligęza, 2006) for a more detailed
historical review).

Rules are omnipresent in our everyday life, profes-
sional work, leisure and sport activities. They are a result

of physical (and mathematical) laws, formed by men, tra-
dition, culture, and civilization. The most precise rules are
those found in technical and technological systems; how-
ever, many rule-based expert systems addressed the issues
of medical diagnosis or business decision support as well.

In engineering, the first examples of rule-based sys-
tems are those concerning feedback control with a two-
position or three-position relay; in fact, such systems
can be considered simple, hard-wired rule-based systems.
Further examples come from the domain of digital cir-
cuits. Actually, any combinatorial circuit can be regarded
as a propositional logic rule-based system.

In computer science, rule-based systems appeared
just after symbolic programming languages had been de-
veloped. First such systems were termed production
systems or production rules (Brownston et al., 1985;
Liebowitz, 1998). The golden age for rules came in the
late 1970s and 1980s with developments and practical ap-
plications of expert systems. They were dedicated to solv-
ing specific problems in narrow, well-formalized domains.
A typical construction of such a system was based on two

{gjn, ligeza}@agh.edu.pl

36 G.J. Nalepa and A. Ligęza

components: a declarative rule base encoding domain-
specific knowledge and an inference engine of general
purpose, the so-called expert system shell (Liebowitz,
1998; Giarratano and Riley, 2005).

Modern shells for the development of rule-based sys-
tems, such as CLIPS, Jess, Drools, Aion, Ilog Rules, or
Gensym’s G2, follow this classical paradigm. Rules are
developed using some predefined knowledge representa-
tion framework (often close to attributive logic). The cur-
rent rule-based systems and tools for their development
have reached a certain level of maturity. Specialized ed-
itors that enforce a correct structure and are capable of
checking the syntax of rules are in use and provide tools
for computer-aided development of final applications.On
the other hand, they have inherited a number of traditional
features of early rule-based systems, which nowadays can
be considered drawbacks.

In this paper we mainly address the following issues,
which seem worth investigating and improve:

• sparse representation: single rules constitute items
of low knowledge processing capabilities, while for
practical applications a higher level of abstraction is
desirable,

• blind inference: inference engines, especially
forward-chaining ones, are highly inefficient with re-
spect to the focus on the goal to be achieved,

• lack of methodology: no practical methodology for
consecutive top-down design and development of
rule-based systems, acceptable by engineers and en-
suring quality of rules, is available.

This paper presents a new approach to the design and
development of rule-based systems. More precisely, we
present the state-of-the-art of the HeKatE methodology1,
for the design and development of complex rule-based
systems for control and decision support. This method-
ology is supported with visual tools for the development
of knowledge bases and a novel inference engine.

The main paradigm for rule representation, namely,
eXtended Tabular Trees (XTT) (Nalepa, 2004; Nalepa and
Ligęza, 2005a), ensures high density and transparency of
visual knowledge representation. Contrary to traditional,
flat rule-based systems, the XTT approach is focused on
groups of similar rules rather than single rules. In this way
we address the first issue of low processing capabilities of
single rules. Such groups form decision tables which are
connected into a network for inference.

Efficient inference is assured as only the rules nec-
essary for achieving the goal are fired. It is achieved by
selecting the desired output tables and identifying the ta-
bles necessary to be fired first. The links representing the

1An acronym for Hybrid Knowledge Engineering, see
http://hekate.ia.agh.edu.pl.

partial order assure that when passing from a table to an-
other one the latter can be fired since the former one pre-
pares the appropriate context knowledge. Hence, only the
rules working in the current context of inference are ex-
plored. The partial order between tables allows avoiding
examining rules which should be fired later.

Another distinctive feature is the design methodol-
ogy which allows formal verification of rules. A top-down
design methodology based on successive refinement of
the project is introduced. It starts with the development
of an Attribute Relationship Diagram (ARD), which de-
scribes relationships among process variables. Based on
the ARD model, a scheme of particular tables and links
between them are generated. The tables are filled with
expert-provided definitions of constraints over the values
of attributes; these are, in fact, the rule preconditions. The
code for rule representation is generated and interpreted
with the provided inference engine. A set of tools sup-
porting the design and development stages is described in
brief.

The rest of the paper is organized as follows: In Sec-
tion 2 the perspective on the applications of rule-based
systems for intelligent control is given. For intuition, a
simple example concerning the relay-type controller is
used to identify some of the most important issues tack-
led in this paper. This gives a background for the mo-
tivation for the research, as discussed in Section 3, and
for the HeKatE project, which aims at providing solutions
for the problems of sparse representation, blind inference,
and the lack of methodology identified earlier in this sec-
tion. One of the main goals of the project is to provide
a new rule-based inference engine solution assuring flex-
ible and efficient control during the inference process. In
Section 4, a dynamic system state representation discus-
sion is given in order to be able to develop a formaliza-
tion for rules. Rules in HeKatE are formalized with the
use of attributive logic, introduced in Section 5 and then
discussed in an extended version in Section 6. Inference
rules for the attributive logic formulae are presented in
Section 7. They allow firing XTT rules grouped into ta-
bles. The table-level inference is discussed in Section 8.
Practical design of XTT knowledge bases, supported by
visual editors, and other tools is shortly presented in Sec-
tion 9. A concise comparison with the related solutions is
given in Section 10. Finally, the future challenges for the
methodology are given in Section 11.

2. Rule-based intelligent control

This section is addressed to the automatic control audi-
ence. It briefly shows how rules can be used to provide
declarative means for building controllers in a wide sense
of the word control. In fact, the past, current, and prospec-
tive applications are allocated in numerous, diversified
areas of applications, ranging from direct (digital) con-

http://hekate.ia.agh.edu.pl.

The HeKatE methodology. Hybrid engineering of intelligent systems 37

trol, meta-level control, decision support, business rules
applications and various forms of expert systems (Laffey
et al., 1988; Liebowitz, 1998).

2.1. Explaining the ideas of rules in control. Con-
sider a simple case of a direct use of rules for control.
Rules can be used to specify a rely-type controller of many
levels (not just two-level or three-level classical control
rely). In fact, arbitrary approximation of any nonlinear
characteristic of the controller can easily be specified.

�� � � �
�

�
�

a ≤ ε < b −→ u = u1

b ≤ ε < c −→ u = u2

...

y ≤ ε ≤ z −→ u = uk

wz ε u w

w

�

a b c y z
u1
u2

uk

O

Fig. 1. Simple application of a rule-based system as a direct
controller.

This type of application is illustrated in Fig. 1. In the
picture, u is the input of the object under control and w is
its output signal. The current value of the control error, ε,
is calculated as ε = wz − w, where wz is the required
set point. Depending on the value of ε, the rule-based
controller determines the level of the u signal, according
to the characteristics shown in Fig. 1.

Obviously, applying a rule-based system as a direct
controller is not the only way to make use of the rule-
based systems technology. In fact, a rule-based approach
can be applied to decision making, optimization (selec-
tion of optimal settings or trajectories), adaptation (adjust-
ing the algorithms or parameters to new conditions), and
even detetecting structural changes of the control system.
These ideas are illustrated in Fig. 2.

2.2. Rule-based control. An important step in appli-
cation of rule-based systems in control was the design of
the Rete algorithm (Forgy, 1982). The algorithm is based
on two observations: (i) at each cycle, only few facts of
the fact base change (this is referred to as temporal re-
dundancy), and (ii) preconditions of rules often contain
similar patterns or groups of such patterns (this is referred

Adaptation

Optimization

�� Controller Object

�

� �
�

�
�

�

Rule-Based System�

�

�

Fig. 2. Application of rule-based systems at various levels of
multi-level control: direct control, optimization, and
adaptation.

to as structural similarity) (Giarratano and Riley, 2005).
Hence, instead of repeated checking of preconditions of
all the rules at each cycle, the Rete algorithm employs
a specialized network for fast indexing of changes in the
fact-base and their influence on the satisfaction of the rule
preconditions. Thanks to the application of Rete, the sets
of rules which can be fired can be determined in an effi-
cient way. Such sets are called conflict sets, since only one
of the rules can be fired.

The Rete-type identification of rules that can be fired
is memory-consuming, since the Rete network can be
quite large. On the other hand, if efficiency is of primary
importance, the application of the Rete forward-chaining
inference engine seems reasonable (especially in real-time
control applications). Nevertheless, such forward check-
ing procedure does not identify which rules should be fired
so as to achieve the goal. As many unnecessary rules can
be fired, we shall refer to the inference scheme as a blind
one.

The next important step was the development of
the CLIPS (Giarratano and Riley, 2005) (C Language
Integrated Production System), a descendant of OPS5
(Brownston et al., 1985), a rule-based production system
written in Lisp. The CLIPS was developed by NASA
and—despite being developed in C—it follows the Lisp-
like style of knowledge specification (a bit clumsy, full
of parentheses and hardly readable for engineers). It has
become perhaps one of the most popular rule-based en-
gines, since it is relatively fast (employing the Rete algo-
rithm (Forgy, 1982)), simple, and free (now in the public
domain). A more recent reincarnation of the CLIPS is
JESS (Java Expert System Shell) (Friedman-Hill, 2003),
developed in Java, but still employing the (a bit ancient)

38 G.J. Nalepa and A. Ligęza

Lisp-like style of rule encoding. Another example is
Drools (Browne, 2009), also referred to as a business
rules management system. All the systems are in prin-
ciple blind, forward-checking ones, employing advanced
implementations of the Rete-based inference engines.

Some overview of current developments with respect
to theory, knowledge representation, tools and application
areas is provided in (Liebowitz, 1998). A list of current
tools is enclosed with (Ligęza, 2006). The very recent
book (Giurca et al., 2009) gives a good overview of some
emerging technologies and tools in the area of rule-based
solutions.

2.3. Rule-based control and decision support. His-
torical perspective of research towards the XTT ap-
proach. The authors’ research in the domain of rule-
based systems for control started in 1986 (Ligęza, 1986).
The aim was to develop a specialized form of rules, tak-
ing into account the specific requirements of the control
domain. This resulted in the development of an univer-
sal rule scheme incorporating dynamic modification of
the knowledge base (through the retract and assert oper-
ations)2 and elements of control (the concept of declar-
ing the next and else rules). The rules were designed
to work only within a certain context, status and mode
which focused the inference on the subset of rules nec-
essary for the current stage of inference (Tzafestas and
Ligęza, 1988; 1989).

On the other hand, the application of rules for de-
cision support in business processes was addressed in
(Ligęza, 1988). It was pointed out that there are differ-
ent kinds of rules for different purposes (pure deduction,
dealing with numerical values, domain-independent prop-
erties, meta rules for control).

In order to ensure the reliability, safety and quality
of rule-based systems, additional work on the verification
of theoretical properties was carried out (Ligęza, 1993).
A new inference rule, the so-called backward dual resolu-
tion (or dual resolution, for short) was invented for logical
verification of completeness of rule-based systems. A tax-
onomy of abnormalities and approaches to deal with them
was discussed in (Ligęza, 1999).

A comprehensive report on trends and directions of
research was presented in (Coenen et al., 2000). Some
break-through ideas were introduced in (Ligęza, 1996);
namely, a proposal to incorporate verification in the de-
sign stage, so that it is performed on-line and not only after
the system is developed. Another idea was to group sim-
ilar rules together (to form tabular components covering
several rules instead of one) and to perform verification of
such tables consisting of similar rules, rather than a flat set
of all the rules (Ligęza, 1998).

2These names follow the Prolog (Bratko, 2000) language notation
and correspond to removing and adding facts to the fact base.

An initial concept to organize a tabular system into a
hierarchical structure was first proposed in (Ligęza, 2001)
and developed as a practical test-bed implementation un-
der the name of Tab-Trees (Ligęza et al., 2001). The first
conceptual statement, basic formalism and initial work-
ing implementation of XTT were developed as a Ph.D.
project and presented in (Nalepa, 2004). They were later
described in (Nalepa and Ligęza, 2005a) on the concep-
tual level. The Mirella tools supporting visual XTT design
were introduced in (Nalepa and Ligęza, 2005c). To sup-
port logical XTT design, the ARD method was introduced
later on in (Nalepa and Ligęza, 2005b). A survey in the
form of a textbook presenting logical foundations and de-
velopments in the area of attribute logic, its application in
XTT and elements of the design and verification method-
ology were the objectives of (Ligęza, 2005; 2006). A Pro-
log implementation for XTT was discussed in (Nalepa and
Ligęza, 2006). The aforementioned developments and ex-
perience gained during the research form the foundations
that led to the HeKatE methodology, which is the focus of
this paper.

3. HeKatE approach

3.1. Motivation. There are certain persistent limita-
tions of the existing approaches to the design of rule-based
intelligent control systems. They are especially visible in
the design of complex systems. They often make high
quality design as well as the refinement of such systems
very difficult. These limitations are related to the follow-
ing aspects of rule design:

• knowledge representation—where rules are infor-
mally described and lack clear semantics,

• transparent structure and efficient inference in the
rulebase—where the focus on the design of single
rules, with no structure explicitly identified by the
user, makes the hierarchization of the model very dif-
ficult; moreover, the classic massive inference mech-
anisms such as the Rete algorithm do not address the
contextual nature of the rulebase,

• well-founded systematic and complete design pro-
cess—preserves the quality aspects of the rule model
and allows gradual system design and automated im-
plementation of rules.

These issues are discussed in greater detail in the follow-
ing subsections.

The majority of rule-based systems work according
to the classical principles of forward chaining. They in-
corporate a relatively simple, blind inference engine. In
order to speed up the interpretation of rules, they often
employ some indexing of changes that occur in the fact
base, and the way they influence the satisfaction of rule
preconditions, e.g., the Rete network.

The HeKatE methodology. Hybrid engineering of intelligent systems 39

With respect to the knowledge representation lan-
guage being used, the following issues may be raised:

• lack of formal relation of the knowledge representa-
tion language to classical logic, consequently,

• difficulties with understanding the expressive power
of the language,

• lack of standards for knowledge representation, and,
as a consequence,

• lack of knowledge portability.

With respect to the internal structure and inference
mechanism, the criticism may be even stronger:

• typically, the set of rules is flat—it has no internal
structure, so hundreds of different rules are consid-
ered equally important, and equally unrelated,

• the inference engine (at least potentially) tries to ex-
amine all rules in turn for firing within every cycle,

• it is unclear if the Rete network can be efficiently
used in the case of knowledge representation formal-
ism of higher expressive power3,

• there is no definite way to decide which rules from
the conflict set should be fired,

• irrelevant rules can be fired even if they do not con-
tribute to solving the problem.

With respect to the development methodology, it
should be pointed out that most of the rule-based tools
are just shells providing a rule interpreter and sometimes
an editor. Hence

• the knowledge acquisition task constitutes a bottle-
neck and is arguably the weakest point in the design
and development process,

• typical rule shells are not equipped with consistent
methodology and tools for efficient development of
the rule base; on the other hand, general methodolo-
gies such as KADS or Common-KADS (van Harme-
len, 1996) are too complex for practical engineering
or business applications,

• the verification of knowledge is rarely supported,
and, if it is supported,

• verification is performed only after the rule design
phase (so knowledge refinement can introduce new
errors).

3For example, in the case of first order logic one cannot avoid using a
complete unification algorithm, which itself is based on a tree matching
procedure. The authors are unaware of any research on the application
of Rete for speeding up term unification.

3.2. Main principles. Three main principles follow-
ing from the above analysis define the foundations of the
approach advocated in this paper:

1. Formal language definition—we insist on precise
definition of a formal language, its formal properties
and inference rules. This is crucial for determining
expressive power, defining the inference mechanism
and solving verification issues.

2. Internal knowledge structure—we introduce an in-
ternal structure of the rule base. Similar rules, aimed
at working within a specific context, are grouped to-
gether and form the XTT tables. These tables are
linked together forming a partially ordered graph
structure (possibly with cycles), which encodes the
flow of inference.

3. Systematic design procedure—we argue for a com-
plete, well-founded design process that covers all of
the main phases of the system life-cycle, from the ini-
tial conceptual design, through the logical formula-
tion, all the way to the physical implementation. We
emphasize the need for a constant on-line verification
of the system model with respect to critical formal
properties, such as determinism and completeness.

These principles served as guidelines for the HeKatE ap-
proach we introduce in the next section.

3.3. Goals and Perspectives. The goals of the Hy-
brid Knowledge Engineering (HeKatE) methodology cor-
respond to the principles described previously in Sec-
tion 3.2. The rule-based knowledge is decomposed
into multiple modules represented by attributive deci-
sion tables (the so-called object-attribute-value tables,
see (Ligęza, 1996; Ligęza et al., 2001)). The controller
is designed using the HeKatE methodology. Therefore
the main goals are to provide the following: an expres-
sive formal logical calculus for rules, allowing formalized
inference and analysis; a structured visual rule represen-
tation method with formally described syntax and seman-
tics, based on decision tables; and a complete hierarchi-
cal design process based on the above, with an effective
on-line verification methods as well as, automated imple-
mentation facilities.

The emphasis of the methodology is its possible ap-
plication to a wide range of intelligent controllers. In this
context, two main areas have been identified in the project:

• control systems, in the field of intelligent con-
trol (Laffey et al., 1988; Cheng, 2002),

• business rules (von Halle, 2001; Ross, 2003) and
business intelligence systems (Morgan, 2002).

Taking into account the first domain of application, the
meaning of the term “controller” is straightforward and

40 G.J. Nalepa and A. Ligęza

falls into the area discussed in this paper as intelligent con-
trol, a branch of automatic control.

In the case of the second domain, the term denotes
a well-isolated software component implementing the so-
called application logic or logical model. In business
software this component is commonly integrated using a
dedicated architectural pattern, such as the Model-View-
Controller (Burbeck, 1992; Gamma et al., 1995). In this
pattern the components of the system are divided intro
three main groups:

• Model—provides the main control logic,

• View—roughly corresponds to system interfaces, in a
broad sense, and the

• Controller—which connects these two in a flexible
way (in this case, the term “controller” is used in a
purely technical meaning).

In fact, in real life applications, a number of Views (pos-
sibly with different Controllers) is provided for the same
logical Model, to allow reusing of the same control logic
in a number of applications.

Let us now present the first perspective using an ex-
ample.

3.4. Intuitive example. In order to explain the under-
lying ideas of the presented approach, let us refer to the
classical scheme of feedback control, as widely known in
the domain of control theory. It is assumed that we are
given a certain (dynamic) system under control and an-
other system—in our case the XTT System, playing the
role of an intelligent controller. A general scheme is pre-
sented in Fig. 3.

System

[Internal State]

XTT System

[XTT Tables]

[Internal Memory]

Input data Output data

System output System input

Fig. 3. Scheme of closed-loop feedback control.

The system under control has some input and some
observable output. Both the input and the output can be
encoded in some symbolic form (meaningful numbers,

symbols, facts, logical formulae, etc.). Hence, both in-
put and output streams can be of numerical and symbolic
form. The system possesses memory, therefore one can
speak about some internal state describing the cumulated
results of the former input and allowing to model its future
behavior.

The XTT system receives the output from the system
under control as its input data. With the use of internal
knowledge (a kind of rule base), the XTT system works
out some output data (decisions, control) and sends them
as the input to the system under control.

The system under control can be, in general, almost
any complex system providing observable (measurable)
and meaningful output. It can be a complex technological
installation, computer hardware or software, a database,
a knowledge-base, or a natural or artificial system with
manual formation of the XTT input. The task performed
by the XTT system can range from direct, closed-loop
control, to monitoring, decision making or knowledge
processing.

The main focus of this paper is on the XTT system,
its components (tables of rules), internal structure, knowl-
edge representation language and inference, as well as
inference control and design issues. The XTT system is
composed of a number of attributive decision tables, ex-
tended in comparison to simple decision tables known in
the literature (Pawlak, 1991). For some intuition of how
such a system is built and how it works, see Fig. 4.

aTime

[08:00−16:00]

[16:00−20:00]

[20:00−08:00]

aPeriod

bh

ah

nh

[1−10]

[11−30]

[31−99]

aSizeaLineNumber

small

medium

large

aPeriod aSize

bh small

bh medium

bh large

ah small

ah medium

large[ah,nh]

nh

aPrice

87

77

66

58

56

33

37

Start: aLine=n) Outpup=(aPrice=p)Context=(aTime=’hh:mm’ and

ANY

Fig. 4. Simple intuitive example of an XTT system.

The system from Fig. 4 is devoted to inferring the
minute rate for telephone calls, depending on the time
of day and the size of the client company. There are
three decision tables. The first one allows determining the
period of day; the output attribute aPeriod takes one
of three possible values: business hours (bh), afternoon
hours (ah), or night hours (nh). The input attribute here
is the time (aTime), e.g., as read from the system clock.
The second decision table defines the qualitative size of
the company and takes the following values: small (be-
tween 1 and 10 lines), medium (between 11 and 30 lines)
and large (between 31 and 99 lines). After having deter-
mined the period and the size, the values of the attributes
aPeriod and aSize are used to infer the prices; vari-

The HeKatE methodology. Hybrid engineering of intelligent systems 41

ous combinations of period and size and the correspond-
ing prices are defined in the third table.

The system can start its work given the values of
the aTime and aLineNumber attributes as its input;
in other words, the values of these attributes—when
defined—determine the context of the work of the XTT
system. The appropriate rules are activated when control
is passed to a specific table. Contrary to classical solu-
tions, rules are fired when necessary, not when just the
preconditions are satisfied. The links among tables define
a partial order of inference. Within a table, a single rule or
a set of rules can be fired. As illustrated with this simple
example, some tables can be interpreted in parallel (in our
example—the first two tables), while the third one must be
interpreted after the output of both of them is produced.

3.5. Review of the methods. In the HeKatE project,
a formalized language for an extended rule representation
is introduced. Instead of simple propositional formulae,
the language uses expressions in the so-called attributive
logic (Ligęza, 2006). This calculus has higher expressive
power than propositional logic, while providing tractable
inference procedures for extended decision tables (Ligęza
and Nalepa, 2007; 2008). The current version of the
rule language is called XTT2 (Nalepa and Ligęza, 2008).
The logical formalism, adopted for the XTT2 language, is
called ALSV(FD) (Attributive Logic with Set Values over
Finite Domains). The details of this solution are discussed
in extent in Sections 5 and 6.

Based on attributive logic, the XTT rule lan-
guage is provided (Nalepa, 2004; Nalepa and
Ligęza, 2005a; 2008). XTT stands for eXtended
Tabular Trees, since the language is focused not only on
providing an extended syntax for single rules, but also
allows explicit structuring of the rule base. This solution
allows the identification of the system contexts during rule
base design. XTT introduces explicit inference control
solutions, allowing fine-grained and more optimized rule
inference than in the classic Rete-like solutions. XTT has
been introduced with visual design support in mind. The
representation is compact and transparent, thus suitable
for visual editors.

The HeKatE project also provides a complete hierar-
chical design process for the creation of XTT-based rules.
The process is based on the ideas originally introduced
in (Nalepa, 2004). The main phase of the XTT rule de-
sign is called logical design. This phase is supported
by a CASE tool called HQed (Kaczor and Nalepa, 2008;
Kaczor, 2008).

The logical rule design process may be supported
by a preceding conceptual design phase. In this phase
the rule prototypes are built using the so-called attribute
relationship diagrams. The ARD method was intro-
duced in (Nalepa and Ligęza, 2005b) and later refined
in (Ligęza, 2006).The principal idea is to build a graph

modeling functional dependencies between attributes on
which the XTT rules are built. The version used in
HeKatE is called ARD+. ARD+ design is supported by
two visual tools—VARDA and HJed.

Practical implementation of the XTT rule base is per-
formed in the physical design phase. In this stage, the
visual model built with HQed is transformed into an al-
gebraic presentation syntax. A custom inference engine
can then run the XTT model. All of these design tools are
described in greater detail in Section 9.

4. State representation

When processing information, the current values of at-
tributes form the state of the inference process. The values
of attributes can, in general, be modified in the following
three ways:

• by an independent external system,

• by the inference process itself, or

• as some time-dependent functions.

The first case concerns attributes representing some
process variables, which are to be taken into account in
the inference process but depend only on the environment
and external systems. As such, the variables cannot be di-
rectly influenced by the XTT system. Examples of such
variables may be the external temperature, the age of a
client or the set of foreign languages known by a candi-
date. Values of those variables are obtained as a result
of some measurement or observation process, and are as-
sumed to be put into the inference system via a blackboard
communication method; in fact, they are written directly
into the internal memory whenever their values are ob-
tained or changed.

A special group of such externally provided values
of attributes are the so-called askable attributes. A ques-
tion is posed to the user and an answer (from a limited
set of possibilities) is provided. The extension of this idea
consists in gathering such values in an external database
accessed by the rule-based system.

The second case concerns the values of attributes ob-
tained at a certain stage of reasoning as a result of the op-
erations performed in the decision part (the so-called right
hand side—RHS) of XTT. The new attribute values can be

• asserted to global memory (hence stored and made
available for other components of the system), or

• kept as values of internal process variables.

The first solution is offered mostly for permanent changes
of global values. Typically, an appropriate retract opera-
tion is to be performed before asserting new values, so as
to keep a consistent state. In this way, the history (trajec-
tory) of the system can be stored as well, provided that

42 G.J. Nalepa and A. Ligęza

each value of an attribute is stored with a temporal index.
The second (potential) solution may offer another method
for value passing and calculations which do not require
permanent storage. For example, if a calculated value is
to be passed to another XTT component and it is no longer
used afterwards, it is not necessary to store it in the global
memory. The latter possibility is not implemented in the
current version of the XTT system.

4.1. Requirements for state representation. The cur-
rent state of the system is considered a complete set of
values of all the attributes in use at a certain time instant.
The concept of the state is similar to the one in dynamic
systems and state-machines. State representation should
satisfy important requirements. It should be (i) internally
consistent, (ii) externally consistent, (iii) complete, (iv)
deterministic, and (v) concise.

The first postulate says that the specification itself
cannot be inconsistent at the syntactic level. For exam-
ple, a simple attribute (one taking a single value) cannot
take two different values at the same time. In general,
assuming the independence of the attributes and no use
of explicit negation, each value of an attribute should be
specified exactly once.

A generalized attribute is one taking a set value (see
Section 6). In the case of such attributes, the values are
represented by sets (e.g., with the use of lists) and undergo
the same restrictions.

The second postulate says that only true knowledge
(with respect to the external system) can be specified in
the state. In other words, facts that are syntactically cor-
rect but false cannot occur in the state formula.

The third postulate says that all the knowledge that is
true at a certain time instant should be represented within
the state. This also means that the size (with respect to the
number of attributes) of state representation can vary over
time, since at certain time instants the values of certain
attributes can remain undefined.

The fourth postulate says that there can be no dis-
junctive or conditional knowledge specification.

Finally, the fifth postulate says that no unnecessary,
dependent knowledge should be kept in the state. In
databases (Connolly et al., 1999) and most knowledge
bases, this has a practical dimension: only true facts are
represented explicitly. On the other hand, note that we
insist that all the known values of attributes be present,
i.e., the specification be complete. If there are some func-
tional dependencies among attributes, the only way to rep-
resent them is to encode them with the XTT components,
and once the dependent value is deduced, it is placed in
the state. This also means that if some of the values are
changed, we can have a temporarily inconsistent state (a
transitional situation), until the new values of the depen-
dent attributes are inferred and replace the old ones.

4.2. State specification. The current values of all at-
tributes are specified within the contents of the knowl-
edgebase (including current sensor readings, measure-
ments, inputs examination, etc.). From the logical point
of view, the state is represented as a logical formula:

(A1 = S1) ∧ (A2 = S2) ∧ . . . ∧ (An = Sn), (1)

where Ai are the attributes and Si are their current values.
Note that Si = di (di ∈ Di) for simple attributes and
Si = Vi, (Vi ⊆ Di) for complex ones, where Di is the
domain for attribute Ai, i = 1, 2, . . . , n. (See Section 6
for the discussion of attribute types.)

In order to cover realistic cases, an explicit nota-
tion for covering unspecified, unknown values is pro-
posed, e.g., to deal with data containing NULL values
imported from a database. Consider the case when an at-
tribute may be applied to an object, but it takes no value.
This will be denoted as A = ∅. For example, the for-
mula Phone_Number=∅ means that the person consid-
ered has no phone number. Finally, a formula of the form
A = NULL means that attribute A takes an unspecified
value.

States can be identified by a key, described with some
comments (key words, characteristics) and indexed with
a time instant (or interval). Such states can be stored to
enable access to past/historical values, the monitoring of
the trajectory of the system and changes in the fact base.
Recorded states are analogous to save points in databases
and can be used to repeat inference and retrieve a current
state in the case of a system failure. More on that can be
found in Section 8.

In the next sections, logic allowing for state repre-
sentation and inference is introduced.

5. Attributive logic

5.1. Basics of attributive languages. Using logics
based on attributes is one of the most popular approaches
to defining knowledge. Not only is it very intuitive, but
it follows a simple technical way of discussion, where
the behavior of physical systems is formalized by pro-
viding the values of system variables. This kind of logic
is omnipresent in various applications. It constitutes
the basis for the construction of relational database ta-
bles (Connolly et al., 1999), attributive decision tables and
trees (Klösgen and Żytkow, 2002; Pawlak, 1991; Quin-
lan, 1987), attributive rule-based systems (Ligęza, 2006),
and it is often applied to describe the state of dynamic
systems and autonomous agents. Some most typical ex-
amples include expert and decision support, rule-based
control and monitoring systems, as well as diagnostic sys-
tems.

However, it is symptomatic that while a number of
modern rule-based shells, such as Jess or Drools, pro-
vide new high-level features in the area of current soft-

The HeKatE methodology. Hybrid engineering of intelligent systems 43

ware technologies, such as Java-integration, network ser-
vices, etc., rule representation and inference methods do
not evolve. The rule languages found in these tools tend to
be logically trivial and conceptually simple. They mostly
reuse very basic logic solutions and combine them with
new programming language features, mainly borrowed
from Java, building on top of classic inference approaches,
such as blind, forward-checking inference engines em-
ploying the Rete-style algorithm (Forgy, 1982).

While these systems integrate well with today’s busi-
ness application stacks, they provide little or no improve-
ment in the areas of formalized analysis, visual design,
gradual refinement or inference control. This gives mo-
tivation to approach these problems by introducing novel
knowledge representation and design tools.

It is symptomatic that although propositional and
predicate logic (in the form of first-order predicate calcu-
lus) have well-elaborated syntax and semantics, presented
in detail in numerous books covering logic for AI and
knowledge engineering (Genesereth and Nilsson, 1987;
Jackson, 1999; Torsun, 1995), logic for computer science
or artificial intelligence (Ben-Ari, 2001; Liebowitz, 1998),
the discussion of the syntax and semantics of attribute-
based logic is omitted in such references.4

On the contrary, it is apparently often assumed
that attributive logic is some kind of technical lan-
guage equivalent—with respect to its expressive power—
to propositional calculus, and as such it is not worth any
more detailed discussion. Actually, it seems that some of
the real reasons for the omission of presentation is that a
more detailed discussion might be not so straightforward,
concise and elegant as in the case of classical logic.

In fact, as follows from some first attempts presented
in (Ligęza, 2006), this issue requires a more detailed
study. The most typical way of thinking about attributive
logic for knowledge specification may be put as follows:

• first, one has to define facts, typically of the form

A = d

or

A(o) = d,

where A is a certain attribute, o is the object of inter-
est and d is the attribute value;

• second, facts are perceived as propositional logic
atomic formulae;

• third, the syntax and semantics of propositional cal-
culus are freely used.

4Note that even in the four-volume handbook of Logics for Artificial
Intelligence edited by D. Gabbay et al. attribute logic did not earn a few
pages of formal presentation and analysis of properties.

This basic approach is sometimes extended with the
use of certain syntax modifications. For example, in
(Klösgen and Żytkow, 2002) the discussion is extended,
so that the rules take the form

A1 ∈ V1 ∧ A2 ∈ V2 ∧ . . . ∧ An ∈ Vn −→ An+1 = d.

Following this line of extended knowledge specification,
various relational symbols can be introduced, e.g., Ai > d
(for ordered sets; this can be considered a shorthand for
Ai ∈ Vi \ Vd, where Vd is the set of all the values of Ai

less than or equal to d) or Ai �= di (this can be considered
a shorthand for Ai ∈ Vi \ {di}).

Note, however, that extending the syntax in such
a way preserves the limitation that an attribute can only
take a single value at a time. Furthermore, without provid-
ing clearly defined semantics for the language and some
formal inference rules, it may lead to severe problems.
This follows from the fact that atoms do not appear to
be logically independent any more (which is the basic,
although often implicit assumption of propositional logic
(Ligęza, 2006)). For example, having a rule such as

Temperature > 100 −→ WaterState = boiling

and a fact like Temperature > 123, we would not be able
to fire the rule using classical inference rules.5

6. Set attributive logic development

In the recent book (Ligęza, 2006), the discussion of at-
tributive logic is much more thorough. The added value
consists in allowing attributes take set values and pro-
viding some formal framework of Set Attributive Logic
(SAL) with respect to its syntax, semantics and selected
inference rules. The very basic idea for further discussion
is that attributes should be able to take not only atomic
values, but set values as well.

After (Ligęza, 2006), it is assumed that an attribute
Ai is a function (or partial function) of the form Ai : O →
Di. Here O is a set of objects and Di is the domain of
attribute Ai.

As we consider dynamic systems, the values of at-
tributes can change over time (as the state of the system
changes). We consider both simple attributes of the form
Ai : T → Di (i.e., taking a single value at any instant of
time) and generalized ones of the form Ai : T → 2Di (i.e.,
taking a set of values at a time); here, T denotes the time
domain of discourse.

The atomic formulae of SAL can have the following
four forms:

A(o) = d, (2)

5Some expert system shells, such as PC-SHELL (see
http://aitech.pl/), are capable of performing the so-called
intelligent unification and hence succeed to carry on with this kind of
inference. This has, however, nothing to do with logic. It is just a
hard-wired implementation of a specialized match mechanism which
works only for predefined symbols.

http://aitech.pl/

44 G.J. Nalepa and A. Ligęza

A(o) = t, (3)

A(o) ∈ t (4)

and
A(o) ⊆ t, (5)

where d ∈ D is an atomic value from the domain D of the
attribute and t ⊆ D, t = {d1, d2, . . . , dk}, is a (finite) set
of such values. If the object o is known (or unimportant),
its specification can be skipped. Hence we write Ai = d,
Ai = t, Ai ∈ t or Ai ⊆ t, for simplicity.

The semantics of Ai = d are straightforward—the
attribute takes a single value. The semantics of Ai = t are
that the attribute takes all the values of t while the seman-
tics of Ai ∈ t are that it takes exactly one value from t
and, finally, Ai ⊆ t means that the attribute takes some of
the values of t (the so-called internal disjunction).6

In the case of (3) and (5), A is the so-called general-
ized attribute (Ligęza, 2006). From now on, we will refer
to both types of attributes as simply attributes.

As an example for the necessity of SAL
one can consider the specification of working
days (denoted with WDay) given as WDay =
{Monday, Tuesday, Wednesday, Thursday, Friday},
Now one can construct an atomic formula
like DaysOfInterest ⊆ WDay , or a rule
of the form DaysOfInterest ⊆ WDay −→
Status(OfficeOfInterest) = open .

SAL as introduced in (Ligęza, 2006) seems to be an
important step towards the study and extension of attribu-
tive logic towards practical applications. On the other
hand, it still suffers from the lack of expressive power, and
the provided semantics of the atomic formulae are poor.

In this paper, an improved and extended version of
SAL, namely, Attributive Logic with Set Values over Fi-
nite Domains (ALSV(FD)), first introduced in (Ligęza and
Nalepa, 2007; Nalepa and Ligęza, 2008), is presented in
brief. For simplicity, no objects are specified in an explicit
way. The formalism is oriented towards Finite Domains
(FDs), and its expressive power is increased through the
introduction of new relational symbols. The semantics is
also clarified. The practical representation and inference
issues both at the logical and the implementation level are
tackled. The main extension consists of a proposal of an
extended set of relational symbols enabling definitions of
atomic formulae. The values of attributes can take singu-
lar and set values over finite domains.

6.1. ALSV(FD). Attribute names and attribute val-
ues are the basic element of the language of Attribute
Logic with Set Values over Finite Domains (ALSV(FD)
for short). Let us consider

A —a finite set of attribute names,
6For uniformity, single elements can be considered single-element

sets. Hence (4) can be replaced with (5) if it is not misleading.

D —a set of possible attribute values (their domains).

Let A = {A1, A2, . . . , An} be all attributes such that their
values define the state of the system under consideration.
It is assumed that the overall domain D is divided into n
sets (disjoint or not), D = D1 ∪D2 ∪ . . .∪Dn, where Di

is the domain related to attribute Ai, i = 1, 2, . . . , n. Any
domain Di is assumed to be a finite (discrete) set. The set
can be ordered, partially ordered, or unordered.

Let Ai be an attribute of A and Di the sub-domain
related to it. Let Vi denote an arbitrary subset of Di, and
let d ∈ Di be a single element of the domain. The le-
gal atomic formulae of ALSV along with their semantics
are presented in Tables 1 and 2, for simple and general
attributes, respectively.

If Vi is an empty set (in fact, the attribute takes no
value), we shall write Ai = ∅. In case the value of Ai

is unspecified, we shall write Ai = NULL (database con-
vention). If we do not care about the current value of the
attribute, we shall write A = _ (PROLOG convention).

More complex formulae can be constructed with con-
junction (∧) and disjunction (∨); both of these symbols
have classical meaning and interpretation.

There is no explicit use of negation. The proposed set
of relations is selected for convenience, and therefore as
such these are not completely independent. For example,
Ai = Vi can perhaps be defined as Ai ⊆ Vi ∧ Ai ⊇ Vi;
but it is much more concise and natural to use just “=”
directly. Various conventions extending the basic notation
can be used. For example, with domains being ordered
sets, relational symbols such as >, >=, <, =< can be
used with straightforward meaning.

The semantics of the proposed language are pre-
sented below in an informal way. The semantics of A = V
are basically the same as those of SAL (Ligęza, 2006). If
V = {d1, d2, . . . , dk}, then the attribute A = V takes
all the values specified with V (and nothing more). The
semantics of A ⊆ V , A ⊇ V and A ∼ V are defined as

A ⊆ V ≡ A = U

for some U such that U ⊆ V , i.e., A takes some of the
values from V (and nothing out of V),

A ⊇ V ≡ A = W,

for some W such that V ⊆ W , i.e., A takes all of the
values from V (and perhaps some more), and

A ∼ V ≡ A = X,

for some X such that V ∩ X �= ∅, i.e., A takes some of
the values from V (and perhaps some more). As can be
seen, the semantics of ALSV are defined by means of the
relaxation of logic to simple set algebra.

The HeKatE methodology. Hybrid engineering of intelligent systems 45

Table 1. Simple attribute formulae syntax.
Syntax Interpretation: true if . . . Relation

Ai = d the value is precisely defined eq
Ai ∈ Vi the current value of Ai belongs to

Vi

in

Ai �= d shorthand for Ai ∈ Di \ {d}. neq
Ai �∈ Vi is a shorthand for Ai ∈ Di \ Vi. notin

Table 2. Generalized attribute formulae syntax.
Syntax Interpretation: true if . . . Relation

Ai = Vi equals to Vi (and nothing more) eq
Ai �= Vi is different from Vi (at at least one

element)
neq

Ai ⊆ Vi is a subset of Vi subset
Ai ⊇ Vi is a superset of Vi supset
A ∼ V has a non-empty intersection with

Vi

sim

Ai �∼ Vi has an empty intersection with Vi notsim

6.2. XTT rules in ALSV(FD). Consider a set of n
attributes A = {A1, A2, . . . , An}. Any XTT rule is as-
sumed to be of the form

(A1 ∝1 V1) ∧ (A2 ∝2 V2) ∧ . . .∧
(An ∝n Vn) −→ RHS ,

where ∝i is one of the admissible relational symbols
in ALSV(FD), and RHS is the right-hand side of the
rule (RHS) covering conclusions. In practice, the con-
clusions are restricted to assigning new attribute values,
thus changing the system state. The values that are no
longer valid are removed from the state (for details, see
(Ligęza, 2006)).

Knowledge representation with extended tabular
trees incorporates extended attributive table format. Fur-
thermore, similar rules are grouped within separated ta-
bles, and the whole system is split into such tables
linked by arrows representing the control strategy. Con-
sider a set of m rules incorporating the same attributes
A1, A2, . . . , An: the preconditions can be grouped to-
gether and form a regular matrix. After completing the
conclusion part, this can be expressed as shown in Table 3.

In Table 3, the symbol ∝ij∈ {=, �=,∈, �∈} is used
for simple attributes and ∝ij∈ {=, �=,⊆,⊇,∼, �∼} for the

Table 3. General scheme of an XTT table.

Rule A1 A2 . . . An H

1 ∝11 t11 ∝12 t12 . . . ∝1n t1n h1

2 ∝21 t21 ∝22 t22 . . . ∝2n t2n h2

...
...

...
. . .

...
...

m ∝m1 tm1 ∝m2 tm2 . . . ∝mn tmn hm

generalized ones. In practical applications, however, the
most frequent relations are =, ∈, and ⊆, i.e., the current
values of attributes are restricted to belong to some spe-
cific subsets of the domain. If this is the case, the relation
symbol can be omitted (i.e., it constitutes the default re-
lation which can be identified by the type of the attribute
and its value).

The current values of all the attributes are specified
within the contents of the knowledge-base (including cur-
rent sensor readings, measurements, inputs examination,
etc.). From the logical point of view, it is a formula of
the form previously introduced by the formula (1) in Sec-
tion 4.2. Having a table with defined rules, the execution
mechanism searches for ones with satisfied preconditions.
In short: the satisfaction of preconditions is verified in an
algebraic mode, using the dependencies specified in the
first row of Table 4 for simple attributes and the first row
of Table 5 for complex ones (see Section 7 for more de-
tails). Rules with all preconditions satisfied can be fired.
In general, rules can be fired in parallel or sequentially.
For the following analysis, we assume the classical, se-
quential model, i.e., rules are examined in turn in top-
down order and fired if the preconditions are satisfied. The
details of inference with ALSV(FD) needed to implement
a complete XTT inference solution are given in the fol-
lowing section.

7. Basic inference rules for ALSV(FD)

Since the presented language is an extension of
SAL (Ligęza, 2006), its simple and intuitive semantics
are consistent with SAL and clear up some points of it.
The summary of the inference rules for atomic formulae
with simple attributes (where an atomic formula is the
logical consequence of another atomic formula) is pre-
sented in Table 4. The table is to be read as follows: if an
atomic formula in the leftmost column holds, and a condi-
tion stated in the same row is true, then the corresponding
atomic formula in the topmost row is also true. In other
words, the formula in the topmost row is a logical conse-
quence of the one from the leftmost column provided the
condition is fulfilled.

The summary of the inference rules for atomic for-
mulae with generalized attributes (where an atomic for-
mula is the logical consequence of another atomic for-
mula) is presented in Table 5. An example how the first
row should be read is as follows: if A = V (see the left-
most column) and provided that V ⊆ W (the same row,
the fourth column), we can conclude that A ⊆ W (the
topmost row).

In Table 4 and 5, the conditions are satisfactory.
However, it is important to note that in the case of the
first rows of the tables (the cases of A = di and A = V ,
respectively), all the conditions are also necessary. The
rules in Tables 4 and 5 can be used to check if the precon-

46 G.J. Nalepa and A. Ligęza

Table 5. Inference for atomic formulae, generalized attributes.

|= A = W A �= W A ⊆ W A ⊇ W A ∼ W A �∼ W

A = V V = W V �= W V ⊆ W V ⊇ W V ∩ W �= ∅ V ∩ W = ∅
A �= V _ V = W W = D _ W = D _
A ⊆ V _ V ⊂ W V ⊆ W _ W = D V ∩ W = ∅
A ⊇ V _ W ⊂ V W = D V ⊇ W V ∩ W �= ∅ _
A ∼ V _ V ∩ W = ∅ W = D _ V = W _
A �∼ V _ V ∩ W �= ∅ W = D _ W = D V = W

Table 4. Inference for atomic formulae, simple attributes.

|= A = dj A �= dj A ∈ Vj A �∈ Vj

A = di di = dj di �= dj di ∈ Vj di �∈ Vj

A �= di _ di = dj Vj = D\
{di}

Vj = {di}

A ∈ Vi Vi = {dj} dj �∈ Vi Vi ⊆ Vj Vi∩Vj = ∅
A �∈ Vi D \ Vi =

{dj}
Vi = {dj} Vj = D\

Vi

Vj ⊆ Vi

ditions of a formula hold or to verify subsumption among
rules.

For further analysis, e.g., of the intersection (overlap-
ping) of rule preconditions, one may be interested if two
atoms cannot simultaneously be true, and if so—under
what conditions. For example, formula A ⊆ V ∧ A ⊆ W
is inconsistent if V ∩W = ∅. Table 6 specifies the condi-
tions for inconsistency.

The interpretation of Table 6 is straightforward: if
the condition specified at the intersection of some row and
column holds, then the atomic formulae labelling this row
and column cannot hold simultaneously. Note, however,
that this condition is just satisfactory.

Table 6 can be used for the analysis of system de-
terminism, i.e., whether satisfying a rule precondition im-
plies that the other rules in the same table cannot be fired.

Having the inference on the rule level established, let
us now move to the discussion how the inference with the
XTT tables (see Table 3) grouping XTT rules (see Sec-
tion 6) operating in the same context is performed.

8. Inference strategies for XTT

Any XTT table can have one or more inputs. Let T denote
a table. By I(T) we shall denote the number of input links
to table T . If there are k such input links, they will be
denoted as 1.T, 2.T, . . . , k.T .

Note that all the links are, in fact, considered an AND
connection. In order to fire table T , all the input tables
from which the input links come must be fired to provide
the necessary information to fire T .

Table 6. Inconsistency conditions for atomic formulae pairs.

�|= A = W A ⊆ W A ⊇ W A ∼ W

A = V W �= V V �⊆ W W �⊆ V V ∩W �=
∅

A ⊆ V W �⊆ V V ∩W =
∅

W �⊆ V W ∩ V =
∅

A ⊇ V V �⊆ W V �⊆ W _ _
A ∼ V V ∩W =

∅
V ∩W =
∅

_ _

Similar conclusions regard the output. Any table can
have one or more output links (from different rules which
are placed at the rows of the table), and such an output link
can be directed to one or more tables. If there are m such
output links, we shall denote them as T.1, T.2, . . . , T.m.

If an output link T.j goes to n tables
T 1, T 2, . . . , Tn, then the links can be denoted as
T.j → T 1, T.j → T 2, . . . , T.j → Tn. In fact, we
can have Σm

j=1dim(j), where dim(j) is the number of
addressed tables (here n).

The XTT tables to which no connections point are
referred to as input tables. The XTT tables with no con-
nections pointing to other tables are referred to as output
tables. All the other tables (ones having both input and
output links) are referred to as middle tables.

Now, consider a network of tables connected accord-
ing to the following principles:

• there is one or more input table,

• there is one or more output table,

• there is zero or more middle tables,

• all the tables are interconnected.

The problem is how to choose the inference order.
The basic principle is that, before firing a table, all the im-
mediately preceding tables must have already been fired.
The structure of the network imposes a partial order with
respect to the order of table firing. Below, we describe
three possible algorithms for inference control.

The HeKatE methodology. Hybrid engineering of intelligent systems 47

8.1. Fixed-order approach. The simplest algorithm
consists of a hard-coded order of inference, in such a way
that every table is assigned an integer number; all the num-
bers are different from one another. The tables are fired in
order from the lowest number to the highest one.

In order to ensure the executability of the inference
process, the assignment of such numbers should fulfill the
following minimal requirement: for any table T , the num-
bers assigned to tables being predecessors of T must all
be lower than the one assigned to T .

After starting the inference process, the predefined
order of inference is followed. The inference stops after
firing the last table. In case a table contains a complete
set of rules (with respect to possible outputs generated by
preceding tables), the inference process should end with
all the output values defined by all the output tables being
produced.

8.2. Token-transfer approach. This approach is
based on monitoring the partial order of inference defined
by the network structure with tokens assigned to tables.
A table can be fired only when there is a token at each
input. Intuitively, a token at the input is a kind of a flag
signalling that the necessary data generated by the preced-
ing table are ready for use.

The tables ready to be fired (with all tokens at the
input) are placed in an FIFO queue. The outline of this
algorithm is as follows:

• Since input tables have 0 inputs, they automatically
have all the tokens they need.

• All the input tables are placed in an FIFO queue (in
arbitrary order).

• Then the following procedure is repeated; the first
table from the queue is fired and removed from the
queue, the token is removed from its input and placed
at the active output link and passed to all following
tables. Simultaneously, if a token is passed to a table,
the table is immediately checked if it has tokens at
all the inputs; if so, it is appended to the end of the
queue.

• The process stops when the queue is empty (no fur-
ther tables to fire).

Note that this model of inference execution covers
the case of possible loops in the network. For example, if
there is a loop and a table should be fired several times in
turn, the token is passed from its output to its input, and it
is analyzed if it can be fired; if so, it is placed in the queue.

8.3. Goal-driven approach. The presented models of
inference control can be considered to be blind procedures
since they do not take into consideration the goal of infer-
ence. Hence, it may happen that numerous tables are fired

without purpose—the results they produce are of no inter-
est. This, in fact, is a deficiency of most of the forward-
chaining rule-based inference control strategies.

A goal-driven approach works backwards with re-
spect to selecting the tables necessary for a specific task,
and then fires the tables forwards so as to achieve the goal.
The principles of backward search procedures are as fol-
lows:

• one or more output tables are identified as the ones
that can generate the desired goal values: these are
the tables that must be fired;

• these tables are stored on a stack (LIFO queue) in
an arbitrary order;

• the following procedure is repeated: the list of tables
from the queue is examined and all the input tables
are identified; they are placed on the stack, while the
analyzed table is marked as “needed” and removed
from the queue;

• only unvisited tables are examined;

• for input tables no analysis is necessary; all the input
tables necessary to start the process are identified.

The execution is performed forward using the token-
transfer approach. Tables which are not marked as
“needed” on the stack are not fired—they are not neces-
sary to achieve the goal.

Let us now move to practical issues concerning both
the design and the implementation of XTT-based systems.

9. XTT rule runtime and design tools

The XTT approach introduces a new knowledge represen-
tation as well as inference algorithms. This makes the use
of the existing rule design and implementations imprac-
tical and often impossible. The HeKatE project aims at
developing not just the conceptual methods but also prac-
tical computer tools to support them. Within the project, a
number of tools to support the design and implementation
of XTT-based systems has been developed. These include
the following:

• visual design tools for rule design (HQEd) and pro-
totyping (HJEd),

• rule runtime environment (HeaRT), and

• rule translation facilities (HaThoR).

All of these tools are built around the XTT knowledge
model.

The visual XTT model is represented by means of
a human readable, algebraic notation, also called the
XTT presentation syntax, or HeKatE Meta Representation
(HMR). An example excerpt of HMR is given below:

48 G.J. Nalepa and A. Ligęza

xschm th: [today,hour] ==> [operation].

xrule th/1:
[today eq workday,
hour gt 17]

==>
[operation set not_bizhours].

xrule th/4:
[today eq workday,
hour in [9 to 17]]

==>
[operation set bizhours].

The first line defines an XTT table scheme, or header,
defining all of the attributes used in the table. Its seman-
tics are as follows: “the XTT table th has two conditional
attributes: today and hour, and one decision attribute: op-
eration”. This information is determined from the con-
ceptual design phase using the ARD method. Then, two
examples of rules are given. The second rule can be read
as: “Rule with ID 4 in the XTT table called th: if the
value of the attribute today equals (=) value workday and
the value of the attribute hour belongs to the range (∈)
< 9, 17 >, then set the value of the attribute operation to
the value bizhours”. For a more complete and up-to-date
description of HMR, see the HeKatE wiki.7

The above representation can be directly run by the
HeKatE RunTime environment (HeaRT) (Nalepa et al.,
2009). An HMR file is, in fact, a legal Prolog code that can
be interpreted directly (a number of custom operators are
defined). Therefore, the HeaRT prototype is implemented
in Prolog (Bratko, 2000) and provides implementation for
a number of inference solutions, including the three de-
scribed before. The engine can then be embedded into a
complete application, including the interfaces and the pre-
sentation layer, using the MVC pattern (see Section 3). In
this case, HeaRT provides the logical Model. The control
logic is built in a declarative way, using structured XTT
representation. The engine provides a flexible communi-
cation mechanism using callbacks that can be run on the
attribute value updates. The callbacks can be implemented
in any language, using a Prolog interface; currently, Java,
Python and PHP callback interfaces are available.8

In order to design the XTT model, visual editors in-
troduced in Section 3 are used. In the ARD rule proto-
typing phase, two tools are currently available: VARDA
and HJEd. They support the visual design of ARD dia-
grams, modeling functional dependencies between XTT
rule attributes. VARDA is a proof of a concept prototype
tool written in Prolog. HJEd is a portable visual editor
implemented in Java. An example session with HJEd is
presented in Fig. 5. The output from this phase allows the

7https://ai.ia.agh.edu.pl/wiki/hekate:hmr.
8See https://ai.ia.agh.edu.pl/wiki/hekate:heart

for a more up-to-date description of HeaRT.

generation of XTT table schemes.
One of the main features of the XTT method is the

compact visual representation. From the designer’s point
of view, it needs to be supported by a CASE tool in or-
der to be effective. The HQed (Kaczor, 2008; Kaczor
and Nalepa, 2008) tool (Fig. 6) uses the rule prototypes
generated in the conceptual design, and supports the ac-
tual visual process of the logical design of XTT tables.
It is a cross-platform tool written in C++ and the Qt li-
brary. One of the most important editor features is the sup-
port for XTT; it concerns rulebase quality assurance and
refers to several specific issues: condition specification
constraints, structured rulebase syntax, gradual model re-
finement, with partial simulation logical rule model qual-
ity. The first issue is tackled by providing a number of
editing features, enforcing strict user data verification. Ev-
ery attribute value entered into XTT cells (corresponding
to ALSV(FD) formulae) is checked against the attribute
domain. On the other hand, the user is hinted during the
editing process with feasible attribute values.

The rulebase syntax may be checked against anoma-
lies, e.g., incomplete rule specification, malformed infer-
ence specification, including missing table links. The edi-
tor allows gradual rule refinement, with online checking of
attribute domains, as well as simple table properties, such
as inference-related dead rules. With simple tables, it is
possible to emulate and visualize the inference process.

However, the main quality feature being developed
is a plugin framework, allowing the integration of Prolog-
based components for rule analysis (being part of the in-
ference engine) to check the formal properties of the XTT
rule base, such as completeness, redundancy, or determin-
ism (Ligęza and Nalepa, 2005). Here, analysis is per-
formed on the logical level, where the rows of the XTT
tables are interpreted and analyzed as ALSV(FD) formu-
lae.

Another important group of HeKatE tools are knowl-
edge translators (HaThoR). They use HMR serialization
to an XML-based format known as the HML (HeKatE
Markup Language). This format is used by editing tools to
store the model together with some technical information,
such as diagram location in the editor, etc. HML transla-
tors are implemented with the use of XSLT (Clark, 1999),
which provides an XML-based syntax for defining XML
translators. The HaThoR framework aims at allowing ex-
change between HeKatE knowledge representation and
other important rule formats. These are mainly being
developed by the Semantic Web initiative9 and addition-
ally include RIF10, which provides a generic rule inter-
change format, and the SWRL (A Semantic Web Rule Lan-
guage) (Horrocks et al., 2004), which builds on ontolo-
gies.

9http://www.w3.org/2001/sw.
10http://www.w3.org/2005/rules/wiki/RIF

_Working_Group.

https://ai.ia.agh.edu.pl/wiki/hekate:hmr.
https://ai.ia.agh.edu.pl/wiki/hekate:heart
http://www.w3.org/2001/sw.
http://www.w3.org/2005/rules/wiki/RIF
_Working_Group.

The HeKatE methodology. Hybrid engineering of intelligent systems 49

Fig. 5. ARD diagram editing with HJEd.

Fig. 6. HQEd editing session, the XTT rulebase structure with anomalies detected.

All of the tools are released as free software11 under
the terms of the GNU GPL licence from the project web-
site, see http://hekate.ia.agh.edu.pl.

11http://www.gnu.org/philosophy/free-sw.html.

10. Related tools

The primary idea behind XTT as a knowledge representa-
tion and HeKatE as a design methodology was to over-
come selected important limitations of well-established
approaches (see Section 3.1). Considering that fact, it is

http://hekate.ia.agh.edu.pl
http://www.gnu.org/philosophy/free-sw.html.

50 G.J. Nalepa and A. Ligęza

important to briefly evaluate the achieved results. Here,
the focus is on two most important solutions that have
become de facto standards and are openly available (see
Section 2). The first is CLIPS and its new Java-based
incarnation—Jess. The other one is Drools, which inherits
some of the important CLIPS features, such as the Rete-
based inference, while providing a number of high-level
integration features on the Java Enterprise Edition plat-
form.

Previously, in Section 3.1, three main problems ar-
eas where identified, that is, (i) knowledge representation,
(ii) a transparent structure and efficient inference in the
rulebase, (iii) a well-founded systematic and complete de-
sign process.

As of the first issue, XTT provides an expressive, for-
mally defined language to describe rules. The language al-
lows formally described inference, property analysis and
code generation. Additional callbacks in rule decision
provide means to invoke external functions or methods in
any language. This feature is superior to those found in
both CLIPS/Jess and Drools. On the other hand, the main
limitation of the HeKatE approach is the state-base de-
scription of the system, where the state is understood as a
set of attribute values. This solution fits well in a number
of well defined control or decision precesses. However, it
might prove insufficient in more general applications. In
that case, CLIPS/Jess offers several other programming
paradigms, including an object-oriented one. Drools is
integrated with the Java stack, opening means to imple-
ment almost any behavior. One should keep in mind that
such heterogeneous multi-paradigm programs cannot be
considered plain “rule-based systems” anymore. It should
also be emphasized that, in a general case, formal analysis
of such systems is hardly possible.

The implicit rule base structure is another important
feature of XTT. Rules are grouped into decision tables
during design, and inference control is designed during
conceptual design, and later on refined during logical de-
sign. Therefore, XTT representation is highly optimized
towards rulebase structuring. This is different from all
Rete-based solutions, including all three previously men-
tioned, that is, CLIPS, Jess, and Drools. This feature
makes visual design much more transparent and scalable.
It also greatly improves the inference process.

It is worth noting that, in fact, all the Rete-based solu-
tions seek some kind of structuring. In the case of CLIPS,
it is possible to modularize the rulebase (see Chapter 9
in (Giarratano and Riley, 2005)). It is possible to group
rules into modules operating in given contexts, and then
to provide context switching logic. Such a modularized
structure can correspond to phases of the decision pro-
cess. Another solution is the hierarchization of the rule
set. Drools 5 offers Drools Flow, which allows defining
the rule set and a simple control structure determining
their execution. In fact, this is similar to the XTT-based

solution. However, it is a weaker mechanism that does not
correspond to table-based solutions. In XTT, rules having
the same attributes are grouped by design. This opens up
possibilities for inference optimization and strong formal
analysis on the table level. A group (subtree) of linked
XTT tables can also be defined to work in a given context.

The last issue concerning a complete design process
seems to be in practice the most important one. Both
CLIPS and Jess are classic expert system shells, provid-
ing rule languages, and runtimes. They are not directly
connected to any design methodology. The rule language
does not have any visual representation, so no complete
visual editors are available. In fact, the implementation
process for these systems can be supported by a number
of external environments, with Eclipse12 being the best
example. Jess 7 provides JessDE, and an Eclipse plugin-
based environment. However, it is worth emphasizing that
these tools do not visualize the knowledge contained in
the rule base. In fact, they simplify syntax checking, run-
time debugging (including the Rete network view) and
rule management.

Drools 5 is decomposed into four main parts: Gu-
vnor, Expert, Flow, Fusion. It offers several support tools,
namely, the Eclipse-based environment, similar but more
robust than the one Jess provides. One of the “design sup-
port” features is the ability to read Excel files containing
simple decision tables, with the basic control structure.
While this is a valuable feature, it does not provide any
on-line syntax checking.

In both cases, it is crucial to emphasize that there is
a fundamental difference between a graphical user inter-
face, like the one provided by generic Eclipse-based so-
lutions, and visual design support and specification pro-
vided by languages such as XTT for rules, in software en-
gineering by UML, or by Petri nets for parallel systems.

11. Conclusions

The primary area of interest of this paper is the design
of rule-based intelligent control and decision support sys-
tems. In the paper, a review of the state-of-the-art in rule-
based systems is given. Based on it, some practical issues
in the design of rule-based controllers are discussed. Ma-
jor drawbacks in the existing solutions are identified, in-
cluding limitations in the formal language definition, the
internal knowledge structure, and the systematic design
procedure.

This analysis provides guidelines for the HeKatE ap-
proach. It aims at solving these limitations by the in-
troduction of a custom formalized rule language called
XTT (in fact, the version considered in this paper is called
XTT2). The formalization is based on ALSV(FD) logic.
In the described approach, a systematic design process for

12http://www.eclipse.org.

http://www.eclipse.org.

The HeKatE methodology. Hybrid engineering of intelligent systems 51

rule-based systems is considered. It is practically sup-
ported by a number of tools presented in the paper.

The original contribution of the presented approach
covers the following issues:

• a clear definition of formal logical language with an
intuitive interpretation for knowledge representation,

• a modular structure of the rule base, oriented towards
modular development methodology,

• goal-directed inference and flexible inference modes,

• formal verification of XTT knowledge modules,

• consistent top-down design methodology supported
by software tools.

Some future extensions of the presented formalism
are also considered, including fuzzy rules. However,
these are out of scope of this paper. For more details,
see (Ligęza and Nalepa, 2008).

The up-to-date results of the project, as well all
the relevant papers, are available on the project website
(http://hekate.ia.agh.edu.pl). A repository
of tools available for download is also open for the com-
munity.

Acknowledgment

The paper is supported by the HeKatE project funded
with 2007–2009 state resources for science as a research
project.

The authors wish to thank the anonymous review-
ers for their valuable comments and remarks that greatly
helped in improving the final version of the paper.

Special thanks are due Dr. Marcin Szpyrka, Dr. Sła-
womir Nowaczyk, Claudia Obermaier, and Weronika
T. Furmańska for reading the preliminary versions of the
paper and providing us with valuable comments, remarks
and criticism that helped us to improve the article as well
as gain a broader perspective on our work.

We would like to kindly acknowledge an important
contribution from our Master’s degree students Krzysztof
Kaczor, Michał Gawędzki, Szymon Bobek, and Szymon
Książek, who implemented the tools mentioned in this pa-
per.

References
Ben-Ari, M. (2001). Mathematical Logic for Computer Science,

Springer-Verlag, London.

Bratko, I. (2000). Prolog Programming for Artificial Intelli-
gence, 3rd Edn, Addison Wesley, Harlow.

Browne, P. (2009). JBoss Drools Business Rules, Packt Publish-
ing, Birmingham.

Brownston, L., Farrell, R., Kant, E. and Martin, N. (1985).
Programming Expert Systems in OPS5, Addison-Wesley,
Reading, MA/Menlo Park, CA.

Burbeck, S. (1992). Applications programming in smalltalk-
80(tm): How to use model-view-controller (MVC), Tech-
nical report, Department of Computer Science, University
of Illinois, Urbana-Champaign, IL.

Cheng, A. M. K. (2002). Real-Time Systems. Scheduling, Anal-
ysis and Verification, John Wiley & Sons, Inc., Hoboken,
NJ.

Clark, J. (1999). Xsl transformations (xslt) version 1.0 w3c rec-
ommendation 16 November 1999, Technical report, World
Wide Web Consortium (W3C).

Connolly, T., Begg, C. and Strechan, A. (1999). Database
Systems. A Practical Approach to Design, Implementa-
tion, and Management, 2nd Edn, Addison-Wesley, Har-
low/Reading, MA.

Coenen, F., et al. (2000). Validation and verification of
knowledge-based systems: Report on eurovav99, The
Knowledge Engineering Review 15(2): 187–196.

Forgy, C. (1982). Rete: A fast algorithm for the many pat-
terns/many objects match problem, Artificial Intelligence
19(1): 17–37.

Friedman-Hill, E. (2003). Jess in Action, Rule Based Systems in
Java, Manning, Greenwich, CT.

Gamma, E., Helm, R., Johnson, R. and Vlissides, J. (1995). De-
sign Patterns, 1st Edn, Addison-Wesley Pub Co, Reading,
MA.

Genesereth, M. R. and Nilsson, N. J. (1987). Logical Foun-
dations for Artificial Intelligence, Morgan Kaufmann Pub-
lishers, Inc., Los Altos, CA.

Giarratano, J. C. and Riley, G. D. (2005). Expert Systems, Thom-
son, Boston, MA.

Giurca, A., Gasevic, D. and Taveter, K. (Eds) (2009). Hand-
book of Research on Emerging Rule-Based Languages and
Technologies: Open Solutions and Approaches, Informa-
tion Science Reference, Hershey, New York, NY.

Horrocks, I., Patel-Schneider, P. F., Boley, H., Tabet, S., Grosof,
B. and Dean, M. (2004). SWRL: A semantic web rule lan-
guage combining OWL and RuleML: W3C member sub-
mission 21 may 2004, Technical report, W3C.

Jackson, P. (1999). Introduction to Expert Systems, 3rd Edn,
Addison-Wesley, Harlow.

Kaczor, K. (2008). Design and implementation of a unified rule
base editor, M.Sc. thesis, AGH University of Science and
Technology, Cracow.

Kaczor, K. and Nalepa, G. J. (2008). Design and implementation
of hqed, the visual editor for the xtt+ rule design method,
Technical Report CSLTR 02/2008, AGH University of Sci-
ence and Technology, Cracow.

Klösgen, W. and Żytkow, J. M. (Eds) (2002). Handbook of
Data Mining and Knowledge Discovery, Oxford Univer-
sity Press, New York, NY.

Laffey etal, T. (1988). Real-time knowledge-based systems, AI
Magazine Spring: 27–45.

http://hekate.ia.agh.edu.pl

52 G.J. Nalepa and A. Ligęza

Liebowitz, J. (Ed.) (1998). The Handbook of Applied Expert
Systems, CRC Press, Boca Raton, FL.

Ligęza, A. (1986). An expert systems approach to analysis and
control in certain complex systems, Preprints of the 4-th
IFAC/IFIP Symposium on Software for Computer Control
SOCOCO’86, Graz, Austria, pp. 147–152.

Ligęza, A. (1988). Expert systems approach to deci-
sion support, European Journal of Operational Research
37(1): 100–110.

Ligęza, A. (1993). Logical foundations for knowledge-based
control systems—Knowledge representation, reasoning
and theoretical properties, Scientific Bulletins of AGH: Au-
tomatics 63(1529): 144.

Ligęza, A. (1996). Logical support for design of rule-based sys-
tems. Reliability and quality issues, in M. Rousset (Ed.),
ECAI-96 Workshop on Validation, Verification and Re-
finment of Knowledge-based Systems, Vol. W2, ECCAI
(European Coordination Committee for Artificial Intelli-
gence), Budapest, pp. 28–34.

Ligęza, A. (1998). Towards logical analysis of tabular rule-based
systems, Proceedings of the Ninth European International
Workshop on Database and Expert Systems Applications,
Vienna, Austria, pp. 30–35.

Ligęza, A. (1999). Validation and Verification of Knowl-
edge Based Systems: Theory, Tools and Practice, Kluwer
Academic Publishers, Boston, MA/Dordrecht/London,
pp. 313–325.

Ligęza, A. (2001). Toward logical analysis of tabular rule-
based systems, International Journal of Intelligent Systems
16(3): 333–360.

Ligęza, A. (2005). Logical Foundations for Rule-Based Systems,
AGH University of Science and Technology Press, Cracow.

Ligęza, A. (2006). Logical Foundations for Rule-Based Systems,
Springer-Verlag, Berlin/Heidelberg.

Ligęza, A. and Nalepa, G. J. (2005). Visual design and
on-line verification of tabular rule-based systems with
XTT, in K. P. Jantke, K.-P. Fähnrich and W. S. Wittig
(Eds), Marktplatz Internet: Von e-Learning bis e-Payment:
13. Leipziger Informatik-Tage, LIT 2005, Lecture Notes
in Informatics (LNI), Gesellschaft fur Informatik, Bonn,
pp. 303–312.

Ligęza, A. and Nalepa, G. J. (2007). Knowledge representation
with granular attributive logic for XTT-based expert sys-
tems, in D. C. Wilson, G. C. J. Sutcliffe and FLAIRS (Eds),
FLAIRS-20: Proceedings of the 20th International Florida
Artificial Intelligence Research Society Conference: Key
West, Florida, May 7-9, 2007, Florida Artificial Intelli-
gence Research Society, AAAI Press, Menlo Park, CA,
pp. 530–535.

Ligęza, A. and Nalepa, G. J. (2008). Granular logic with vari-
ables for implementation of extended tabular trees, in D. C.
Wilson and H. C. Lane (Eds), FLAIRS-21: Proceedings
of the Twenty-First International Florida Artificial Intelli-
gence Research Society conference: 15–17 May 2008, Co-
conut Grove, Florida, USA, AAAI Press, Menlo Park, CA,
pp. 341–346.

Ligęza, A., Wojnicki, I. and Nalepa, G. J. (2001). Tab-trees:
A case tool for design of extended tabular systems, in
H.C. Mayr, J. Lazansky, G. Quirchmayr and P. Vogel (Eds),
Database and Expert Systems Applications, Lecture Notes
in Computer Sciences, Vol. 2113, Springer-Verlag, Berlin,
pp. 422–431.

Ligęza, A. (1996). Logical Support for Design of Rule-Based
Systems. Reliability and Quality Issues LAAS, Report
No. 96170, Toulouse.

Morgan, T. (2002). Business Rules and Information Systems.
Aligning IT with Business Goals, Addison Wesley, Boston,
MA.

Nalepa, G. J. (2004). Meta-Level Approach to Integrated Pro-
cess of Design and Implementation of Rule-Based Systems,
PhD thesis, AGH University of Science and Technology,
Institute of Automatics, Cracow.

Nalepa, G. J. and Ligęza, A. (2005a). A graphical tabular model
for rule-based logic programming and verification, Systems
Science 31(2): 89–95.

Nalepa, G. J. and Ligęza, A. (2005b). Software Engineering:
Evolution and Emerging Technologies, Frontiers in Arti-
ficial Intelligence and Applications, Vol. 130, IOS Press,
Amsterdam, pp. 330–340.

Nalepa, G. J. and Ligęza, A. (2005c). A visual edition tool
for design and verification of knowledge in rule-based sys-
tems, Systems Science 31(3): 103–109.

Nalepa, G. J. and Ligęza, A. (2006). Prolog-based analysis
of tabular rule-based systems with the “xtt” approach, in
G. C. J. Sutcliffe and R. G. Goebel (Eds), FLAIRS 2006:
Proceedings of the Nineteenth International Florida Artifi-
cial Intelligence Research Society Conference: Melbourne
Beach, Florida, May 11–13, 2006, Florida Artificial Intel-
ligence Research Society, AAAI Press, Menlo Park, CA,
pp. 426–431.

Nalepa, G. J. and Ligęza, A. (2008). Xtt+ rule design using the
alsv(fd), in A. Giurca, A. Analyti and G. Wagner (Eds),
ECAI 2008: 18th European Conference on Artificial In-
telligence: 2nd East European Workshop on Rule-based
Applications, RuleApps2008: Patras, 22 July 2008, Uni-
versity of Patras, Patras, pp. 11–15.

Nalepa, G. J., Ligęza, A., Kaczor, K. and Furmańska, W. T.
(2009). Hekate rule runtime and design framework, in
G. W. Adrian Giurca and G.J. Nalepa (Eds), Proceedings of
the 3rd East European Workshop on Rule-Based Applica-
tions (RuleApps 2009), Cottbus, Germany, September 21,
2009, BTU Cottbus, Cottbus, pp. 21–30.

Pawlak, Z. (1991). Rough Sets. Theoretical Aspects of Rea-
soning about Data, Kluwer Academic Publishers, Dor-
drecht/Boston, MA/London.

Quinlan, J. R. (1987). Simplifying decision trees, International
Journal of Man-Machine Studies 27(3): 221–234.

Ross, R. G. (2003). Principles of the Business Rule Approach,
1st Edn, Addison-Wesley Professional, Reading, MA.

Torsun, I. S. (1995). Foundations of Intelligent Knowledge-
Based Systems, Academic Press, London/San Diego,
CA/New York, NY/Boston, MA/Sydney/Tokyo/Toronto.

The HeKatE methodology. Hybrid engineering of intelligent systems 53

Tzafestas, S. and Ligęza, A. (1988). Expert control through
decision making, Foundations of Control Engineering
13(1): 43–51.

Tzafestas, S. and Ligęza, A. (1989). Expert control through de-
cision making, Journal of Intelligent and Robotic Systems
1(4): 407–425.

van Harmelen, F., Lifschitz, V. andPorter, B. (Eds) (2007).
Handbook of Knowledge Representation, Elsevier Science,
Amsterdam.

van Harmelen, F. (1996). Applying rule-based anomalies to
kads inference structures, ECAI’96 Workshop on Valida-
tion, Verification and Refinement of Knowledge-Based Sys-
tems, Budapest, Hungary, pp. 41–46.

von Halle, B. (2001). Business Rules Applied: Building Better
Systems Using the Business Rules Approach, Wiley, New
York, NY.

Grzegorz J. Nalepa holds the position of an
assistant professor at the AGH University of
Science and Technology in Cracow, Poland,
Department of Automatics. Since 1995 he
has been actively involved in a number of re-
search projects, including Regulus, Mirella,
Adder, HeKatE, and recently INDECT. His
Ph.D., received from the AGH UST in 2004,
concerned new design methods for intelligent
systems. Since 2007 he has been coordinating

the HeKatE project, led by Prof. Antoni Ligęza. He is the author of
a number of publications from the domains of knowledge engineering,
intelligent systems and software engineering. His fields of interest also
include computer security and operating systems. He has formulated
a new design and implementation approach for intelligent rule-based
systems called XTT (eXtended Tabular Trees). He is involved in sev-
eral conferences and workshops, including DERIS at FLAIRS, RuleApps,
AISEW, and KESE. Since 2008 he has been co-organizing the Knowl-
edge and Software Engineering Workshop (KESE) at KI, the German AI
conference.

Antoni Ligęza is a full professor in the domain
of computer science at the AGH University of
Science and Technology in Cracow, Poland.
His principal areas of investigation are artificial
intelligence and knowledge engineering. He
lectures on knowledge engineering, databases,
Prolog, automated diagnosis, discrete mathe-
matics and logics. He is a member of the ACM
and the IEEE Computer Society. He is an au-
thor and co-author of over 200 research publi-

cations, including international conference papers, journals, chapters in
books. His recent book Logical Foundations for Rule-Based Systems was
published by Springer in 2006, and it covers issues ranging from logic
foundations, propositional, attributive and first-order logics, through var-
ious forms of rule-based systems to design and verification issues. He
has been a visiting scholar and worked in Denmark (Technical Univer-
sity of Lyngby) for four months, France (LAAS of CNRS, Toulouse;
University of Nancy I, Nancy; CRIL Lens; University of Caen, Caen)
for about two years in total, and Spain (University of Balearic Islands,
Palma de Mallorca; University of Girona, Girona) for about one year.

Received: 1 February 2009
Revised: 20 July 2009

	Introduction
	Rule-based intelligent control
	Explaining the ideas of rules in control
	Rule-based control
	Rule-based control and decision support. Historical perspective of research towards the XTT approach

	HeKatE approach
	Motivation
	Main principles
	Goals and Perspectives
	Intuitive example
	Review of the methods

	State representation
	Requirements for state representation
	State specification

	Attributive logic
	Basics of attributive languages

	Set attributive logic development
	ALSV(FD)
	XTT rules in ALSV(FD)

	Basic inference rules for ALSV(FD)
	Inference strategies for XTT
	Fixed-order approach
	Token-transfer approach
	Goal-driven approach

	XTT rule runtime and design tools
	Related tools
	Conclusions

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org?)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Versita Adobe Distiller Settings for Adobe Acrobat v6)
 /POL (Versita Adobe Distiller Settings for Adobe Acrobat v6)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [597.600 842.400]
>> setpagedevice

