
Int. J. Appl. Math. Comput. Sci., 2010, Vol. 20, No. 1, 191–205
DOI: 10.2478/v10006-010-0014-6

ANALYSIS OF MULTIBACKGROUND MEMORY TESTING TECHNIQUES

IRENEUSZ MROZEK

Institute of Computer Science
Białystok Technical University, Wiejska 45A, 15–351 Białystok, Poland

e-mail: i.mrozek@pb.edu.pl

March tests are widely used in the process of RAM testing. This family of tests is very efficient in the case of simple faults
such as stuck-at or transition faults. In the case of a complex fault model—such as pattern sensitive faults—their efficiency
is not sufficient. Therefore we have to use other techniques to increase fault coverage for complex faults. Multibackground
memory testing is one of such techniques. In this case a selected March test is run many times. Each time it is run with new
initial conditions. One of the conditions which we can change is the initial memory background. In this paper we compare
the efficiency of multibackground tests based on four different algorithms of background generation.

Keywords: RAM testing, pattern sensitive faults, March tests, multibackground testing.

1. Introduction

Modern semiconductor memories are among the most
fundamental integrated-circuit devices and cores in dig-
ital systems (Krasniewski, 2008; Sosnowski, 2007; Zo-
rian, 2002). Their testing is quickly becoming a more dif-
ficult issue as the rapidly increasing capacity and density
of memory chips. With the advances of deep-submicron
technology, more failure modes and faults need to be dealt
with in order to maintain good quality and reliability of
memory chips. The neighborhood pattern sensitive fault
(NPSF) model is not new, but it is still widely discussed
in the literature of memory testing (Goor, 1991; Cheng
et al., 2002; Huang and Li, 2006). This model is more
general and allows describing a wide spectrum of failures
within modern memory chips.

Traditional March algorithms (Goor, 1991) have
been widely used in memory testing because of their lin-
ear time complexity, high fault coverage, and ease in built-
in self-test (BIST) implementation. It is known that tra-
ditional March algorithms do not generate all neighbor-
hood patterns that are required for testing NPSFs. How-
ever, they can be modified to get detection abilities for
NPSFs. Based on traditional March algorithms, various
approaches have been proposed to detect NPSFs, such as
the tiling method (Goor, 1991; Hayes, 1975), the two-
group method (Goor, 1991; Hayes, 1980), the row-March
algorithm (Franklin and Saluja, 1996), transparent testing
(Cockburn, 1995; Karpovsky and Yarmolik, 1994; Nico-

laidis, 1996; Voyiatzis, 2006), pseudo-exhaustive test-
ing (Karpovsky et al., 1995), testing based on different
address sequences (Sokol and Yarmolik, 2006; Yarmo-
lik, 2008) and different address seeds (Yarmolik, 2008),
and the multibackground method (Yarmolik and Mrozek,
2007).

For one execution of a March test there are no spe-
cific requirements on the address order or the memory
background (Niggemeyer et al., 1998). For any ad-
dress order and memory background, the number of de-
tectable memory faults will be the same and can be cal-
culated according to the structure and properties of the
memory test (Niggemeyer et al., 1998; Yarmolik and
Mrozek, 2007). In the case of multibackground memory
tests, backgrounds play a very important role in the final
outcome. As was shown and investigated in (Yarmolik
and Mrozek, 2007), different subsets of backgrounds can
give different subsets of detectable faults for a selected
memory test. The selection of an optimal set of back-
grounds to get the highest fault coverage is still an open
issue and there are no known algorithms for optimal back-
ground generation and construction in the case of more
than four iterations of the test.

The main goal of this paper is to compare the effi-
ciency of multibackground March tests (in terms of pat-
tern sensitive fault detection) based on standard back-
grounds (Goor, 1991; Karpovsky and Yarmolik, 1994;
Cheng et al., 2002) and the optimal one, which was pro-
posed by the author in (Yarmolik and Mrozek, 2007;

i.mrozek@pb.edu.pl

192 I. Mrozek

Mrozek and Yarmolik, 2008b). The paper is organized
as follows: Section 2 provides an overview of pattern sen-
sitive faults, their types and definitions. Section 3 reviews
March test abilities regarding PSF detection. This section
reviews the March test structure and provides an analy-
sis of the fault coverage of the MATS+ test in the case of
PSF faults. Moreover, this section stresses the importance
of proper background selection in multibackground test-
ing. Section 4 covers background generation techniques.
This section reviews the structure of backgrounds which
are used in multibackground testing. Subsections 4.1–4.3
describe and analyse standard backgrounds known from
the literature. Subsection 4.4 develops in-depth optimal
sets of backgrounds for two, three and four run memory
testing. Section 5 presents the results of the comparison of
the efficiency (in term of PSF detection) of standard back-
grounds and the optimal one. This section presents the
fault coverage of the multirun MATS+ test for PNPSFk
faults and various backgrounds.

2. Pattern sensitive faults

Several types of faults can occur in memory devices, e.g.,
stuck-at faults, transitions faults, coupling faults, address
decoder faults, pattern sensitive faults (Goor, 1991). Some
of them involve only one memory cell, some of them—
more than one memory cell. It is obvious that the latter
are more difficult to detect. A general model of faults be-
longing to the second group are pattern sensitive faults. It
occurs when the content of a memory cell, or the ability
to change the cell content, is influenced by a certain pat-
tern of other cells in the memory. Considering all possible
patterns, as has been shown in numerous publications, is
both impractical and unnecessary.

A simplified model of the PSF, known as the neigh-
borhood PSF (NPSF), is normally adopted. An NPSF
is a special case of the general multicell coupling fault,
wherein the coupling cells are the neighborhood of the
coupled cell. In general, the coupled cell is called the base
cell and the coupling cells are called the deleted neigh-
borhood cells. The base cell and the deleted neighbor-
hood cells together are called neighborhood cells. Among
k-cell NPSFs (NPSFk), three-cell NPSFs (NPSF3), five-
cell NPSFs (NPSF5) and nine-cell NPSFs (NPSF9) are
most often used (see Fig. 1) (Goor, 1991). This fault
model can further be categorized into three subtypes of
faults (Goor, 1991; Huang and Li, 2006): static NPSFs
(SNPSF), passive NPSFs (PNPSF) and active NPSFs
(ANPSF).

A static NPSF (SNPSF) occurs if the base cell is
forced to a certain state due to the appearance of a certain
pattern in the deleted neighborhood. To detect SNPSF3
and SNPSF5, all the eight (for SNPSF3) and all the 32 (for
SNPSF5) static neighborhood patterns must be applied,
and the generation of these patterns by the test algorithm

(a) (b)

Fig. 1. Topology of NPSF faults: Type 1—five-cell NPSF (a),
Type 2—nine-cell NPSF (b).

must be verified.
A passive NPSF (PNPSF) occurs if the base cell can-

not change its state from 0 to 1 or from 1 to 0 due to the
appearance of a certain pattern in the deleted neighbor-
hood. To detect PNPSF3 and PNPSF5, all the eight (for
PNPSF3) and all the 32 (for PNPSF5) static neighborhood
patterns must be applied, and the generation of these pat-
terns within neighborhood cells by the test algorithm must
be verified.

An active NPSF (ANPSF) occurs if the base cell
is forced to a certain state when a transition occurs in a
deleted neighborhood cell, while other deleted neighbor-
hood cells assume a certain pattern. To detect ANPSF3
and ANPSF5, all 16 (for ANPSF3) and all 128 (for
ANPSF5) static neighborhood patterns must be applied,
and the generation of these patterns by the test algorithm
must be verified.

Let us focus our attention on the PNPSF as the most
difficult fault to be detected. First of all, it should be em-
phasized that due to scrambling information as well as
specific optimization techniques a huge amount of such
types of faults that should be considered. Any arbitrary k
memory cells out of all N memory cells can be involved
into PNPSFk. There are k subtypes of distinct PNPSFk
faults. This classification depends on the order in the ad-
dress space and on places of all the cells within this space.

Let the memory addresses i0, i1, i2 . . . ik−1 for
particular PNPSFk be sorted in ascending order, in
such a way that i0 < i1 < i2 < · · · < ik−1. Then, ev-
ery PNPSFk can be presented as the set of el-
ements ai0, ai1, ai2, . . . , ai(k−1), aij ∈ {0, 1}; j =
0, 1, 2, . . . , (k − 1) ordered in the address space ac-
cording to the ascending order of memory cell ad-
dresses. One out of k cells is the base cell. This
means that there are k separate classes of PNPSFk with
respect to the base cell position. For example, in
the case when k = 5, there are five separate classes
of PNPSFk, namely, bi0ni1ni2ni3ni4, ni0bi1ni2ni3ni4,
ni0ni1bi2ni3ni4, ni0ni1ni2bi3ni4 and ni0ni1ni2ni3bi4

(bij—base cell, nij—neighborhood cell). For neighbor-
hood patterns there are 2k−1 different patterns and there

Analysis of multibackground memory testing techniques 193

are two states for the base cell. Then the exact number of
PNPSFk is determined as

Lk = 2 × 2k−1 × k ×
(

N

k

)
= 2k × k ×

(
N

k

)
. (1)

It is quite important to emphasize that there is an equal
number of the faults considered within all k classes,
namely, Lk/k. For example, in the case of PNPSF3 we
have 448 faults bi0, ni1, ni2, 448 faults ni0, bi1, ni2, and
448 faults ni0, ni1, bi2.

3. PSF detection capabilities of March tests

Different types of algorithms have been proposed to test
random access memory (RAM). Among them March tests
are most often used because of their linear complexity and
the number of types of fault detection. Also, it is easy
to transform them from non-transparent to a transparent
version. Transparent tests have the circular property to
ensure the recovery of a memory content. For the fault
free case, at the end of the test session a memory content
will have the same value as before the session, and for
faulty memory, the content at the end of the session will
be different from the initial content.

A March test consists of a sequence of March ele-
ments; a March element consists of a sequence of oper-
ations which are all applied to a given cell, before pro-
ceeding to the next one. The way one proceeds to the
next cell is determined by the address order which can
be increasing (increasing addresses from cell 0 to n − 1),
denoted by “⇑”, or decreasing, denoted by “⇓”. The
“⇑” address order has to be the exact inverse of the “⇓”
address order (Goor, 1991). For some March elements,
the address order can be chosen arbitraily—this will be
indicated by the symbol “�”. An operation applied to
a cell can be ‘w0’ (write ‘0’), ‘w1’, “r0” (read 0), or
“r1”. A well-known March test is March C-, which has
complexity equal to (9N) and the following transparent
form: {⇑ (ra, wā);⇑ (rā, wa);⇓ (ra, wā);⇓ (rā, wa);
� (ra)}, where a ∈ {0, 1} and ā is an inverse value com-
pared with a (Nicolaidis, 1996).

Now let us examine some memory tests in terms
of their abilities to detect PNPSFk. As has been ob-
served, the main part of memory tests usually has se-
quences of the phases. For example, the transparent
MATS+ test is constructed as {⇑ (ra, wā);⇓ (rā, wa)}.
Suppose that we use it for testing 8-bit memory and
the initial value of the memory (background) is A =
a0, a1, a2, a3, a4, a5, a6, a7. For the 8-bit memory, there
are 2×3×23−1×56 = 1344 PNPSF3 and 2×5×25−1×
56 = 8960 PNPSF5 (see (1)). The consecutive states of
the tested memory according to the MATS+ procedure are
shown in Table 1.

It should be mentioned that as the memory address
sequence, counter sequences were chosen, and the start-

Table 1. MATS+ test implementation.

MATS+ Memory contents
Phases a0 a1 a2 a3 a4 a5 a6 a7

⇑ (ra, wā)

ā0 a1 a2 a3 a4 a5 a6 a7

ā0 ā1 a2 a3 a4 a5 a6 a7

ā0 ā1 ā2 a3 a4 a5 a6 a7

ā0 ā1 ā2 ā3 a4 a5 a6 a7

ā0 ā1 ā2 ā3 ā4 a5 a6 a7

ā0 ā1 ā2 ā3 ā4 ā5 a6 a7

ā0 ā1 ā2 ā3 ā4 ā5 ā6 ā7

ā0 ā1 ā2 ā3 ā4 ā5 ā6 ā7

⇓ (rā, wa)

ā0 ā1 ā2 ā3 ā4 ā5 ā6 ā7

ā0 ā1 ā2 ā3 ā4 ā5 ā6 ā7

ā0 ā1 ā2 ā3 ā4 ā5 a6 a7

ā0 ā1 ā2 ā3 ā4 a5 a6 a7

ā0 ā1 ā2 ā3 a4 a5 a6 a7

ā0 ā1 ā2 a3 a4 a5 a6 a7

ā0 ā1 a2 a3 a4 a5 a6 a7

ā0 a1 a2 a3 a4 a5 a6 a7

ing address was i0 = 0. Now we can see the only pattern
appearing, within all memory for every active cell marked
in bold. Indeed, we check (read ai and write the inverse
value āi during the first phase and read āi and write ai

during the second phase) the cell ai in both phases for the
same background in the remaining cells. The activation of
PNPSFk can occur during the write operation for the base
cell only, as well as detection during the read operation.
This means that activation for the MATS+ test occurs dur-
ing the first phase only and detection during the second
one.

To summarize, we can conclude that we can detect
PNPSFk only for one neighborhood pattern in k − 1 cells
out of 2k−1 possible patterns and for one transition within
the base cell from state 0 to state 1 or from 1 to 0. De-
pending on the size k of PNPSFk there are k subtypes of
this fault for which detectable faults will be different in
terms of the pattern within the deleted neighboring cells.
That is why the number Qk of detectable faults during one
MATS+ memory test run is

Qk = k ×
(

N

k

)
, (2)

and fault coverage (FC) for the MATS+ test is

FCM+(PNPSF k) =
Qk

Lk
100%. (3)

As an example, according to (3) the fault coverage of
the MATS+ March test in term of PNPSF5 can be calcu-
lated as FCM+(PNPSF5) = (1/25)100% = 3.125%.
Moreover, it should be stressed that the fault coverage de-
scribed by (3) is valid for every memory March test with
the consecutive phases as in MATS+.

194 I. Mrozek

To investigate memory March tests, let us suppose
that PNPSFk includes memory cells with increasing or-
der of the addresses i0, i1, i2, . . . , ik−1, in such a way that
i0 < i1 < i2 < . . . < ik−1 and the base cell has the
address ij , where 0 ≤ j ≤ k − 1. Then, due to the con-
secutive access to the memory cells during the March test,
there are four possible patterns within deleted neighbor-
hood cells:

1) ᾱi0, ᾱi1, ᾱi2 · · · ᾱi(j−1), αi(j+1) · · ·αi(k−2), αi(k−1),

2) αi0, αi1, αi2 · · ·αi(j−1), ᾱi(j+1) · · · ᾱi(k−2), ᾱi(k−1),

3) ᾱi0, ᾱi1, ᾱi2 · · · ᾱi(j−1), ᾱi(j+1) · · · ᾱi(k−2), ᾱi(k−1),

4) αi0, αi1, αi2 · · ·αi(j−1), αi(j+1) · · ·αi(k−2), αi(k−1).

The first pattern can be generated by the test
which includes one of the following phases: {. . . ⇑
(ra, . . . , wā); . . . } and {. . . ⇓ (rā, . . . , wa); . . . }.
The second pattern appears for the case of {. . . ⇓
(ra, . . . , wā); . . . } and {. . . ⇑ (rā, . . . , wa); . . . }.
The third pattern is possible for the phases {. . . ⇑
(rā, . . . , wā); . . . } and {. . . ⇓ (rā, . . . , wā); . . . }, and
the fourth pattern can be generated in the neighborhood
cells by the following phases: {. . . ⇑ (ra, . . . , wa); . . . }
and {. . . ⇓ (ra, . . . , wa); . . . }. It should be mentioned
that the above March test phases are sufficient only for
fault manifestation and do not necessarily guarantee de-
tectability of PNPSFk. To achieve their detectability, the
read operation of the base cell has to be performed, which
can be done within the same phase or a consecutive one.
Brief analysis of the tests MATS+ and March C- allows us
to make the conclusion that in the first case there is only
one pattern generated in the neighborhood cells

ᾱi0, ᾱi1, ᾱi2, . . . , ᾱi(j−1), αi(j+1), . . . , αi(k−2), αi(k−1),

and in the second case there are two patterns generated in
the neighborhood cells:

ᾱi0, ᾱi1, ᾱi2, . . . , ᾱi(j−1), αi(j+1), . . . , αi(k−2), αi(k−1)

and

αi0, αi1, αi2, . . . , αi(j−1), ᾱi(j+1), . . . , ᾱi(k−2), ᾱi(k−1).

The simplest March test to detect NPSFk is March
PS (4N):

{� (wa);⇑ (ra, wā, rā); }. (4)

Like in the case of the MATS+ test, the March PS (4N)
test generates only one pattern and that is why the cov-
erage of PNPSFk for one run of this test and an arbitrary
background can be calculated according to (3).

As an experimental investigation, the influence of
the second background of two runs of 8-bit memory
testing for PNPSF3 for the test March PS (4N) and
March PS(23N) is shown in Fig. 2 and Table 2. It

Table 2. Two background memory test fault coverage
(March PS(4N)) for PNPSF3.

March PS(4N)
Second Pattern FC
a0a1 · · · a6a7 [%]

00000001

17.1900000010
· · ·

10000000
00000011

20.5400000101
· · ·

11000000
00000111

22.7700001011
· · ·

11100000
00001111

24.1100010111
· · ·

11110000
00011111

24.7800101111
· · ·

11111000
00111111

25.0001011111
· · ·

11111100

should be mentioned that for one run of the memory test
March PS(23N) fault coverage equals to 66.58%, and for
March PS (4N) fault coverage equals to 12.50%. In both
cases, background 00000000 has been chosen as the first
one.

Brief analysis of the experimental results allows
making the conclusion that, depending on the second
background, fault coverage takes sufficiently different val-
ues. For example, in the case of March PS (4N) fault
coverage for the second background 00000010 increases
only by 4.69%, but in the case of the second background
11111111—by 12.50% (see Table 2).

4. Background generation techniques

In this section, four different techniques of background
generation will be investigated. We will focus on random
backgrounds, regular backgrounds, random pairs of back-
grounds, and optimal backgrounds.

4.1. Random backgrounds. One of the approaches
to background generation is to use random backgrounds

Analysis of multibackground memory testing techniques 195

Fig. 2. Influence of the second background on PNPSF3 fault
coverage (March PS(23N)).

B0, B1, B2, . . . , Bl. Let P be a probability of fault detec-
tion by a certain test. Then the probability of not detecting
this fault by the same test is

P ∗ = 1 − P. (5)

The probability of fault detection in the second iteration of
the test (assuming a random change of the memory back-
ground between iterations) is

P2 = 1 − (1 − P)(1 − P) = 1 − (1 − P)2. (6)

Generally speaking, it can be said that the probability
of fault detection after l iterations

Pl = 1 − (1 − P)l. (7)

One run of the MATS+ test allows getting the fault cover-
age 1/2k (see (3)). Therefore, fault coverage for test ses-
sion based on the MATS+ test and random backgrounds
can be calculated as

FCM+(random) = 1 −
(

1 − 1
2k

)l

, (8)

where M+ means MATS+.
The fault coverage of the test session based on

MATS+ test and random backgrounds for different num-
bers of iterations and PNPSF3, PNPSF5 and PNPSF9 are
presented in Table 3.

In the case of transparent testing we can take the ad-
vantage of the fact that RAM undergoes constant changes
in working computer systems. Most modern operat-
ing systems today have a virtual memory module imple-
mented. This makes the contents of physical memory
change to a high degree. To confirm this fact, a real com-
puter system was tested (Linux system, Kernel 2.6, 512
MB RAMs). The physical memory content was read af-
ter every 15 minutes of the computer’s work. Results ob-
tained for a lightly-loaded system (without running addi-
tional software after installation) are presented in Fig. 3

Table 3. Fault coverage of a test session based on the MATS+
test and random backgrounds.

Iterations PNPSF3 PNPSF5 PNPSF9

1 12.500 % 3.125 % 0.195 %
2 23.438 % 6.152 % 0.390 %
4 41.382 % 11.926 % 0.778 %
8 65.639 % 22.430 % 1.549 %
10 73.692 % 27.202 % 1.933 %
15 86.507 % 37.888 % 2.885 %
20 93.079 % 47.005 % 3.829 %
40 99.521 % 71.915 % 7.511 %

and for a heavy-loaded system (with running a lot of mem-
ory consuming software)—in Fig. 4. Each bar represents
physical memory changes (in %) in relation to the previ-
ous state.

0

50

100

1 3 5 7 9 11 13 15 17 19

[%]

× 15 min.
Fig. 3. Changing memory contents in time—a lightly-loaded

system.

0

50

100

1 3 5 7 9 11 13 15 17 19

[%]

× 15 min.
Fig. 4. Changing memory contents in time—a heavy-loaded

system.

From the obtained results you can see that in a real
computer system memory can be divided into two parts:
the one where changes are big enough to successfully use
multibackground testing based on random backgrounds,
and that where changes are not big enough and where we
can use another technique, for example, the one based

196 I. Mrozek

on March address order changing (Sokol and Yarmo-
lik, 2006).

4.2. Regular backgrounds. Another solution is the
application of q = 2(log2 N + 1) backgrounds with the
standard and well-known structure (Goor, 1991). For the
case of N = 2m, there are 2(m + 1) backgrounds. For
example, with m = 5, all 12 backgrounds are shown
in Table 4. The construction of this set can be done for

Table 4. Set of regular backgrounds for m = 5.
B0 00000000000000000000000000000000
B1 11111111111111111111111111111111
B2 00000000000000001111111111111111
B3 11111111111111110000000000000000
B4 00000000111111110000000011111111
B5 11111111000000001111111100000000
B6 00001111000011110000111100001111
B7 11110000111100001111000011110000
B8 00110011001100110011001100110011
B9 11001100110011001100110011001100
B10 10101010101010101010101010101010
B11 01010101010101010101010101010101

the case of transparent testing with 1s indicating the po-
sitions of an inverted value of the original background
B0 = b0b1b2 . . . bN−2bN−1. The positions of 1s for B2

may take a random value but at the same time their num-
ber should be equal to N/2. The next background, B3,
is the inverted copy of the previous one and it is true for
a general case when any background with an odd index is
an inverted copy of the previous background with an even
index. For example, B1 is an inverted copy of B0, B3 is
an inverted copy of B2, and so on. More complicated is
the procedure of even pattern generation. This is due to
the inversion of random bits from the restricted sets of the
previous even background.

The efficiency of this set of backgrounds is shown in
Table 4 and can be calculated analytically (Mrozek et al.,
2008). To simplify the analysis, let us consider the case
of PNPSFk detection based on MATS+ like tests as one of
representatives of simple tests, when k � N .

The first background, B0, from the defined set (see
Table 4) allows us to generate all-zeros patterns within
any k out of N arbitrary memory cells. That is why on
the basis of a MATS+ like test with the background B0

the number of QM+(B0) detectable PNPSFk faults can
be calculated as

QM+(B0) = k ×
(

N

k

)
. (9)

The background B1 generates completely different
patterns, compared with B0, within the arbitrary k mem-
ory cells; then Q(B1) = Q(B0) and Q(B0, B1) =

Q(B1) + Q(B0). Taking into account that for real appli-
cations N is a big integer number for which N − k ≈ N
and Nk 	 Nk−1, the last equations can be simplified to

QM+((B0, B1), k) =
2Nk

(k − 1)!
. (10)

With the same assumption for N and k, the entire amount
of L(PNPSFk) of all possible PNPSFk can be approxi-
mated by the following equation:

L(PNPSF k) = k × 2k ×
(

N

k

)
=

2kNk

(k − 1)!
. (11)

Then the fault coverage FC(B0, B1) of the PNPSFk
faults as the result of two runs of the MATS+ like test with
the backgrounds B0, B1 is calculated as

FCM+((B0, B1), k)

=
QM+((B0, B1), k)

L(PNPSF k)
100% =

1
2k−1

100%

=
(

1 −
(

2k−1 − 1
2k−1

))
100%.

(12)

It should be noted that only all zeros (B0) and all
ones (B1) patterns within any k arbitrary memory cells are
generated based on the backgrounds B0 and B1. The next
pair of backgrounds, B2 and B3, will allow getting new
patterns as combinations of 0s and 1s in some groups of
k memory cells. The background B2 and the background
B3 due to their inverse structure allow us to generate the
same amount of new patterns within any k memory cells.
The full amount of detectable PNPSFk faults after four
runs of the MATS+ like test based on the set of the back-
grounds B0, B1, B2 and B3 is

QM+(((B0 . . . B3)), k) (13)

= 2k ×
((

N

k

)
+

k−1∑
i=1

(
N/2
k − i

)(
N/2

i

))
.

Taking into account that N is a big integer number,
Nk 	 Nk−1 and k � N , and the last equation for the
case of even N can be simplified to

QM+(((B0 . . . B3)), k) (14)

= kNk

(
2
k!

+
2
2k

k−1∑
i=1

1
(k − i)! × i!

)
.

Then the fault coverage FC((B0 . . . B3)) of the PNPSFk
faults is calculated as

FCM+(((B0 . . . B3)), k) ≈ 2k − 1
22k−2

100%. (15)

The last equation can be simplified to

FCM+(((B0 . . . B3)), k) ≈
(

1 −
(

2k−1 − 1
2k−1

)2
)

100%.

(16)

Analysis of multibackground memory testing techniques 197

To estimate all possible PNPSFk faults detectable on
the basis of the backgrounds B0, B1, B2, B3, B4 and B5,
let us examine the details of the constructions of the back-
grounds B4 and B5 (see Fig. 5). First of all, it should be

Fig. 5. Construction of regular backgrounds for m = 3.

emphasized that patterns are generated on the basis of the
background B5 due to their inverse version of B4 com-
pletely different compared with the patterns generated on
the basis of the background B4. Then the amount of the
PNPSFk faults detectable on the basis of the background
B5 equals the amount of the faults detectable on the basis
of backgrounds B4. That is why we examine the back-
ground B4 in terms of PNPSFk faults detection and mul-
tiply the number of detectable PNPSFk faults by 2.

Let suppose that N is divisible by 4 and as a result the
background B4 has four parts, namely, B4 1, B4 2, B4 3

and B4 4 (see Fig. 5). Compared with the previous back-
grounds (B0, B1, B2 and B3), the background B4 allows
us to generate new patterns for any k (see Tab. 5). For

Table 5. Patterns are generated based on the background B4.
B4 1 B4 2 B4 3 B4 4

P1 00. . . 0 11. . . 1
P2 00. . . 0 11. . . 1
P3 00. . . 0 11. . . 1 00. . . 0
P4 00. . . 0 11. . . 1 11. . . 1
P5 00. . . 0 00. . . 0 11. . . 1
P6 11. . . 1 00. . . 0 11. . . 1
P7 00. . . 0 11. . . 1 00. . . 0 11. . . 1

k = 4, there are the following new patterns:

P1(B4 1 B4 2) = {0 111, 00 11, 000 1},
P2(B4 3 B4 4) = {0 111, 00 11, 000 1},

P3(B4 1 B4 2 B4 3) = {00 1 0, 0 11 0, 0 1 00},
P4(B4 1 B4 2 B4 4) = {00 1 1, 0 11 1, 0 1 11},
P5(B4 1 B4 3 B4 4) = {00 0 1, 0 00 1, 0 0 11},
P6(B4 2 B4 3 B4 4) = {11 0 1, 1 00 1, 1 0 11},

P7(B4 1 B4 2 B4 3 B4 4) = {0 1 0 1}.
The same amount of patterns as the inverse copy of

the previous one will be generated based on the back-
ground B5. The entire number of the PNPSFk faults de-
tectable on the basis of the patterns P1 and P2 generated
by the backgrounds B4 and B5 is

QM+((P1, P2), k) = 4k

k−1∑
i=1

(
N/4
k − i

)(
N/4

i

)
. (17)

An additional portion of detectable PNPSFk faults is
determined by the patterns P3, P4, P5 and P6 and can be
estimated as

QM+((P3, P4, P5, P6), k) (18)

= 8k

k−2∑
j=1

(
N/4

j

) k−j−1∑
i=1

(
N/4

k − i − j

)(
N/4

i

)
.

The last set of PNPSFk faults detectable on the basis of
the B4 and B5 backgrounds is described by the pattern P7

and equals to

QM+((P7), k) (19)

= 2k

k−3∑
j=1

(
N/4

j

) k−j−2∑
r=1

(
N/4

r

)

×
k−j−r−1∑

i=1

(
N/4

k − i − j − r

)(
N/4

i

)
.

The full amount of detectable PNPSFk faults after
six runs of the MATS+ like test based on the set of the
backgrounds B0, B1, B2, B3, B4 and B5 equals

QM+(((B0, B1), (B2, B3), (B4, B5)), k)

= 2k

(
2

k−1∑
i=1

(
N/4
k − i

)(
N/4

i

)

+ 4
k−2∑
j=1

(
N/4

j

) k−j−1∑
i=1

(
N/4

k − i − j

)(
N/4

i

)

+
k−3∑
j=1

(
N/4

j

) k−j−2∑
r=1

(
N/4

r

)

×
k−j−r−1∑

i=1

(
N/4

k − i − j − r

)(
N/4

i

))
.

(20)

198 I. Mrozek

If we simplify the last equation, then the fault cover-
age of the test based on the six backgrounds is

FCM+(((B0, B1), (B2, B3), (B4, B5)), k) (21)

≈ QM+(((B0, B1), (B2, B3), (B4, B5)), k)
L(PNPSFk)

100%

=

(
1 −

(
2k−1 − 1

2k−1

)3
)

100%.

In the case of the application of the l+1 pair of the back-
grounds (B0, B1), (B2, B3), (B4, B5),. . . , (B2l, B2l+1)
for l ∈ {1, 2, 3, . . . , m}, fault coverage can be calculated
according to

FCM+(((B0, B1), . . . , (B2l, B2l+1)), k) (22)

≈ QM+(((B0, B1), . . . , (B2l, B2l+1)), k)
L(PNPSFk)

100%

=

(
1 −

(
2k−1 − 1

2k−1

)l+1
)

100%.

The last equation allows us to get an estimate of
the maximal possible fault coverage value FCMAX =
FC((B0, B1), . . . , B2m, B2m+1), where m =
log2 N�,
based on the set of regular backgrounds. This value equals

FCMAX =

(
1 −

(
2k−1 − 1

2k−1

)�log2 N�+1
)

. (23)

For some sizes N of the memory, this value is shown in
Table 6.

Table 6. Value of FCMAX for varying N .
N(bit) 103 106 109

k = 3 95.55% 99.76% 99.98%
k = 4 76.98% 93.94% 98.40%
k = 5 49,16% 74.21% 86.47%

4.3. Random pairs. In the previous section, a tech-
nique which used the pairs of backgrounds (B2l, B2l+1)
was presented. The background B2l+1 is the inversion of
the background B2l. The background B2l is generated
according to the scheme presented in Table 4. However,
we do not always have enough time to generate the back-
ground B2l. Therefore, the approach presented in this sec-
tion is based on consecutive application of the background
pairs (Bj , Bj), where the first background is the random
one and the second is its inverted version (random pairs).
In the case of transparent testing we can take the advan-
tage of the fact that RAM undergoes constant changes
in working computer systems. Consequently, in periodic
testing it is possible to treat, each time we start the test
procedure, the contents of RAM as a random background.

In the case of one run of the MATS+ test, one background,
allows getting the fault coverage 1/2k (see (3)). There-
fore the fault coverage of the test session based on ran-
dom pairs of the background and on the MATS+ test can
be calculated as

FCM+((B0, B0), . . . , (Bl, Bl))

= 1 −
(

1 − 1
2k−1

)l+1

.
(24)

4.4. Optimal backgrounds. To achieve high fault cov-
erage of PNPSFk for multirun memory testing, it is quite
important to choose appropriate backgrounds. Obviously,
for different types of memory tests the optimal back-
grounds will be different.

To select an optimal background for multi-
background memory testing the Hamming distances
HD(Bk, Bj) in between two backgrounds (Bk, Bj)
k, j ∈ {1, 2, 3, . . . , m} as a metric were proposed and
experimentally analysed in (Yarmolik and Mrozek, 2007).
Based on this metric, the following statement was
formulated and experimentally validated (Yarmolik and
Mrozek, 2007; Yarmolik, 2008):

Theorem 1. In the case of m runs of the mem-
ory test which allow us to generate only one pat-
tern within neighboring cells based on the backgrounds
B1, B2, B3, . . . , Bm, an optimal set of such a type of
background should have the maximal Hamming distance
HD(Bk, Bj) between any Bk and Bj , where k, j ∈
{0, 1, 2, . . . , m}.

This statement can be used for selecting the opti-
mal values of background for memory tests generating
only one pattern for k neighboring memory cells like the
MATS+ and PS (4N) tests. According to this, in the case of
multi-run memory testing, memory backgrounds should
have the maximal Hamming distance between all pairs of
backgrounds. Now we will try to estimate this value (max-
imal Hamming distance).

4.4.1. Background dissimilarity measures. In the
case of multirun memory testing, every consecutive back-
ground should not be similar to the previous one or, more
precisely, it should be dissimilar as much as possible com-
pared with the backgrounds applied during the previous
test sessions. The memory background can be regarded
as a binary vector and the set of backgrounds can be de-
fined as a set of binary vectors Bi = bi1bi2 . . . biN , i ∈
{1, 2, . . . , 2N}, where bic ∈ {0, 1}, ∀c ∈ {1, 2, . . . , N},
and N is the one-bit wide memory size.

There are numerous measures of binary vector dis-
similarity (Tubbs, 1989; Zhang and Srihari, 2003).To
measure dissimilarity between two memory backgrounds
B1 = b11b12 . . . b1N and B2 = b21b22 . . . b2N , we can

Analysis of multibackground memory testing techniques 199

define the characteristics Sqg as follows. Given two back-
grounds B1 and B2, let Sqg (q, g ∈ {0, 1}) be the number
of occurrences of matches with q in B1 and g in B2 at the
corresponding positions. There are four characteristics,
namely, S00, S01, S10 and S11 which were used to define
eight measures of similarity and dissimilarity between two
binary vectors (Tubbs, 1989; Zhang and Srihari, 2003).
For example, in the case when B1 = 010110001100 and
B2 = 010100101011, we have S00 = 4, S01 = 3,
S10 = 2 and S11 = 3.

Based on S00, S01, S10 and S11, there exist
eight characteristics to evaluate similarity measures and
their associated dissimilarity measures, i.e., the Jaccard-
Needham, Dice, Correlation, Yule, Russell-Rao, Sokal-
Michener, Rogers-Tanmoto and Kulzinsky measures.
Four measures—Jaccard-Needham, Dice, Russell-Rao
and Kulzinsky—are independent of S00 due to unequal
importance of “zero” matches (S00) and “one” matches
(S11) for different applications, especially for search algo-
rithms and data mining (Zhang and Srihari, 2003). Only
some of these measures depend on all four characteris-
tics and can be regarded as metrics, including the Sokal-
Michener measure of similarity S(B1, B2) = (S11 +
S00)/N and dissimilarity D(B1, B2) = 1 − (S11 +
S00)/N . For this metric, it is easy to show that, based
on the equality N = S00 + S01 + S10 + S11, the dis-
similarity measure can be represented as D(B1, B2) =
(S10 + S01)/N .

In our case, the distance between two back-
grounds has to be estimated as the Hamming distance
HD(B1, B2) = N × D(B1, B2) = S01 + S10. For ex-
ample, in the case when B1 = 010110001100 and B2 =
010100101011, we have HD(B1, B2) = S01 + S10 =
3 + 2 = 5.

4.4.2. Two run memory testing. In the case of two run
memory testing, based on the MATS+ and PS (4N) like
tests, Statement 1 can mathematically be formulated as
max{HD(Bi, Bj)} for ∀ i
= j ∈ {1, 2, . . . , 2N}. To sat-
isfy this statement, two backgrounds have to have a max-
imal possible Hamming distance HD(Bi, Bj) = N . To
generate the second background Bj , we only need to use
the complement Bi = I−Bi of the first background Bi as
the second background Bj = Bi. The unit binary vector I
is an N -dimensional binary vector with all elements equal
to 1. For the previous example, for Bi = 010110001100
and Bi = 101001110011, S00 = S11 = 0, S01 = 7
and S10 = 5; then HD(Bi, Bi) = S01 + S10 = 7 +
5 = 12. It is easy to show that HD(Bi, Bi) = N for
i ∈ {1, 2, . . . , 2N}.

Consecutive application of two backgrounds Bi and
Bi guarantees the maximal fault coverage of PNPSFk for
any k. This follows from the fact that for any k arbitrary
cells the background Bi provides different patterns com-
pared with the first background Bi, and that is why during

Table 7. Two run MATS+ test fault coverage.

MIN MAX
FC2rM+(PNPSF3) FC2rM+(PNPSF3)
Second pattern FC Second pattern FC

Bj = bj1bj2 . . . bj8 (%) Bj = bj1bj2 . . . bj8 (%)

17.19

00111111

25.00

01011111
...

00000001 01111110
00000010 10011111
00000100 10101111
00001000 ...
00010000 10111110
00100000 ...
01000000 01111111
10000000 ...

11111110
11111111

the second run of the test (MATS+ and PS (4N) like) new
PNPSFk will be detected. Then, fault coverage can be es-
timated as

FC2rM+(PNPSF k) = (1/2k−1)100%. (25)

The same fault coverage can be achieved for another
pair of backgrounds taking into account the next observa-
tion. For any pair of backgrounds Bi = bi1bi2 . . . biN and
Bj = bj1bj2 . . . bjN with HD(Bi, Bj) > N −k, there are
not the same patterns for any k arbitrary bil and bjl. Tak-
ing into account that during the MATS+ test the value of
memory cells takes an inversion value, it is easy to show
that there are not the same patterns for any k arbitrary cells
during the test session. As an example for the case of 8-
bit memory for the first background Bi = bi1bi2 . . . bi8 =
00000000, there are 37 backgrounds shown in Table 7 al-
lowing us to get FC2rM+(PNPFSk) = (1/2k−1)100%
for the k > 2. For k = 3 FC2rM+(PNPFSk) = 25%.
For a greater value of k, the number of the second optimal
background will be sufficiently high.

It is quite important to emphasise that for the
second background which does not satisfy the in-
equality HD(Bi, Bj) > N − k the fault coverage
FC2rM+(PNPFSk) is less than the maximal one. Even
for the small differences, high fault coverage cannot be
achieved. For example, in the case of two backgrounds
Bi = 00000000 and Bj = 00011111 and k = 3
with HD(Bi, Bj) = N − k = 5, the fault coverage
FC2rM+(PNPFS3) = 24.78%.

Based on this investigation for the case of two run
memory testing, it is possible to formulate the next state-
ment (Mrozek and Yarmolik, 2008b):

Theorem 2. In the case of two runs of the memory
test which allow us to generate only one pattern within
neighboring cells based on two backgrounds Bi and Bj ,
an optimal set of such type of background should sat-
isfy the inequality HD(Bi, Bj) > N − k for i, j ∈
{1, 2, 3, . . . , 2N}, where N is one bit-wide memory size.

200 I. Mrozek

A more complicated problem arises for three and
more runs of memory testing based on different back-
grounds.

4.4.3. Three run memory testing. First of all, for
the case of three-run memory testing taking into account
Statement 1, we have to estimate the maximum min-
imal possible Hamming distance between any pair of
(Bi, Bj), (Bi, Bl) and (Bl, Bj) out of three backgrounds
{Bi, Bj , Bl} ∀ i
= j
= l ∈ {1, 2, . . . , 2N}. This prob-
lem can be formulated as a maximum minimal hamming
distance problem. Mathematically, it can be formulated as

MMHD(Bi, Bj , Bl)

= MAX
∀i�=j �=l∈{1,2,...,2N}

{
MIN[HD(Bi, Bj),

HD(Bi, Bl), HD(Bj , Bl)]
}
.

(26)

Consider two arbitrary backgrounds Bi and Bj

with four characteristics S00(Bi, Bj), S01(Bi, Bj),
S10(Bi, Bj) and S11(Bi, Bj). Then, HD(Bi, Bj) =
S01(Bi, Bj) +S10(Bi, Bj), and let it be the maximal one
for the three-background case, which we are looking for.
Now, to construct the third background Bl, we have to
get as large as possible Hamming distances between Bl

and the previously obtained backgrounds Bi and Bj . In
this case Bl should be equally far (in terms of the Ham-
ming distance) from both backgrounds Bi and Bj . This
distance can be calculated based on four characteristics:
S00(Bi, Bj), S01(Bi, Bj), S10(Bi, Bj) and S11(Bi, Bj)
for Bi, Bj .

Taking into account that the backgrounds
Bi = bi1bi2 . . . biN and Bj = bj1bj2 . . . bjN have
S00(Bi, Bj) + S11(Bi, Bj) equal bits (bic = bjc, c ∈
{1, 2, . . . , N}), the background Bl should have the oppo-
site bits in the corresponding positions. In this case, the
distances HD(Bi, Bl) and HD(Bl, Bj) will satisfy the
inequalities HD(Bi, Bl) ≥ S00(Bi, Bj) + S11(Bi, Bj)
and HD(Bl, Bj) ≥ S00(Bi, Bj) + S11(Bi, Bj). Now
S01(Bi, Bj) + S10(Bi, Bj) bits for the background Bl

should be chosen to maximize both values HD(Bi, Bl)
and HD(Bl, Bj). To maximize these distances, the best
solution can be achieved for the case of the equality of two
Hamming distances HD(Bi, Bl) and HD(Bl, Bj). This
means that half of bits out of S01(Bi, Bj) + S10(Bi, Bj)
different bits (bic
= bjc, c ∈ {1, 2, . . . , N}) for Bi and
Bj in the corresponding positions of Bl should have the
same value as in Bi and the rest of bits the same value as
in Bj .

The background Bl generated according to the above
presented procedure has the distances HD(Bi, Bl) and

HD(Bl, Bj) determined by the following equation:

HD(Bi, Bl) = HD(Bj , Bl)
= S00(Bi, Bj) + S11(Bi, Bj)

+
1
2
[
S01(Bi, Bj) + S10(Bi, Bj)

]

= N − 1
2
HD(Bi, Bj)

(27)

when HD(Bi, Bj) is an even number. In the case of an
odd value of HD(Bi, Bj), it is determined by

HD(Bi, Bl) = N − �1
2
HD(Bi, Bj)� (28)

HD(Bj , Bl) = N −
1
2
HD(Bi, Bj)�. (29)

It should be noted that �HD(Bi, Bj)/2� +

HD(Bi, Bj)/2� = HD(Bi, Bj).

For example (Fig. 6), in the case of two backgrounds
Bi = 011100, Bj = 010011 we have S00(Bi, Bj) = 1,
S01(Bi, Bj) = 2, S10(Bi, Bj) = 2 and S11(Bi, Bj) = 1
and an even value of HD(Bi, Bj) = S10(Bi, Bj) +
S01(Bi, Bj) = 2 + 2 = 4. Four characteristics were
calculated on the basis of the values of all components
of both backgrounds: Bi = bi1bi2bi3bi4bi5bi6 and Bj =
bj1bj2bj3bj4bj5bj6. S00(Bi, Bj) = 1 follows from the
fact that only bi1 = bj1 = 0, S01(Bi, Bj) = 2 due to
bi5 = bi6 = 0 and bj5 = bj6 = 1, S10(Bi, Bj) = 2 due to
bi3 = bi4 = 1 and bj3 = bj4 = 0, and S11(Bi, Bj) = 1
because bi2 = bj2 = 1. To generate a new background
Bl, their first and second bits have to have an inverse value
compared with Bi and Bj , namely, bl1 = 1, due to bi1 =
bj1 = 0 and bl2 = 0, because bi2 = bj2 = 1. Then the first
half of the bits (two bits) with an opposite value in Bi and
Bj should take a value from one background. Let it be Bi

(for example, bl3 = bl4 = 1) and the second half the val-
ues from background Bj (for example, bl5 = Bl6 = 1).
The final result is Bl = bl1bl2bl3bl4bl5bl6 = 101111 and

HD(Bi, Bl) = HD(Bl, Bj)
= S00(Bi, Bj) + S11(Bi, Bj)

+
1
2
[S01(Bi, Bj) + S10(Bi, Bj)]

= 1 + 1 +
1
2
(2 + 2) = 4.

Now the problem of the maximum minimal Ham-
ming distance (26) can be formulated as the solution of
the following problem:

MMHD(Bi, Bj, Bl)

= MAX
HD(Bi,Bj)

{
MIN[HD(Bi, Bj),

(N −
HD(Bi, Bj)/2�), (N − �HD(Bi, Bj)/2)�]}.

(30)

Analysis of multibackground memory testing techniques 201

Fig. 6. Optimal third vector generation scheme.

Using the notation X = HD(Bi, Bj), we will get the final
equality X = N − X/2. An unknown value of X which
allows us to get the minimal differences X−(N−X/2) =
0 or 1 is the solution to our problem. For a small value
of N , the optimal values of the Hamming distances are
shown in Table 8. For the validation of the presented

Table 8. Optimal Hamming distances for small N.

N HD(Bi, Bj) HD(Bi, Bl) HD(Bj , Bl)
4 3 3 2
5 3 3 4
6 4 4 4
7 5 5 4
8 6 5 5
9 6 6 6

10 7 7 6
12 8 8 8

results, the experimental values of the fault coverage of
PNPSF3 for N = 8 in the case of the MATS+ like test are
shown in Table 9.

For real large N in the case of a three run MATS+
like memory test, the following statement is true (Mrozek
and Yarmolik, 2008b):

Theorem 3. In the case of three runs of the memory
test which allows us to generate only one pattern within
neighboring cells based on three backgrounds Bi, Bj and
Bl (i
= j
= l ∈ {1, 2, . . . , 2N} and N is one bit-wide
memory size), an optimal set of such a type of background
should satisfy the following equality:

HD(Bi, Bj) = HD(Bi, Bl)

= HD(Bj , Bl) ≈ 2
3
N.

(31)

Let us prove that for the case of three back-
grounds the maximum minimal hamming distance
MMHD(Bi, Bj, Bl) cannot be greater than 2N/3. To

Table 9. Experimental results for N = 8.

Backgrounds
MIN HD(Bi, Bj , Bl)

FC3rM+

Bi, Bj , Bl [%]

00000000
1 29.6811111111

00000001
00000000

4 35.7111111111
11110000
00000000

4 35.7111110000
00001111
00000000

5 37.0511111000
00011111

simplify our investigation, suppose that 2N/3 is an in-
teger number and, according to the previous statement,
MMHD(Bi, Bj , Bl) = HD(Bi, Bj) = HD(Bi, Bl) =
HD(Bl, Bj) = 2N/3.

Now let MMHD(Bi, Bj , Bl) = 2N/3 + 1, which
is greater than 2N/3. From this fact all distances
HD(Bi, Bj), HD(Bi, Bl) and HD(Bl, Bj) should be
greater than or equal to 2N/3 + 1. Let the dis-
tance HD(Bi, Bj) = 2N/3 + 1, then S00(Bi, Bj) +
S11(Bi, Bj) = N − (2N/3 + 1) = N/3 − 1 and that is
why HD(Bi, Bl) = N/3− 1 + Q, where Q ≤ 2N/3 + 1
and HD(Bl, Bj) = N/3−1+(2N/3+1−Q) = N −Q.
For HD(Bi, Bl) ≥ 2N/3 + 1, the value of Q should sat-
isfy the inequality Q ≥ N/3 + 2. Then HD(Bl, Bj) =
N −Q ≤ N − (N/3+2) = 2N/3− 2, which is less than
2N/3 + 1. That is why MMHD(Bi, Bj , Bl) cannot be
greater than 2N/3. The maximal fault coverage FC3rM+

for the three runs of the MATS+ test can be estimated as
(Mrozek and Yarmolik, 2008a)

FC3rM+((Bi, Bj , Bl), k)

≈
(

1
2k

+
2
3k

− 1
2k3k

+
2

2k3k

k−1∑
i=1

2k−i

(
k

i

))
100%.

(32)

In the case when k = 3, according to (32), FC3rM+ =
36.10%.

4.4.4. Four run memory testing. Now, for the case of
four run memory testing taking into account Statement 1
we have to estimate the maximum minimal possible
Hamming distance between any pair (Bi, Bj), (Bi, Bl),
(Bi, Br), (Bj , Bl), (Bj , Br) and (Bl, Br) out of four
backgrounds {Bi, Bj, Bl, Br} i
= j
= l
= r ∈

202 I. Mrozek

{1, 2, . . . , 2N}. Mathematically, this problem can be for-
mulated as

MMHD(Bi, Bj , Bl, Br)

= MAX
∀i�=j �=l �=r∈{1,2,...,2N}

{
MIN

[HD(Bi, Bj), HD(Bi, Bl), HD(Bi, Br),

HD(Bj , Bl), HD(Bj , Br), HD(Bl, Br)]
}
.

(33)

Let us have three first arbitrary backgrounds Bi, Bj

and Bl with the optimal value of MMHD(Bi, Bj , Bl). As
has been shown earlier for large N , this value can be re-
garded as integer number 2N/3. Then HD(Bj , Bj) =
HD(Bi, Bl) = HD(Bl, Bj) = 2N/3.

We have to emphasize that for the case of three
backgrounds it is impossible to get a greater value of
MMHD(Bi, Bj , Bl). that is why for the case of four
backgrounds MMHD(Bi, Bj , Bl, Br) it cannot be grater
than 2N/3, either. This means that the best solution
for the case of four backgrounds will be the fourth
background with the distances between it and the first
three backgrounds equal HD(Br, Bi) = HD(Br, Bj) =
HD(Br, Bl) = 2N/3. Since the backgrounds Bi and
Bj have S01(Bi, Bj) + S10(Bi, Bj) = 2N/3 different
bits, the third background Bl was generated by the se-
lection of part of its bits from the background Bi and
the another part from Bj , as well as the inversion of all
S00(Bi, Bj) + S11(Bi, Bj) = N/3 equal bits for Bi and
Bj .

When we create the next background Br as the selec-
tion of other parts of S01(Bi, Bj)+S10(Bi, Bj) = 2N/3
different bits from the backgrounds Bi and Bj and the
inversion of all S00(Bi, Bj) + S11(Bi, Bj) = N/3 bits,
this background can be regarded as the third background
compared with Bi and Bj . This follows from the con-
clusion that the background Br has the same distances
HD(Br, Bi) = HD(Br, Bj) = 2N/3 as the background
Bl, HD(Bl, Bi) = HD(Bl, Bj) = 2N/3.

From the procedure of generating Bl and Br we can
conclude that in S01(Bi, Bj) + S10(Bi, Bj) = 2N/3 po-
sitions with the different bits for Bi and Bj , the back-
grounds Bl and Br have an inverse value of bits. Then
HD(Bl, Br) = 2N/3. To summarize, it is easy to
show that HD(Bi, Bj) = HD(Bi, Bl) = HD(Bj , Bl) =
HD(Bi, Br) = HD(Bj , Br) = HD(Bl, Br) = 2N/3.

For the previous example, in the case of two back-
grounds Bi = 011100, Bj = 010011, the third back-
ground Bl = bl1bl2bl3bl4bl5bl6 = 101111 was gener-
ated to satisfy the equality HD(Bi, Bj) = HD(Bi, Bl) =
HD(Bj , Bl) = 2N/3. To generate a new, fourth back-
ground Br, its first and second bits have to have an inverse
value compared with Bi and Bj , namely, bl1 = 1, due to
bi1 = bj1 = 0 and bl2 = 0, because bi2 = bj2 = 1.
Then another part (compared with the case of Bl genera-
tion) of the bits (two bits) with an opposite value in Bi and

Bj should take a value from one background. Let it be Bj

(e.g., bl3 = bl4 = 0) and the second part—the values from
the background Bi (e.g., bl5 = bl6 = 0). The final result
is Bl = bl1bl2bl3bl4bl5bl6 = 100000, which satisfies the
next statement (Mrozek and Yarmolik, 2008b):

Theorem 4. In the case of four runs of the memory test
which allows us to generate only one pattern within neigh-
boring cells based on four backgrounds Bi,Bj ,Bl and Br

(i
= j
= l
= r ∈ {1, 2, . . . , 2N} and N is one bit-wide
memory size), an optimal set of such a type of background
should satisfy the following equality:

HD(Bi, Bj) = HD(Bi, Bl) = HD(Bj , Bl)
= HD(Bi, Br) = HD(Bj , Br)
= HD(Bl, Br) ≈ 2N/3.

(34)

The maximal fault coverage FC4rM+ for the opti-
mal backgrounds and four runs of the MATS+ test can be
estimated as (Mrozek and Yarmolik, 2008a)

FC4rM+((Bi, Bj , Bl, Br), k)

≈
(

1
2k

+
1

3k−1
− 1

2k3k−1

+
1

2k3k−1

k−1∑
i=1

2k−i

(
k

i

))
100%. (35)

In the case when k = 3, according to (35), FC4rM+ ≈
47.25%. For the validation of the above results, the ex-
perimental values for the fault coverage of PNPSF3 for
N = 9 in the case of the MATS+ like test are shown in
Table 10. The maximal fault coverage from Table 10 is
somewhat different than the result based on (35), because
in (35) there was assumption about large N (Mrozek and
Yarmolik, 2008a).

5. Results

Based on (8), (22), (24), (32) and (35), we can compare
the efficiency (in terms of the PNPSFk detection ability)
of the test procedures based on the MATS+ like test and
the presented backgrounds. First, we will compare stan-
dard backgrounds (random backgrounds, random pairs
and regular backgrounds). The fault coverage of the pro-
cedure which consists of multiple runs of the MATS+ test
and applications of regular backgrounds is presented in
Table 11. In this table, k means the size of the PNPSFk
fault and l—the number of the pairs of backgrounds (iter-
ations) applied. The same results for random backgrounds
are presented in Table 3.

The third test procedure is based on consecutive ap-
plication of the backgrounds pairs (Bj , Bj), where the
first background is the random one and the second is its
inverted version. The results for the procedure based on

Analysis of multibackground memory testing techniques 203

Table 10. Experimental results for N = 9.

Backgrounds
MIN HD(Bi, Bj , Bl, Br)

FC4rM+

Bi, Bj , Bl, Br [%]

000000000

1 28.1
000001111
000000111
000000001

000000000

2 40.1
111111111
000000111
000001100

000000000

3
42.1111111111

000000111
110000011

000000000

6
48.4111111000

111000111
000111111

Table 11. Regular background efficiency.
k/l 0 1 2 3 4

3 25.00% 43.75% 57.81% 68.36% 76.27%
4 12.50% 23.44% 33.01% 41.38% 48.71%
5 6.25% 12.11% 17.60% 22.75% 27.58%

k/l 5 6 7 8 9

3 82.20% 86.65% 89.99% 92.49% 94.37%
4 55.12% 60.73% 65.64% 69.93% 73.69%
5 32.11% 36.35% 40.33% 44.06% 47.55%

the MATS+ like test and such backgrounds are presented
in Table 13.

From the presented results we can see that all the sets
of backgrounds allows us to achieve very similar fault cov-
erage. Some better results can be achieved with regular
backgrounds (see Table 11) and random pairs of back-
grounds (see Table 13) than with random backgrounds.
Therefore it seems that, especially in periodic testing, ran-
dom pairs of backgrounds allow us to achieve very good
results with minimal hardware overhead.

Now let we compare the efficiency (in terms of
NPSFk detection) of the test procedure based on stan-
dard backgrounds and optimal backgrounds. Unfortu-
nately, nowadays the author is able to generate only four
optimal backgrounds according to algorithm presented in
(Mrozek and Yarmolik, 2008b). Algorithms for optimal
background generation for more than four iterations are
still an open issue. Therefore we compare the efficiency
of only four iterations of the MATS+ like test for PNPSF3
detection. The results of the comparison for various fault
sizes (k) are presented in Table 14.

The background efficiency in the case when
k = 3 and four iterations of the MATS+ test

Table 12. Random background efficiency.
k/l 0 1 2 3 4

3 23.43% 41.38% 55.12% 65.64% 73.10%
4 12.11% 22.75% 32.11% 40.33% 47.55%
5 6.15% 11.93% 17.34% 22.43% 27.20%

k/l 5 6 7 8 9

3 79.86% 84.58% 88.19% 90.96% 93.08%
4 53.90% 59.49% 64.39% 68.70% 72.49%
5 31.68% 35.88% 39.83% 43.53% 47.01%

Table 13. Random pairs of background efficiency.
k/l 0 1 2 3 4

3 0.25% 43.75% 57.81% 68.36% 76.26%
4 12.50% 23.44% 33.01% 41.38% 48.71%
5 6.25% 12.11% 17.60% 22.75% 27.58%

k/l 5 6 7 8 9

3 82.20% 86.65% 89.98% 92.49% 94.36%
4 55.12% 60.73% 65.64% 69.93% 73.69%
5 32.11% 36.35% 40.33% 44.06% 47.55%

is presented in Fig. 7.

0

40

A B C D

F
C

M
A

T
S
+

(P
N

P
S

F
3)

[%]

Backgrounds
A—random backgrounds
B—regular backgrounds

C—random pairs
D—optimal backgrounds

Fig. 7. Multirun test comparison.

The results in Table 14 and Fig. 7 proved that optimal
backgrounds allow us to achieve the best results for four
iteration of the MATS+ like test.

6. Conclusions

There are many methods for generating backgrounds in
multirun memory testing. The most popular and optimal
ones are presented and compared in this paper. From the
results we can conclude that for a multirun test proce-
dure which consist up to four iterations the best results
will be achieved with optimal backgrounds. If we want
to run the test more than four times, the best results will
be achieved with regular backgrounds or random pairs of

204 I. Mrozek

Table 14. Background efficiency for four iterations of the
MATS+ test.

Backgrounds/k 3 4 5

Random 41.38% 22.75% 11.92%
Regular 43.75% 23.44% 12.11%
Random pairs 43.75% 23.43 % 12.10%
Optimal 47.23% 24.54% 12.42%

backgrounds (compare Tables 11, 12 and 13). Random
pairs of backgrounds are especially suitable for periodic
testing in systems where the contents of memory undergo
constant changes.

In our investigation we focused only on simple
March tests like the MATS+ test. This is because, accord-
ing to weighted fault coverage measure for March tests
(Mrozek et al., 2008), it is not necessary to use complex
tests to achieve good results in multibackground testing.
Weighted fault coverage takes into consideration not only
the fault coverage of the test but its complexity, too. So
in multirun memory testing the simplest tests allow us to
achieve as good results (or better) as complex ones with
the same total complexity of the test procedure.

References
Cheng, K.-L., Tsai, M.-F. and Wu, C.-W. (2002). Neighbor-

hood pattern sensitive fault testing and diagnostics for
random access memories, IEEE Transactions on Com-
puter Aided Design of Integrated Circuits and Systems
21(11): 1328–1336.

Cockburn, B. F. (1995). Deterministic tests for detecting scram-
bled pattern-sensitive faults in RAMs, MTDT ’95: Pro-
ceedings of the 1995 IEEE International Workshop on
Memory Technology, Design and Testing, Washington, DC,
USA, pp. 117–122.

Franklin, M. and Saluja, K. K. (1996). Testing reconfigured
RAM’s and scrambled address RAM’s for pattern sensitive
faults, IEEE Transactions on CAD of Integrated Circuits
and Systems 15(9): 1081–1087.

Goor, A. J. v. d. (1991). Testing Semiconductor Memories: The-
ory and Practice, John Wiley & Sons, Chichester.

Hayes, J. P. (1975). Detection of pattern-sensitive faults in
random-access memories, IEEE Transactions on Comput-
ers 24(2): 150–157.

Hayes, J. P. (1980). Testing memories for single-cell
pattern-sensitive faults, IEEE Transactions on Computers
29(3): 249–254.

Huang, Y. and Li, J. F. (2006). Testing active neighbor-
hood pattern-sensitive faults of ternary content addressable
memories, European Test Symposium, Southampton, UK,
pp. 55–62.

Karpovsky, M. G., Goor, A. J. v. d. and Yarmolik, V. N.
(1995). Pseudo-exhaustive word-oriented DRAM testing,

EDTC ’95: Proceedings of the 1995 European Conference
on Design and Test, Washington, DC, USA, p. 126.

Karpovsky, M. G. and Yarmolik, V. N. (1994). Transparent
memory testing for pattern-sensitive faults, Proceedings of
the IEEE International Test Conference on TEST: The Next
25 Years, Washington, DC, USA, pp. 860–869.

Krasniewski, A. (2008). Concurrent error detection for combi-
national logic blocks implemented with embedded mem-
ory blocks of FPGAs, DDECS’08: Proceedings of the
IEEE International Workshop on Design and Diagnostics
of Electronic Circuits and Systems, Bratislava, Slovakia,
pp. 74–79.

Mrozek, I. and Yarmolik, V. N. (2008b). Optimal backgrounds
selection for multi run memory testing, DDECS’08: Pro-
ceedings of the IEEE International Workshop on De-
sign and Diagnostics of Electronic Circuits and Systems,
Bratislava, Slovakia, pp. 332–338.

Mrozek, I. and Yarmolik, V. N. (2008a). MATS+ trans-
parent memory test for pattern sensitive fault detection,
MIXDES’08: Proceedings of the 15th International Con-
ference on Mixed Design of Integrated Circuits and Sys-
tems, Poznań, Poland, pp. 493–498.

Mrozek, I., Yarmolik, V. N. and Buslowska, E. (2008). Mul-
tiple run memory testing for PSF detection, EWDTS ’08:
Proceedings of the IEEE East-West Design and Test Sym-
posium, Lviv, Ukraine, pp. 125–130.

Nicolaidis, M. (1996). Theory of transparent BIST for RAMs,
IEEE Transactions on Computing 45(10): 1141–1156.

Niggemeyer, D., Redeker, M. and Otterstedt, J. (1998). In-
tegration of non-classical faults in standard march tests,
MTDT ’98: Proceedings of the 1998 IEEE International
Workshop on Memory Technology, Design and Testing, San
Jose, CA, USA, p. 91.

Sokol, B. and Yarmolik, S. V. (2006). Address sequences for
march tests to detect pattern sensitive faults, DELTA ’06:
Proceedings of the Third IEEE International Workshop on
Electronic Design, Test and Applications, Kuala Lumpur,
Malaysia, pp. 354–360.

Sosnowski, J. (2007). Improving software based self-testing for
cache memories, Proceedings of the 2nd International De-
sign and Test Workshop, 2007, Cairo, Egypt, pp. 49–54.

Tubbs, J. D. (1989). A note on binary template matching, Pattern
Recognition 22(4): 359–366.

Voyiatzis, I. (2006). Accumulator-based compression in sym-
metric transparent RAM BIST, DTIS’06: Proceedings of
the International Conference on Design and Test of Inte-
grated Systems in Nanoscale Technology, Tunis, Tunisia,
pp. 273–278.

Yarmolik, S. (2008). Address sequences and backgrounds with
different Hamming distances for multiple run March tests,
International Journal of Applied Mathematics and Com-
puter Science 18(3): 329–339, DOI: 10.2478/v10006-008-
0030-y.

Yarmolik, S. V. and Mrozek, I. (2007). Multi background mem-
ory testing, MIXDES07: Proceedings of the 14th Interna-
tional Conference on Mixed Design of Integrated Circuits
and Systems, Ciechocinek, Poland, pp. 511–516.

Analysis of multibackground memory testing techniques 205

Zhang, B. and Srihari, S. (2003). Binary vector dissimilar-
ity measures for handwriting identification, Proceedings of
the SPIE, Document Recognition and Retrieval X, Santa
Clara, CA, USA, pp. 155–166.

Zorian, Y. (2002). Embedded memory test and repair: In-
frastructure IP for SOC yield, ITC ’02: Proceedings of
the 2002 IEEE International Test Conference, Washington,
DC, USA, p. 340.

Ireneusz Mrozek received his M.Sc. and Ph.D.
degrees in computer science in 1994 and 2004,
respectively. Since 1994 he has been em-
ployed at the Faculty of Computer Science of
Białystok Technical University (Poland). His
main research interests include the area of diag-
nostic testing of embedded memories. Particu-
larly, he focuses on transparent tests for RAM
as well as the application of these in the BIST
or BISR schemes.

Received: 16 April 2009
Revised: 4 September 2009

	Introduction
	Pattern sensitive faults
	PSF detection capabilities of March tests
	Background generation techniques
	Random backgrounds
	Regular backgrounds
	Random pairs
	Optimal backgrounds
	Background dissimilarity measures
	Two run memory testing
	Three run memory testing
	Four run memory testing

	Results
	Conclusions

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org?)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Versita Adobe Distiller Settings for Adobe Acrobat v6)
 /POL (Versita Adobe Distiller Settings for Adobe Acrobat v6)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [597.600 842.400]
>> setpagedevice

