
Int. J. Appl. Math. Comput. Sci., 2009, Vol. 19, No. 3, 455–467
DOI: 10.2478/v10006-009-0037-z

USES OF NEW SENSITIVITY AND DAE SOLVING METHODS IN SMARTMOBILE
FOR VERIFIED ANALYSIS OF MECHANICAL SYSTEMS

EKATERINA AUER, WOLFRAM LUTHER

Faculty of Engineering, INKO
University of Duisburg-Essen, D-47048 Duisburg, Germany

e-mail: {auer,luther}@inf.uni-due.de

Software for modeling and simulation (MSS) of mechanical systems helps to reduce production costs for industry. Usually,
such software relies on (possibly erroneous) finite precision arithmetic and does not take into account uncertainty in the
input data. The program SMARTMOBILE enhances the existing MSS MOBILE with verified techniques to provide a
guarantee that the obtained results are correct and measure the influence of data uncertainty. In this paper, we outline the
main features and functionalities of SMARTMOBILE. In particular, we focus on its use of newly developed methods for
sensitivity analysis and DAE solving for several practically relevant mechanical systems.

Keywords: multibody systems, result verification, sensitivity, DAE, uncertainty.

1. Introduction

Three major phases during modeling and simulation pro-
cess according to (Schlesinger, 1979) are analysis (qualifi-
cation), implementation (verification) and simulation (val-
idation), shown in Fig. 1. The first step is to analyze
the real world problem and to design a formal model of
the system under consideration. The application domain
is described, relevant parameters and their ranges defined
and types of uncertainty in the model and its parameters
identified. The second step is to implement this model,
which includes code verification—that is, finding logical
and programming errors in the code—followed by numer-
ical verification of results. The third and final step is vali-
dation, during which model fidelity is established, for ex-
ample, through comparing the outcomes of simulations
and real world experiments.

Modern numerical modeling and simulation soft-
ware (MSS), for example, MOBILE (Kecskeméthy and
Hiller, 1994), automatizes parts of this cycle and in this
way accelerates the development process for a product
reducing production costs. However, some of the goals
presented in the cycle remain uncovered. First, the stage
of analysis cannot be fully automatized. Second, MSS
usually relies on floating point arithmetic which either
shifts the task of result verification into the validation
stage of the cycle or leaves that question unanswered.
Next, developers or users are themselves responsible for

Implementation

Simulation

Analysis

Real world

Formal
model

MoFrame K0,K1,K2;

MoAngularVariable phi;

MoVector l;

MoElementaryJoint R;

MoRigidLink r(K1,K2,l);

MoReal m;

MoMassElement T(K2,m);

MoMapChain Pendulum;

Pendulum<<R<<r<<T;

Computer
based model

Qualification:
model errors � min

Verification:
software errors min�

Validation:
difference min�

Result verification

Uncertainty management

Sensitivity analysis

Fig. 1. Modeling and simulation cycle.

the task of code verification, although the existing tech-
nique of literate programming (Knuth and Levy, 1993)
would allow them to generate theory, code, and documen-
tation from the same source files minimizing implementa-
tion and maintenance errors. Finally, the validation stage
seems to be least automated and needs some external soft-
ware to cope, for example, with sensitivity analysis of a
system model to its parameters.

The development of methods for numerical result
verification is the research area of the whole branch of nu-
merics also known as “interval”, “validated” or “verified”
arithmetic. Such methods not only provide a guarantee
that the obtained results are correct but also propagate ini-
tial data uncertainty almost as their by-product. A recently

{auer,luther}@inf.uni-due.de

456 E. Auer and W. Luther

developed tool SMARTMOBILE (Auer, 2007) interfaces
libraries for result verification with MOBILE to be able
to cover more tasks from the modeling and simulation cy-
cle. At the stage of analysis, it offers techniques helping
to take into account model errors (Auer and Luther, 2007)
and to perform uncertainty analysis in general. At the
implementation stage, it provides result verification for
the kinematics and dynamics of various mechanical sys-
tems. Finally, the use of algorithmic differentiation and
newly developed methods for sensitivity analysis (Rauh
et al., 2009) identifies critical parameters and in this way
makes the validation stage easier.

In this paper, we focus on the use of SMARTMO-
BILE for sensitivity analysis and reliable (or verified)
simulation of the kinematics and dynamics of closed loop
systems. We begin by describing the main features of
SMARTMOBILE, which include a free choice of the un-
derlying arithmetic. The example of a double pendulum
demonstrates the usage and comparative advantages of
integrated initial value problem (IVP) solvers and arith-
metic in SMARTMOBILE. Next, we show in Section 3
how to compute sensitivities of models to their parame-
ters. Two models of practically relevant subsystems of a
human body are considered here. In Section 4, we demon-
strate the options for result verification of kinematic or
dynamic simulations for models of closed loop systems.
Such simulations are especially difficult since they have
differential-algebraic equations (DAEs) as their basis. Fi-
nally, we overview our current work toward the integra-
tion of a verified DAE solver (Rauh et al., 2007b) and
summarize the verifying and validating options SMART-
MOBILE currently offers.

2. Main features of SMARTMOBILE

The main topic of this section is a verified modeling and
simulation tool SMARTMOBILE based on floating point
MSS MOBILE. SMARTMOBILE is one of the first inte-
grated environments providing result verification for kine-
matic and dynamic simulations of mechanical systems.
Besides, it offers model validation options described in
detail in Section 3. At the stage of analysis, it helps to
minimize model errors by providing sloppy joints (Auer
and Luther, 2007), a direct method of DAE solving or
formalized computation of Jacobians (cf. Section 4). An
advantage of this environment is its flexibility owing to
the template structure: users can choose the kind of (non-
)verified arithmetic according to their task.

In this section, we explain how to verify an already
existing modeling and simulation tool first. Then, we
overview the main functionalities of SMARTMOBILE
and compare several model design options. Finally, a dou-
ble pendulum with an uncertain initial angle exemplifies
the usage of SMARTMOBILE for dynamic simulations
and compares the available IVP solvers.

2.1. Result verification of existing MSS. Initially, the
main goal of SMARTMOBILE was to simulate dynam-
ics of mechanical systems in a guaranteed way based on a
supplied formal model from MOBILE. The concept be-
hind this latter tool, however, presupposes that kinematics
is also modeled and so it is easy to simulate it afterwards.
MOBILE belongs to the numerical type of modeling soft-
ware, that is, it does not produce symbolic expressions for
the resulting mathematical model. Only the values of out-
put parameters for the user-defined values of input param-
eters and the source code of the program itself are avail-
able. In this case, it is necessary to integrate verified tech-
niques into the core of the software itself, as opposed to
the tools of the symbolic type, where the task is basically
reduced to the application of the verified methods to the
obtained system of equations.

To simulate dynamics, we have to solve an IVP for
the differential equations of motion for the system model
(usually, in the state space form):

ẋ(t) = f(x(t), t), x(t0) ∈ [x0], (1)

where t ∈ [t0, tm] ⊂ R for some tm > t0, f ∈ Cα−1(D)
for some α > 1, D ⊆ R

n is open, f : D×R
1 �→ R

n, and
[x0] ⊂ D. Usually, the problem is discretized on a grid
t0 < t1 < · · · < tm. Denote the solution with the initial
condition x(tk−1) = xk−1 by x(t; tk−1, xk−1) and the
set of solutions {x(t; tk−1, xk−1) | xk−1 ∈ [xk−1]} by
x(t; tk−1, [xk−1]). Then the goal is to find interval vectors
[xk] for which the relation x(tk; t0, [x0]) ⊆ [xk], k =
1, . . . , m holds.

We consider non-autonomous systems because, in
our context, it is more advantageous to work with them
directly rather then transform them into an autonomous
system. For IVP solvers that do not support direct solv-
ing of non-autonomous systems, suitable equations can
be generated automatically inside SMARTMOBILE. In
some cases, f can also depend on uncertain parameters
p, for which the upper and lower bounds on uncertainty
are known. Moreover, we consider IVPs for differential-
algebraic systems of equations of the form

g(x(t), ẋ(t), t) = 0 (2)

if the mechanical system under examination has loops.
As opposed to usual numerical IVP solvers, pro-

grams with result verification need derivatives of the right
side of these equations. Divided differences cannot be of
use here since they only provide approximations to the
true derivatives. A better option is to employ algorithmic
differentiation (Griewank, 2000), the method that is prac-
ticable but might consume a lot of CPU time in the case of
such a large program as MOBILE. An alternative is to ex-
ploit the system’s mechanics for this purpose. This option
is not provided by MOBILE developers yet and seems
to be rather difficult to algorithmize for (arbitrary) higher

Uses of new sensitivity and DAE solving methods in SMARTMOBILE... 457

orders of derivatives. Besides, as shown in Section 4.1,
the overestimation for intervals might be too large. That
is why it was decided to employ the first possibility in
SMARTMOBILE.

Basically, there are two methods to implement algo-
rithmic differentiation: code transformation and overload-
ing. The latter was chosen to obtain code derivatives from
MOBILE. The overloading technique in this case means
that a new data type is developed that is capable of com-
puting the derivative along with the function value. This
new data type is used instead of the simple one in the code
piece. The drawback of this method is the lack of au-
tomatic optimization during derivative computation. The
technique of code transformation might evaluate deriva-
tives more efficiently. However, this approach seems to
be difficult to implement for large code pieces which are
self-contained programs themselves.

Consequently, the following components are neces-
sary to verify results of an existing MSS: a basic veri-
fied arithmetic, a tool to compute derivatives (if not con-
tained in the basic arithmetic), and an IVP solver. During
the last decades, a variety of libraries have appeared in
each area. We use the library PROFIL/BIAS (Knüppel,
1994) for intervals, COSY INFINITY (Berz and Makino,
2006) and RiOT (Eble, 2007) for Taylor models, FAD-
BAD++ (Bendsten and Stauning, 1996) as well as Cp-
pAD (Bell, 2006) for algorithmic differentiation, and, fi-
nally, VNODE (Nedialkov, 2002), ValEncIA-IVP (Rauh
et al., 2007a), RiOT again, and VSPODE (Lin and
Stadtherr, 2006) for solving initial value problems.

2.2. Working with SMARTMOBILE. Since we chose
overloading as a technique to obtain verified results, it is
now clear why a floating point based code itself has to be
changed in the case of numerical MSS. We have to substi-
tute a new enhanced data type for the double data type
of the original version, which results in a new program.
In SMARTMOBILE, all relevant occurrences of MoReal
(an alias of double in MOBILE) are replaced with an
appropriate new data type. Almost each verified solver
needs a different basic data type (cf. Table 1). There-
fore, the whole structure of MOBILE was turned into
templates in SMARTMOBILE for the user to be able to
chose a solver according to the task at hand. Basically, all
transmission elements in SMARTMOBILE contain place-
holders instead of occurrences of MoReal, for which the
actual data type is substituted at the end of the modeling
stage.

The strategy in SMARTMOBILE is to use pairs
type/solver. For example, to provide interval verification
with the help of VNODE-based solver TMoAWAInteg-
rator, the basic data type TMoInterval including
data types necessary for algorithmic differentiation
should be used. The data type TMoFInterval en-
ables the use of TMoValenciaIntegrator, an

adjustment of the basic version of VALENCIA-IVP.
TMoRiotIntegrator is based on the IVP solver
from the library RIOT, an independent C++ version
of COSY and COSY VI, and requires the class
TMoTaylorModel, a SMARTMOBILE-compatible
wrapper of the library’s own data type TaylorModel.
Analogously, to be able to use COSY, the wrapper
RDAInterval is necessary. A current addition to the
available solvers in SMARTMOBILE is the one based
on VSPODE. More advanced users can incorporate
their own solvers into SMARTMOBILE following the
guidelines from (Auer, 2007).

In general, kinematics can be simulated with the
help of all of the above mentioned basic data types.
However, other basic data types might become neces-
sary for more specific tasks such as finding equilibrium
states of a system since they require specific solvers.
SMARTMOBILE provides an option of modeling equi-
librium states in a verified way with the help of the
interval-based data type MoFInterval and the class
MoIGradientStaticEquilibriumFinder using
either a version of the Newton-Gauss-Seidel iteration
from the C-XSC TOOLBOX (Hammer et al., 1995) or the
Krawczyk algorithm (Krawczyk, 1969).

A model in MOBILE and, consequently, SMART-
MOBILE, is an executable program in C++ which uses
predefined classes as transmission elements. Owing
to the structure of SMARTMOBILE, it is easy for a
MOBILE user to switch to the verified version. As
shown in Fig. 3, the differences are, first, in the names
of transmission elements (they have a preceding letter
T and are templates so that the actual data type has
to be specified for them) and, second, in the solvers
that are used (e.g., TMoAWAIntegrator instead of
TMoAdamsIntegrator). Besides, two converters
were developed to reduce the amount of manual work
for the user. The first one transforms MOBILE models
into the syntax prescribed by SMARTMOBILE for the
two major design options mentioned in Section 2.3. The
second one helps to convert newly developed MOBILE
elements into SMARTMOBILE templates via a series of
automatically generated LINUX scripts. Elements gen-
erated by both converter types might require a heuristic
improvement by the user, if they contain code fragments
the transformation of which cannot be automated, for ex-
ample, non-verified equation solvers.

2.3. Design vs. efficiency. Having decided to use
overloading as a strategy to verify the results of kine-
matic or dynamic simulations as well as to obtain nec-
essary derivatives, we are confronted with the following
situation. For one and the same goal function f , we
need to compute at least two sets of values: the func-
tion values themselves and the values of their deriva-
tives. This means that, for example, in the case of the

458 E. Auer and W. Luther

Table 1. Available data types and solvers in SMARTMOBILE.
Type Integrator Purpose
MoReal MoAdamsIntegrator,... nonverified dynamics
TMoInterval TMoAWAIntegrator
TMoFInterval TMoValenciaIntegrator verified dynamics of
TMoTaylorModel TMoRiOTIntegrator ODE based systems
-- TMoVSPODEIntegrator
RDAInterval — Taylor model based kinematics
MoFInterval MoIGradientEquilibriumFinder verified equilibria

TMoImplicitConstraintSolver kinematics with constraints
MoSInterval TMoValenciaSIntegrator verified sensitivity

VNODE-based solver TMoAWAIntegrator, the right
hand side of motion equations has to be computed with
three data types: INTERVAL for the simple function
values, T<INTERVAL> for the Taylor coefficients, and
T<F<INTERVAL>> for the Jacobians of the Taylor coef-
ficients. There are several ways to handle this situation.

The first one is to make a template out of the func-
tion f . This is a common solution in all verified IVP
solvers but it cannot be implemented in SMARTMOBILE
as is. The reason is the optimization of the basic MO-
BILE models with respect to their runtime: all transmis-
sion elements there do not work with copy constructors
but use references to the actual instances of objects in the
main() function.

Therefore, a possible option is to generate a
“collective” data type such as the already mentioned
TMoInterval containing all three necessary data types:

class TMoInterval{
INTERVAL enc;
T<INTERVAL> tenc;
T<F<INTERVAL>> tfenc;

}

The SMARTMOBILE model for this case is shown
in Fig. 3. The advantage of this approach is that the func-
tion f has to be called only once to obtain all necessary
values. The disadvantage is the additional amount of work
which is performed if only the function values without
derivatives are of interest at a given algorithm stage.

This disadvantage can be overcome by several strate-
gies. The simplest one is to implement f multiple
times: in our example, this means instantiating all the
templates in the model from Fig. 3 with INTERVAL,
T<INTERVAL>, and T<F<INTERVAL>> data types
successively. The references to instances of each of
MoMechanicalSystem objects containing the equa-
tions of motion are then passed to the corresponding IVP
solver. In this way, the existing IVP solvers can be inte-
grated into SMARTMOBILE more easily. On the other
hand, the computing time is also improved.

The disadvantage of the strategy above is code in-
flation. Two more approaches can be used to overcome

it. (Note that no considerable improvement in computing
time is to be expected here.) The first one is to encapsulate
the whole model in a separate template object, for exam-
ple, MoModel. Then the SMARTMOBILE model from
our example will consist of three template instantiations
and the call to the IVP solver:

int main(){
MoModel<INTERVAL> iModel;
MoModel<T<INTERVAL>> tiModel;
MoModel<T<F<INTERVAL>>> tfiModel;

TMoAWAIntegrator integrator(
iModel.system,timodel.system,
tfiModel.system,...);

integrator.doMotion();
}

Here, we do not have to write the same model twice. How-
ever, this representation seems to be less intuitive. A con-
verter for this case is under development at the moment.

The last of the options we can think of is the one
proposed by John D. Pryce. For each transmission el-
ement in SMARTMOBILE, a new one with the same
name should be automatically generated to contain tem-
plate instantiations of this element for each necessary
data type. In the same example, it would mean gen-
erating for each template element from TMoFrame to
TMoMechanicalSystem a non-template container of
the following type:

class TMoFrame{
TMoFrame<INTERVAL> iFrame;
TMoFrame<T<INTERVAL>> tiFrame;
TMoFrame<T<F<INTERVAL>>> tfiFrame;

}

The model itself would not differ from the one in MO-
BILE but for the employed verified solver. However, re-
generating the whole of the SMARTMOBILE structure to
be able to integrate every new solver seems to be too much
of an effort without a gain in computing time.

Uses of new sensitivity and DAE solving methods in SMARTMOBILE... 459

xy

z

g

m1

m2

first angle

second angle

Fig. 2. Iconic model of the double pendulum.

2.4. Verified simulation of dynamics of a double pen-
dulum with an uncertain initial angle. Let us consider
the example of a double pendulum shown in Fig. 2 de-
scribed in more detail in (Rauh, Auer and Hofer, 2007a).
The initial conditions for the angles (in rad) and angular
velocities (in rad/s) are given below:

[
3π

4
± 0.01 · 3π

4
− 11π

20
0.43 0.67

]T
.

The first value has an uncertainty of ±1% of its nominal
value.

The corresponding SMARTMOBILE model is
shown in Fig. 3 and consists of five frames, two revolute
joints, two rigid links, and two mass elements, all con-
nected into one chain by the instance Pend of the class
TMoMapChain. The angles and angular velocities as-
sociated with the joints are the independent variables of
the equations of motion obtained in their state space form
by an instance of TMoMechanicalSystem. We use
the basic data type TMoInterval and the IVP solver
TMoAWAIntegrator to solve the equations and simu-
late dynamics in this example.

To give an overview of the comparative advantages of
the currently available IVP solvers in SMARTMOBILE,
we simulate the dynamics of this example using each of
them with its optimal settings from out point of view.
All simulations were performed on a four processor dual
core computer (Intel Xeon CPU 2.00GHz) under Linux
2.6.25.14-69.fc8. The results are summarized in Table 2.
The first row defines the verified strategy used for sim-
ulation. TMoAWAIntegrator is used with a variable
step size h and QR-factorization method with a Taylor se-
ries of order 20. The order of Taylor models in the case
of TMoRiOTIntegrator is equal to 5. This solver
is used with a variable step size ranging from 0.0002 to
0.2. TMoValenciaIntegrator, which does not im-
plement a step size control strategy yet, is employed with

define TMoInterval t;
TMoFrame<t> K0, K1, K2, K3, K4;
TMoAngularVariable<t> psi1, psi2;
// transmission elements
TMoVector<t> l1(0,0,-1), l2(0,0,-1);
TMoElementaryJoint<t> R1(K0,K1,psi1,xAxis);
TMoElementaryJoint<t> R2(K2,K3,psi2,xAxis);
TMoRigidLink<t> rod1(K1,K2,l1),rod2(K3,K4,l2);
t m1(1),m2(1);
TMoMassElement<t> Tip1(K2,m1),Tip2(K4,m2);
// the complete system
TMoMapChain<t> Pend;
Pend << R1<<rod1<<Tip1<<R2<<rod2<<Tip2;
// dynamics
TMoVariableList<t> q; q << psi1<<psi2;
TMoMechanicalSystem<t> S(q,Pend,K0,zAxis);
TMoAWAIntegrator I(S,0.0001,ITS QR,15);
I.doMotion();

Fig. 3. Model of the double pendulum in SMARTMOBILE.

0 0.2 0.4 0.6 0.8
Time (s)

-0.5

0

0.5

1

1.5

2

2.5
F

irs
t a

ng
le

 (
ra

d)

TMoRiOTIntegrator
TMoValenciaIntegrator
TMoAWAIntegrator
TMoVspodeIntegrator

Fig. 4. Simulation results for the double pendulum in SMART-
MOBILE.

the constant step size 0.0001. Finally, the recently devel-
oped TMoVspodeIntegrator is set to use a variable
step size, a Taylor series of order 20 for expansion in time,
and Taylor models of order 17 for expansion in initial con-
ditions.

The second row of Table 2 contains the times in sec-
onds after which the verification of results is no longer
possible. This happens here due to the chaotic character
of the system considered and the resulting overestimation.

The CPU times (in seconds) each program needs
to solve the system over the time interval [0; 0.4] are
recorded in the third row. Note that these times are given
only as a reference. They cannot be taken absolutely
for various reasons, one of which is the lack of guide-
lines to the optimal settings for each solver. We recorded
times provided by the programs themselves. The values of
break-down times in the table are rounded up to the third
digit after the decimal point. In Fig. 4, trajectories for the
first angle are shown. The curves of the same pattern rep-
resent the upper and lower bound of the solution obtained
with the corresponding solver under the given uncertainty
in the first initial angle.

460 E. Auer and W. Luther

Table 2. Performance of verified IVP solvers for the double pendulum.

Strategy TMoAWA
(variable h)

TMoRiOT
(0.0002 ≤ h ≤ 0.2)

TMoValencia
(h = 10−4)

TMoVSPODE
(variable h)

Break–down 0.420 0.801 0.531 0.656
CPU Time 5 285 22 10

The use of TMoValenciaIntegrator im-
proves the tightness of the resulting enclosures in
comparison to TMoAWAIntegrator for this example.
Although TMoRiOTIntegrator breaks down much
later than both former solvers, it needs more CPU
time. The use of new TMoVspodeIntegrator
seems promising because it provides tighter en-
closures than TMoValenciaIntegrator or
TMoAWAIntegrator in a comparable CPU time
even though some of its important characteristics have
not been integrated into SMARTMOBILE yet.

3. Sensitivity analysis in SMARTMOBILE

In this section, we consider options for obtaining the sen-
sitivity of system models in SMARTMOBILE with re-
spect to their parameters. In the dynamic case, we define
sensitivity as

[s] =
∂[x]
∂[p]

,

where p is a(n) (uncertain) parameter, the bounds for
which are given by the interval [p], and [x] is the ver-
ified solution of the corresponding IVP. To find [s],
SMARTMOBILE provides the class TMoValencia-
SIntegrator based on the corresponding algorithm
from VALENCIA-IVP (Rauh et al., 2009). On the other
hand, the same definition can be used for kinematics,
where the solution [x] is replaced by the quantity of in-
terest as an interval evaluation of a function f([p]) to ob-
tain it. In SMARTMOBILE, the user can employ algorith-
mic differentiation data types to compute this sensitivity.
Defined this way, [s] provides a linear measure of uncer-
tainty influence on the system model. Unfortunately, veri-
fied sensitivity cannot be always computed due to possible
overestimation in interval values. In this case, an approx-
imation to the influence of uncertainty on the system can
be obtained as

[u] =
n∑

i=1

∂f(p1, . . . , pn)
∂pi

× [pi]

with intervals, where the sensitivity s = [s1, . . . , sn] is
a double-based value of the partial derivative of f(p),
p = [p1, . . . , pn]. The computation of floating point sen-
sitivities for dynamics, although possible in principle, is
not currently implemented in SMARTMOBILE.

0 0.125 0.25 0.375 0.5
 time (s)

-0.02

0

0.02

0.04

0.06

 s
en

si
tiv

ity
 o

f t
he

 fi
rs

t a
ng

le

SmartMOBILE
symbolic model
SmartMOBILE, mass = 1

Fig. 5. Sensitivity of the double pendulum with respect to the
first mass.

This section is structured as follows: First, we show
how TMoValenciaSIntegratorworks using the ex-
ample of the double pendulum from Section 2.4. Then
sensitivities are computed in kinematic and dynamic cases
for two practically relevant subsystems of the human
body.

3.1. Sensitivity of the double pendulum to mass. Un-
der the same conditions as in Section 2.4, we compute the
sensitivity of the first angle of the double pendulum to the
first mass m1 with the help of the class TMoValencia-
SIntegrator. In Fig. 5, the dashed-dotted curves show
results obtained with SMARTMOBILE for m1 = 1 kg,
the solid ones for m1 ∈ [0.99; 1.01] kg. As a comparison,
results for the symbolic equations of the double pendu-
lum with m1 ∈ [0.99; 1.01] kg from VALENCIA-IVP are
represented by the dashed curves.

The enclosures obtained in VALENCIA-IVP are
tighter, which is not very remarkable since the symbolic
model contains less numerical operations and is therefore
less prone to overestimation. The enclosures for certain
and uncertain masses do not differ much over the time in-
terval considered. This fact leads to the conclusion that
mass uncertainty does not contribute as much as uncer-
tainty in the initial conditions to the overall overestimation
that shows itself in the continuous widening of enclosure
widths over time.

This conclusion is also confirmed by Figs. 6 and 7.
The first one shows sensitivities of the double pendu-
lum with respect to the first uncertain initial condition.
Again, the dashed-dotted curves represent results obtained

Uses of new sensitivity and DAE solving methods in SMARTMOBILE... 461

 0.9

 1

 1.1

 1.2

 1.3

 1.4

 1.5

 1.6

 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

se
ns

iti
vi

ty
 o

f t
he

 fi
rs

t a
ng

le

time (s)

SmartMOBILE
symbolic model

SmartMOBILE, mass=1

Fig. 6. Sensitivity of the double pendulum with respect to the
first initial condition.

-0.5

 0

 0.5

 1

 1.5

 2

 2.5

 3

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

se
ns

iti
vi

ty
 o

f t
he

 fi
rs

t a
ng

le

time (s)

wrt. the first mass
wrt. the first initial condition

Fig. 7. Sensitivity of the double pendulum with respect to the
first mass and the first initial condition without uncer-
tainty in parameters.

with SMARTMOBILE for m1 = 1 kg, the solid ones
for m1 ∈ [0.99; 1.01] kg, and the dashed curves for the
symbolic equations of the double pendulum with m1 ∈
[0.99; 1.01] kg from VALENCIA-IVP. The curves from
SMARTMOBILE do differ slightly more from each other
than the corresponding curves in Fig. 5. However, this dif-
ference can be ascribed largely to overestimation since the
problem at hand is chaotic.

In Fig. 7, the sensitivity enclosures of the first an-
gle of the double pendulum to the first mass and the first
initial condition are juxtaposed. For better representation,
we considered m1 = 1 and the first initial condition with-
out uncertainty (i.e., 3π/4) in the symbolic model. The
system is much more sensitive to changes in the first ini-
tial condition because the absolute value of the respective
sensitivity in each point is considerably larger than the one
with respect to the mass. The sensitivity to the mass is
increasing in the examined interval in Fig. 5. However,
Fig. 7 gives an indication of how this value would behave
over a larger time interval if we had no overestimation.
It stays small and even decreases against the end of the
simulation. This holds for all angles and their velocities
while the difference for the first angle is the most promi-

nent since we chose the first initial value as the parame-
ter. Therefore, the first mass does not influence the system
model as much as the initial conditions.

3.2. Identification of body segment motion using
marker trajectories. Now we consider the problem of
the reconstruction of the hip joint position from positions
of markers fastened to specified places on a patient’s leg, a
task described in greater detail in (Auer and Luther, 2009).
The corresponding model is purely kinematic. At first, the
segment frame motion is obtained by orthogonalizing the
bone and joint axes sequentially. In the second step, the
model parameters and the motion of the model segments
are adjusted to the marker trajectories using nonlinear op-
timization. For the purposes of verification, the fitting task
of this second stage was simplified in such a way as to be
explicitly solvable. For a detailed description of the non-
verified method, see (Tändl et al., 2009).

The data on marker positions contains measurement
errors which appear, for example, due to skin movement
during motion. These uncertainties are empirically set to
±10 mm for each marker displacement tangential to skin
and the one due to soft tissue movement. The marker dis-
placement normal to skin can be up to ±5 mm. Besides,
both knee and ankle widths with nominal values of 120
mm and 80 mm, respectively, are also measured with an
error of ±10 mm.

In (Auer and Luther, 2009), it was shown that the
length of the femur bone under these uncertainties was
as stated in Table 3 (rounded up to the first digit after
the decimal point). Here, the second row identifies en-
closures resulting from taking into consideration uncer-
tainties in knee and ankle widths and the third row for
all three above mentioned uncertainties due to marker dis-
placements. The simulations with intervals did not pro-
duce a meaningful result because of the large overestima-
tion (cf. the third column of the table).

By using Taylor models, we reduced overestimation
and obtained acceptable enclosures shown in the second
column. Here, Taylor models were bounded by the LDB
algorithm from COSY (the linear dominated bounder)
to obtain their interval-like enclosures. For uncertainties
in knee and ankle widths, the overall uncertainty in the
length of the femur bone amounted to 20 mm. Marker dis-
placements caused an enclosure of almost 622 mm in di-
ameter, which is less meaningful in real life cases. This re-
sult indicates the need to perform all corresponding mea-
surements with great care if the proposed algorithm is to
be used. On the other hand, it might be worth while to
devise an algorithm that would be less sensitive to marker
displacements.

An interesting measure on overestimation in this case
can be supplied by the reference uncertainty [u] defined at
the beginning of this section. In Table 4, we show the
sensitivity s of the length of the femur bone with respect

462 E. Auer and W. Luther

Table 3. Verified length of femur bone (in mm).
RDAInterval INTERVAL

Knee, ankle [377.6; 396.7] [0;∞]
Marker displacements [0.000; 621.4] no answer

Table 4. Sensitivity of the femur length.
Knee Ankle Tangential Normal Soft
0.4 −0.3 −2 0.7 1.4

to the knee width, ankle width and marker displacements
tangential to skin, normal to skin, and those due to soft
tissue movement. Here, s is computed in SMARTMO-
BILE using algorithmic differentiation and the floating
point data type F<double>. The numbers in the table
are rounded up to the first digit after the decimal point.
The approximation [u] is equal to ±7 mm if uncertainties
in knee and ankle widths are considered and ±37.5 mm if
the influence of marker displacements is of interest. This
indicates that the large diameter of the enclosure shown in
the last line in the second column of Table 3 is not entirely
due to overestimation but results from the high sensitivity
of the model to this kind of parameters.

One more interesting conclusion which the sensi-
tivities in Table 4 allow originates from the comparison
with a result from (Auer and Luther, 2009), shown again
in Table 5. The femur length was measured under ±5,
±10 and ±20 mm uncertainty individually for each kind
of displacement. According to the enclosures obtained
there, the displacement due to soft tissue movement has
the biggest influence on the resulting uncertainty of the
model. However, Table 4 shows that the model is most
sensitive to the marker displacement tangential to skin be-
cause this partial derivative has the largest absolute value.
That means that the interval implementation of the model
might have room for improvements where displacements
due to soft tissue movements are concerned so that overes-
timation larger than for other parameters is not generated.

3.3. Simplified muscle activation model. The model
under investigation (Fig. 8) represents a simplified sub-
system of the human leg described in greater detail in
(Strobach et al., 2005; Auer et al., 2007). It consists of
pelvis, thigh and shank. To drive the model in forward dy-
namics simulations, the muscle biceps femoris short head
is included, which is responsible for knee flexion. For the
purposes of the first verified study, the overall model is
simplified so that it is everywhere continuously differen-
tiable. For example, the force law of the involved muscle
model is not HILL-type anymore but corresponds to the
simple rule

F (q) =
P

1 + Tq
,

Fig. 8. Examined subsystem of the human leg.

0 2 4 6 8 10
 time (s)

-0.4

0

0.4

0.8

1.2

1.6

2

 k
ne

e
an

gl
e

(r
ad

)

Model data (without uncertainty)
Gait lab data

Fig. 9. Comparison of simulations without uncertainties with
the data from the gait lab.

where P and T are constants. Besides, the activation func-
tion is allowed to be negative, which does not take into
account mechanical constraints. Under these restrictions,
the simulated results do not quite fit the results obtained
in the gait lab (cf. Fig. 9 for the knee angle).

Since most of the model parameters cannot be mea-
sured exactly, the task consists in investigating how un-
certainty in parameters influences the outcome of simula-
tions. The parameters of interest are the thigh length, the
shank length, and the point of the muscle insertion at the
hip (its z and y coordinates).

In (Auer et al., 2007), thigh and shank lengths were
identified empirically as the most influential parameters
considered. The obtained enclosures from Table 6 show
that the model reacts most sensitively to the changes in
these parameters. Here, an uncertainty of ±0.1% in the
nominal value of each parameter is considered. The dy-
namic simulations are then performed to obtain the point
after which verification is not possible.

To prove this, we compute the verified sensitivities of
the solution with respect to all parameters of interest us-
ing the class TMoValenciaSIntegrator in SMART-
MOBILE. The results for the sensitivity of the knee an-
gle are shown in Fig. 10. We notice again that the curves
for the sensitivity with respect to thigh and shank lengths

Uses of new sensitivity and DAE solving methods in SMARTMOBILE... 463

Table 5. Sensitivity of the model with respect to marker displacements (m) due to skin movements: femur length (m).
Marker displacement [−0.005; 0.005] [−0.010; 0.010] [−0.020; 0.020]
tangential to skin [0.3492; 0.4203] [0.3008; 0.4576] [0.1146; 0.5468]
normal to skin [0.3742; 0.3985] [0.3279; 0.4413] [0.3335; 0.4427]
soft tissue [0.3593; 0.4125] [0.3279; 0.4413] [0.0000; 0.6330]

Table 6. Influence of uncertainties on the knee angle.
Uncertainty (±0.1%) Break down

Thigh length = 0.45 m 0.118 s
Shank length = 0.49 m 0.125 s
z = −0.2281 m 0.135 s
y = −0.0253 m 0.389 s

-0.1

-0.05

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18

se
ns

iti
vi

ty
 o

f t
he

 k
ne

e
an

gl
e

time (s)

wrt. thigh length
wrt. shank length
wrt. z coordinate
wrt. y coordinate

Fig. 10. Verified sensitivity of the knee angle to four uncertain
parameters.

have a significantly bigger absolute value in each point
than those for muscle insertion and are also more prone
to overestimation. This confirms the empirical conclusion
made earlier.

4. Options for the simulation of closed loop
systems in SMARTMOBILE

There are several options in MOBILE to simulate
the kinematics and dynamics of closed loop systems.
Without going into much detail, to be found else-
where (Kecskeméthy and Hiller, 1994), we single out
an aspect of this complicated process which is impor-
tant from our point of view. Mathematical models behind
this type of problems are systems of differential-algebraic
equations. Since the index of such systems is usually
equal to three, common IVP solvers for DAEs such as
DASSL cannot handle them as they are. This fact is one of
the reasons why the original system of DAEs is automat-
ically transformed into an equivalent system of ODEs in
MOBILE. Two transmission elements are developed for
this purpose. MoExplicitConstraintSolver han-
dles systems with one or two constraints of a certain form
where explicit solution of the corresponding algebraic sys-

tem is possible. MoImplicitConstraintSolver
uses Newton’s method to obtain solutions to arbitrary
(non-linear) systems of algebraic equations.

As already reported (Auer, 2007), it is pos-
sible to verify the kinematics and dynamics of
closed loop systems in SMARTMOBILE by us-
ing a verifying version of the first element called
TMoExplicitConstraintSolver. As for the
second element, there exists a version of it called
MoIImplicitConstraintSolver using the
Newton-Gauss-Seidel or Krawczyk methods to verify
the kinematics of systems modeled with it. The im-
plementation of the latter element for dynamics seems
impracticable since all iterations of a verified zero-finding
method would have to be taken into the algorithmic
differentiation graph for computing derivatives, which
still cannot be handled satisfactorily by the software.

An alternative is to solve the DAE system directly.
Unfortunately, verified solution of IVPs to DAEs is a very
new research area. One tool available to us is an ex-
tension of VALENCIA-IVP which is still under devel-
opment. However, the first results as reported in (Rauh
et al., 2007b) are promising. Since this solver requires
an approximation of the DAE solution in its first stage, a
reliable solver for this purpose should be integrated into
SMARTMOBILE.

Therefore, we structure this section as follows:
First, an example showing how MoIImplicit-
ConstraintSolver can be employed in SMART-
MOBILE is described. Note that SMARTMOBILE
is used here not only for simulation but also for en-
hancing the modeling of the example. In the next
subsection, an accurate floating point based solver
TMoDEATSIntegrator is presented. We conclude
with a short description of our current work toward the
integration of a verified DAE solver based on the corre-
sponding version of VALENCIA-IVP into SMARTMO-
BILE.

4.1. Equations of motion for a spatial four bar mecha-
nism with result verification. Four bar mechanisms are
the simplest closed loop systems relevant for real life ap-
plications. In this subsection, we consider the one shown
in Fig. 11, left side. This closed system consists of two
revolute joints R1 and R2, a double-revolute joint mod-
eled by two joints R3 and R4, a spherical joint S1, and
four massless rigid links base, link_1, link_2, and

464 E. Auer and W. Luther

Fig. 11. Iconic model of a spatial four bar mechanism.

coupler between them. To model this task, the loop is
dissected at the body coupler (cf. Fig. 11, right side).
The closure condition core is the equality of the cor-
responding displacements and rotations for the reference
frames K7 and K10. Usually, core is an instance of the
measurement object MoChord3DPose.

For this type of closure conditions, the element
MoImplicitConstraintSolver should be used.
In SMARTMOBILE, we employ TMoIImplicit-
ConstraintSolver based on the Newton-Gauss-
Seidel or Krawczyk zero-finding algorithms. The task is
to find the mass matrix and the force for this system with
result verification. However, this example shows more
than just the possibility of verification. Using it, we can
compare the method of obtaining derivatives of a function
by algorithmic differentiation to the one based on physical
considerations.

If we compute the Jacobian of the goal function in the
interval version by using the force-based method supplied
by MOBILE, the enclosure is equal to

⎛
⎝[−10−2; 10−2] [−1.1;−0.9] [−10−4; 10−4]

[−0.8; 1.8] [−10−3; 10−3] [−0.7;−0.2]
[0.5; 3.1] [0; 0] [0.9; 1.1]

⎞
⎠ .

Here, the numbers are rounded up to the first digit after
the decimal point. We show only 3×3 left upper selection
out of this 6 × 6 matrix for space reasons. For the same
parameter values, the enclosure of the Jacobian obtained
with algorithmic differentiation is much tighter:

⎛
⎝[0.0] −[1.0] [0.0]

[1.5] [0.0] −[0.5]
[1.0] [0.0] [1.0]

⎞
⎠ .

Here, the notation [number] means that an enclosure of a
number with a diameter of at most 10−12 is obtained.
Since this Jacobian is important not only for the zero-
finding method but also for correct computation of ve-
locities and accelerations inside the implicit solver, it is
crucial to obtain its tight enclosure.

However, automatic computation of the Jacobian
calls for different constraint modeling. Instead of the mea-
surement transmission element MoChord3DPose be-
tween the frames K7 and K10, the following group of
measurements should be used:

TMoChord3DPosition<type> p(K7,K10);
TMoChordPlanePlane<type> xy(K10, K7);
TMoChordPlanePlane<type> xz(K10, K7);
TMoChordPlanePlane<type> yz(K10, K7);
TMoChordList<type> core;
core<<p<<xy<<xz<<yz.

They are later used by MoIImplicit-
ConstraintSolver in the same way as the old
core element

MoIImplicitConstraintSolver
(core, dependents, dChain);

where dependents are the dependent variables
theta2 to theta7 (angles associated with S1 and R2
to R4). The element dChain is the dependent chain con-
sisting of R2, link_2, the double-revolute joint R3-R4,
the dissected body (coupler_a, coupler_b), and the
spherical joint S1.

The measurement element MoChord3DPose
should not be used in this case because it is implemented
in such a way that the formal derivation of its code
does not produce the same Jacobian as provided by the
element itself by the function doJacobian() owing to
numerical stability reasons.

In Table 7, the enclosures for the mass matrix and
the force in the spatial four bar mechanism, used later to
obtain equations of motion, are shown. The results are
rounded up to the fifth digit after the decimal point. The
second column shows results for the case in which all pa-
rameters are chosen to be point intervals. Here, we also
get point intervals as the answer.

The third column records enclosures obtained for
±1% uncertainty in the nominal value of the angular ve-

Uses of new sensitivity and DAE solving methods in SMARTMOBILE... 465

Table 7. Enclosures for the mass matrix and force of the spatial
four bar mechanism.

points β′ ±1%
M(q) [1.03043] [1.03043]
F (q, q′) [−0.05104] [−0.26551, 0.16208]

locity associated with the revolute joint R1. We know the-
oretically that it does not have any influence on the mass
matrix so that the result in this case is the same. But the
enclosure of force has changed, and although its diameter
is not very large, we cannot deduce the sign of the force
from it anymore. This is an indication that the interval
based model contains a lot of overestimation and special
strategies to overcome it or another basic data type should
be used in this case. This conclusion is confirmed by the
relatively narrow search intervals which both Krawczyk
and Newton-Gauss-Seidel methods require to be able to
compute zeros.

The positive side is that this problem can be verified
and transmission elements themselves can be enhanced by
using algorithmic differentiation in SMARTMOBILE.

4.2. Non-verified accurate direct DAE solving method
in SMARTMOBILE. In this subsection, we consider
the example of a simple four bar mechanism and show
how the underlying DAE system can be solved directly
in SMARTMOBILE. Presently, this can only be done
in floating point arithmetic there. For this purpose,
the integrator TMoDAETSIntegrator has been imple-
mented recently. It is based on the solver DAETS, which
computes accurate floating point solutions to IVPs for
DAEs (Nedialkov and Pryce, 2007). One advantage of
DAETS is that it solves the problem as it is, without the
user having to transform it into an ODE problem or elim-
inating higher order derivatives, regardless of the prob-
lem’s index.

A new element has to be developed to provide
equations of motion in the form required by DAETS.
This was supplied by Martin Tändl and is called
TMoMechanicalSystemDAE. It constructs equations
of motion in the form g(x, ẋ, t) = 0. One of the advan-
tages of this representation is that the mass matrix does
not have to be inverted.

The four bar mechanism we consider in this example
is somewhat simpler than that from Subsection 4.1. Now
the system consists of two simple pendulums modeled
with two revolute joints R1 and R2 and two rigid links
rod1 and rod2 (cf. Fig. 12). They are connected
by the rigid link offsetToSecondPendulum.
The instance chord of the measurement class
MoChordPointPointQuadratic helps to for-
mulate closure conditions for the loop.

The difference in the usage of TMoMechanical-
System and TMoMechanicalSystemDAE is

Fig. 12. Iconic model of a four bar mechanism.

MoMapChain dependentChain;
dependentChain << R2 << rod2;

MoLinearVariable chordOffset;
MoChordPointPointQuadratic chord(K2,K5,chordOffset,

dependentChain) ;
MoExplicitConstraintSolver solver(chord,phi2,"solver") ;
MoMassElement Tip1 (K2, 1) ;
MoMassElement Tip2 (K5, 1) ;
MoMapChain PendulumSolved ; MoMapChain Pendulum ;
PendulumSolved << R1 << rod1 << Tip1

<< offsetToSecondPendulum << solver << Tip2 ;
Pendulum << R1 << rod1 << Tip1

<< offsetToSecondPendulum << R2 << rod2 << Tip2 ;
MoVariableList varsODE, varsDAE ;
varsODE << phi1 ; varsDAE << phi1 << phi2 ;
MoChordList constraintEquations ;
constraintEquations << chord ;
MoMechanicalSystemDAE mechSysDAE(varsDAE , Pendulum,

constraintEquations , K0 , zAxis) ;
MoMechanicalSystem mechSysODE(varsODE, PendulumSolved,

K0, zAxis) ;

Fig. 13. MOBILE model of a simple four bar mechanism
(abridged).

-0.8

-0.6

-0.4

-0.2

 0

 0.2

 0.4

 0.6

 0 0.5 1 1.5 2

an
gl

e
(r

ad
)

time (s)

TMoDAETS
TMoExplicit+Adams

TMoExplicit+TMoValencia

Fig. 14. First angle of a four bar mechanism.

466 E. Auer and W. Luther

demonstrated in Fig. 13 (for space reasons, only
a part of original model from MOBILE is shown
there). To obtain the solution with the help of the
usual ODE based method, an instance solver of
MoExplicitConstraintSolver has to be initial-
ized with constraint equations chord. Then, solver
is added to the overall chain called PendulumSolved,
which is in turn passed to the MoMechanicalSystem
object to produce equations of motion. In the case
of the DAE based method, chord and the original
system Pendulum are passed directly to the instance of
MoMechanicalSystemDAE to obtain the equations.

Note that the DAE based system cannot be solved
in MOBILE because it uses DASSL for DAE solving.
Besides, the solver DAETS can be employed only in
SMARTMOBILE because this MSS version supplies the
necessary derivatives.

We simulated the above system in SMARTMOBILE
with the help of the following strategies:

• the usual ODE based floating point method using the
explicit solver and the Adams integrator;

• the accurate DAE based method with
TMoDAETSIntegrator;

• the verified ODE based method using the explicit
solver and TMoValenciaIntegrator.

The solutions for the initial conditions ϕ1(0) =
0.523686971267079, ϕ2(0) = 0.763504826177631 are
shown in Fig. 14. (The numbers are supplied by
TMoDEATSIntegrator as the consistent initial condi-
tions.) The trajectories coincide, which is not surprising in
this case since we simulate the same system which is mod-
eled differently (verified, ODE and DAE based in floating
point arithmetic). Both of the non-verified solutions lie
inside the obtained verified bounds. For this simple exam-
ple, it is not possible to decide if the DAE based method
is more accurate than the ODE based one, although the
solver DAETS is reported to be so in more complicated
cases (Nedialkov and Pryce, 2007). If we subtract the
midpoints of the verified solution from each of the other
obtained solutions at each point of time, the deviation is
less than 10−13.

4.3. Current work toward a verified IVP solver
for DAEs in SMARTMOBILE. The new extension of
VALENCIA-IVP for DAEs works with (roughly) the fol-
lowing formula:

0 = g(xapp([t0; tm]) + [R(t0)] + [t0; tm][Ṙ([t0; tm])]) ,

where g is the goal function depending on the solution x,
its first derivative ẋ, and time t. In the formula above, the
solution x is replaced with the directive for its computa-
tion, where xapp is an approximate solution and R is the

enclosure of its error. This points out the main compo-
nents we need in SMARTMOBILE for incorporating this
solver into its core so that the DAE based method for sim-
ulation of closed loop systems can be verified.

At first, an element returning the func-
tion g is required. Such an element, called
TMoMechanicalSystemDAE, is already present
in SMARTMOBILE and was described in the previous
subsection. Next, a solver to compute the approximate so-
lution is necessary. The solver TMoDAETSIntegrator
provides such a possibility. Further, a verified zero-
finding routine is required by VALENCIA-IVP for DAEs,
which already exists in SMARTMOBILE and was tested
for various kinematic problems. Finally, a program for
testing and computing consistent initial values required
by any DAE solver is in the final stage of implementation
in SMARTMOBILE. Therefore, almost all auxiliary
routines are prepared and so only the algorithm itself has
to be transferred. This is our short-term task.

5. Conclusions

In this paper, we presented the tool SMARTMOBILE for
guaranteed modeling and simulation of the kinematics and
dynamic of mechanical systems. With its help, the behav-
ior of different classes of systems can be obtained with
the guarantee of correctness, the option which is not given
by tools based on floating point arithmetics. SMARTMO-
BILE is flexible and allows the user to choose the kind of
underlying arithmetic according to the task at hand.

Special attention was paid to recently developed
means of computing sensitivities in SMARTMOBILE.
The new methods help the developer to identify critical
parameters of the model and thus make the process of val-
idation easier.

Another recent development concerned the model-
ing and simulation of closed loop systems. The kine-
matics of systems with arbitrary constraints (defined by
MoIImplicitConstraintSolver) could be veri-
fied and the direct accurate DAE based kind of modeling
was made possible.

Our future work will consist in verifying the DAE
based approach to the modeling and simulation of closed
loop systems as well as devising further methods for the
reduction of overestimation in SMARTMOBILE.

References

Auer, E. (2007). SmartMOBILE: A framework for reliable
modeling and simulation of kinematics and dynamcis of
mechanical systems, Ph.D. thesis, Universität Duisburg-
Essen, Duisburg.

Auer, E. and Luther, W. (2007). SMARTMOBILE—An envi-
ronment for guaranteed multibody modeling and simula-
tion, Proceedings of the 4th International Conference on

Uses of new sensitivity and DAE solving methods in SMARTMOBILE... 467

Informatics in Control, Automation and Robotics ICINCO,
Angers, France, pp. 109–116.

Auer, E. and Luther, W. (2009). Numerical verification assess-
ment in computational biomechanics, Proceedings of the
Dagstuhl Seminar 08021: Numerical Validation in Cur-
rent Hardware Architectures, Dagstuhl, Germany, Lecture
Notes in Computer Science, Vol. 5492, Springer-Verlag,
Berlin/Heidelberg, pp. 145–160.

Auer, E., Tändl, M., Strobach, D. and Kecskeméthy, A. (2007).
Toward validating a simplified muscle activation model in
SMARTMOBILE, Proceedings of 12th GAMM-IMACS In-
ternational Symposium on Scientific Computing, Computer
Arithmetic and Validated Numerics (SCAN 2006), Duis-
burg, Germany, p. 7.

Bell, B. M. (2006). Automatic differentiation software CppAD.
http://www.coin-or.org/CppAD/.

Bendsten, C. and Stauning, O. (1996). FADBAD, a flexible
C++ package for automatic differentiation using the for-
ward and backward methods, Technical Report 1996-x5-
94, Technical University of Denmark, Lyngby.

Berz, M. and Makino, K. (2006). COSY INFINITY 9.0. Pro-
grammer’s manual, Technical Report MSUHEP 060803,
Michigan State University, East Lansing, MI.

Eble, I. (2007). Über Taylor-Modelle, Ph.D. thesis, Universität
Karlsruhe, Karlsruhe.

Griewank, A. (2000). Evaluating Derivatives: Principles
and Techniques of Algorithmic Differentiation, SIAM,
Philadelphia, PA.

Hammer, R., Hocks, M., Kulisch, U. and Ratz, D. (1995). C++
Toolbox for Verified Computing I—Basic Numerical Prob-
lems, Springer-Verlag, Heidelberg/New York, NY.

Kecskeméthy, A. and Hiller, M. (1994). An object-oriented ap-
proach for an effective formulation of multibody dynamics,
Computer Methods in Applied Mechanics and Engineering
115(3–4): 287–314.

Knüppel, O. (1994). PROFIL/BIAS—A fast interval library,
Computing 53(3–4): 277–287.

Knuth, D. E. and Levy, S. (1993). The CWEB System of Struc-
tured Documentation, Addison-Wesley, Reading, MA.

Krawczyk, R. (1969). Newton-Algorithmen zur Bestim-
mung von Nullstellen mit Fehlerschranken, Computing
4(3): 187–201.

Lin, Y. and Stadtherr, M. A. (2006). Validated solution of ini-
tial value problems for ODEs with interval parameters,
Proceeding of the NSF Workshop on Reliable Engineering
Computing, Savannah, GA, USA.

Nedialkov, N. and Pryce, J. (2007). Solving differential-agebraic
equations by Taylor series (III): The DAETS code, Journal
of Numerical Analysis, Industrial and Applied Mathemat-
ics 1(1): 1–30.

Nedialkov, N. S. (2002). The design and implementation of
an object-oriented validated ODE solver, Technical report,
University of Toronto, Toronto.

Rauh, A., Auer, E. and Hofer, E. P. (2007a). VALENCIA-IVP: A
comparison with other initial value problem solvers, Pro-
ceedings of the 12th GAMM-IMACS International Sympo-
sium on Scientific Computing, Computer Arithmetic and
Validated Numerics (SCAN 2006), Duisburg, Germany,
p. 36.

Rauh, A., Auer, E., Minisini, J. and Hofer, E. P. (2007b). Exten-
sions of VALENCIA-IVP for reduction of overestimation,
for simulation of differential algebraic systems, and for dy-
namical optimization, PAMM 7(1): 1023001–1023002.

Rauh, A., Minisini, J. and Hofer, E. P. (2009). Towards the de-
velopment of an interval arithmetic environment for vali-
dated computer-aided design and verification of systems in
control engineering, Proceedings of the Dagstuhl Seminar
08021: Numerical Validation in Current Hardware Archi-
tectures, Dagstuhl, Germany, Lecture Notes in Computer
Science, Vol. 5492, Springer–Verlag, Berlin/Heidelberg,
pp. 175–188.

Schlesinger, S. (1979). Terminology for model credibility, Sim-
ulation 32(3): 103–104.

Strobach, D., Kecskeméthy, A., Steinwender, G. and Zwick, B.
(2005). A Simplified Approach for Rough Identification of
Muscle Activation Profiles via Optimization and Smooth
Profile Patches, CD Proceedings of the International EC-
COMAS Thematic Conference on Advances in Computa-
tional Multibody Dynamics, ECCOMAS, Madrid, Spain.

Tändl, M., Stark, T., Erol, N.E., Löer, F. and Kecskeméthy, A.
(2009). An object-oriented approach to simulating human
gait motion based on motion tracking, International Jour-
nal of Applied Mathematics and Computer Science 19(3):
469–483.

Ekaterina Auer received her diplomas
in mathematics and computer science from
Ulyanovsk State University, Russia, in 2001
and from the University of Duisburg-Essen,
Germany, in 2002. Since 2002, she has been
working at the Chair for Computer Graphics
and Scientific Computing at the University of
Duisburg-Essen as a research assistant, receiv-
ing her Ph.D. in 2006. Her main interests are
scientific computing and the development of

software for applications to problems in mechanics and engineering.

Wolfram Luther leads a research group of
a dozen persons in scientific computing, com-
puter graphics, image and text processing. The
team is specialized in the development of soft-
ware and algorithms with result verification and
of interactive teaching and learning systems in
several contexts.

Received: 22 September 2008
Revised: 9 February 2009

	Introduction
	Main features of SMARTMOBILE
	Result verification of existing MSS
	Working with SMARTMOBILE
	Design vs. efficiency
	Verified simulation of dynamics of a double pendulum with an uncertain initial angle

	Sensitivity analysis in SMARTMOBILE
	Sensitivity of the double pendulum to mass
	Identification of body segment motion using marker trajectories
	Simplified muscle activation model

	Options for the simulation of closed loop systems in SMARTMOBILE
	Equations of motion for a spatial four bar mechanism with result verification
	Non-verified accurate direct DAE solving method in SMARTMOBILE
	Current work toward a verified IVP solver for DAEs in SMARTMOBILE

	Conclusions

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org?)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Versita Adobe Distiller Settings for Adobe Acrobat v6)
 /POL (Versita Adobe Distiller Settings for Adobe Acrobat v6)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [597.600 842.400]
>> setpagedevice

