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Control strategies for nonlinear dynamical systems often make use of special system properties, which are, for example,
differential flatness or exact input-output as well as input-to-state linearizability. However, approaches using these proper-
ties are unavoidably limited to specific classes of mathematical models. To generalize design procedures and to account for
parameter uncertainties as well as modeling errors, an interval arithmetic approach for verified simulation of continuous-
time dynamical system models is extended. These extensions are the synthesis, sensitivity analysis, and optimization of
open-loop and closed-loop controllers. In addition to the calculation of guaranteed enclosures of the sets of all reachable
states, interval arithmetic routines have been developed which verify the controllability and observability of the states of
uncertain dynamic systems. Furthermore, they assure asymptotic stability of controlled systems for all possible operating
conditions. Based on these results, techniques for trajectory planning can be developed which determine reference signals
for linear and nonlinear controllers. For that purpose, limitations of the control variables are taken into account as further
constraints. Due to the use of interval techniques, issues of the functionality, robustness, and safety of dynamic systems
can be treated in a unified design approach. The presented algorithms are demonstrated for a nonlinear uncertain model of
biological wastewater treatment plants.

Keywords: interval arithmetic, reachability analysis, observability analysis, robust stability, model-based design of optimal
controllers.

1. Introduction

Classical approaches to the design of controllers for
continuous-time dynamic systems often consist of two
stages. In a first stage, a control strategy is determined for
both linear and nonlinear dynamical systems under the as-
sumption of a mathematical system model with ideal op-
erating conditions. These ideal conditions are expressed
in terms of nominal parameters and nominal initial con-
ditions of the state variables. In most cases, the underlying
mathematical models are given by sets of ordinary differ-
ential equations (ODEs) and sets of differential-algebraic
equations (DAEs). Then, in a second stage, the robust-
ness of the nominal control law with respect to imper-
fectly known parameters and initial conditions is inves-
tigated. Furthermore, it has to be investigated whether the

dynamics of the closed-loop control system are influenced
significantly by the fact that the design process in Stage 1
is often performed for a reduced, i.e., simplified system
model. In contrast to the design of the controller, it has to
be evaluated and applied to detailed models which are as
close as possible to the real-world operating conditions.

Usually, Monte Carlo simulations or grid-based tech-
niques are applied to quantify the influence of the above-
mentioned uncertainties (Hammersley and Handscomb,
1964). However, typically no systematic approach is used
which rigorously verifies the applicability of control laws
under the influence of uncertainties in a guaranteed way
from a mathematical point of view. The goal of this pa-
per is to take into account robustness specifications, op-
timality criteria, criteria for the reachability and observ-
ability of states, as well as further specifications result-
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ing from choosing specific structures for control laws and
state observers in the earliest possible design stages. The
previously mentioned specific structures include, for ex-
ample, control laws leading to exact state feedback lin-
earization (Marquez, 2003) as well as control laws which
directly exploit system properties such as differential flat-
ness (Fliess et al., 1995).

This paper describes the current status of the devel-
opment of a general-purpose software environment for the
design of robust and optimal controllers and state esti-
mators using interval arithmetic. For that purpose, un-
certainties in parameters and in initial states will be as-
sumed to be bounded. Up to now, such a general-purpose
software tool does not exist. Only for special cases,
which are mostly treated in an analytic way, suitable al-
gorithms for controller design are available. In this case,
design criteria for robust controllers for linear dynami-
cal systems with uncertain parameters are usually spec-
ified using the notions of Γ-stability or B-stability. Us-
ing these notions, robustness can either be specified by
regions in the complex domain containing all admissible
poles of the closed-loop transfer function (Γ-stability) or
by specifications of worst-case bounds for the frequency
response (B-stability) (Ackermann et al., 2002; Sienel
et al., 1996; Odenthal and Blue, 2000; Bünte, 2000).
Then, the parameterization of linear feedback controllers
with a predefined structure is possible using the parame-
ter space approach introduced by Ackermann and Kaes-
bauer (Ackermann et al., 2002).

A special case of Γ-stability is robust Hurwitz-
stability which can be verified using Kharitonov’s stabil-
ity criterion. Generalizations leading to the definition of
absolute stability enable the design of control laws for
dynamical systems which contain sector-bounded static
nonlinearities (see, e.g., the Popov criterion). A de-
tailed discussion of these methods and the MATLAB-based
software tool PARADISE can be found in (Ackermann
et al., 2002).

The above-mentioned software environment only
deals with the parameterization of controllers based on ro-
bustness requirements. Combinations with optimality cri-
teria and the definition of bounds for the admissible range
of control inputs which lead to further constraints on both
the parameters of controllers with a predefined structure
and to constraints on the controller structure itself are usu-
ally not considered. First approaches leading in this direc-
tion were proposed in (Rauh and Hofer, 2005; 2009; Rauh
et al., 2007d; Rauh et al., 2009). In these articles, inter-
val arithmetic procedures for the design of controllers for
linear as well as nonlinear dynamical systems with uncer-
tainties were developed. During the design stages, time
domain specifications of robustness as well as optimal-
ity criteria are taken into account simultaneously in order
to parameterize control laws and to determine appropriate
controller structures.

In this paper, the basic functionalities of a general
software environment for the design of robust and op-
timal controllers are described. Furthermore, directions
for future research are pointed out. Especially for nonlin-
ear mathematical system models, simplifications of these
models are common in controller design. Linearization
techniques are used in order to approximate nonlinear dy-
namics by linear ones. Possibilities for the quantification
of the resulting approximation errors by interval parame-
ters are mentioned in Section 2.

Also in Section 2, prerequisites for the modeling
and design of control systems are summarized. In Sec-
tion 3, a brief summary of the interval-based simulation
environment VALENCIA-IVP (Auer et al., 2008) is given
which can be used for a verified analysis of the dynamics
of closed-loop control systems with respect to uncertain-
ties of system parameters and variations in controller pa-
rameters. Extensions of this simulation tool towards the
simulation of sets of DAEs and their relevance with re-
spect to controller design are highlighted in Section 4. In
Sections 5 and 6, relations between computational proce-
dures for verified sensitivity analysis of control laws using
VALENCIA-IVP, the simulation of sets of DAEs, and the
design of control laws exploiting differential flatness or
exact input-output as well as input-to-state linearizability
are pointed out. Requirements for robust trajectory plan-
ning, computational verification of robust stability, and the
design of optimal control laws for systems with uncertain-
ties are discussed in Sections 7–9. In Section 10, compu-
tational results of the sensitivity analysis of a nonlinear
mathematical model of biological wastewater treatment
processes and their applicability with respect to controller
design are given. Finally, this paper is concluded with an
outlook on future research in Section 11.

2. Modeling, analysis, and design of control
systems

In this paper, the modeling, analysis, and design of open-
loop as well as closed-loop controllers for nonlinear dy-
namical systems described by sets of ODEs

ẋ(t) = f (x(t), p(t), u(t), t) (1)

with x ∈ R
nx , p ∈ R

np , u ∈ R
nu are discussed. For that

purpose, two different scenarios are distinguished.
First, the sensitivity of the controlled systems’ tra-

jectories x (t) is analyzed with respect to uncertainties of
the initial conditions x (t0) and the parameters p (t). In
this case, either open-loop control laws u (t) or closed-
loop control laws u (x (t)) are assumed to be given.
The numerical solution approach is based on calculat-
ing guaranteed enclosures of all reachable states using
verified ODE solvers such as VALENCIA-IVP. Origi-
nally, VALENCIA-IVP has been developed to solve initial
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value problems (IVPs) for ODEs with uncertain parame-
ters p ∈ [p; p] and uncertain initial conditions x (t0) ∈
[x(t0); x(t0)]. This functionality is extended by comput-
ing partial derivatives of the states x(t) with respect to
(uncertain) parameters p using libraries for automatic and
algorithmic differentiation.

Second, the basic applications of verified IVP solvers
for DAEs are pointed out. In addition to sensitivity analy-
sis, they can be applied to determine open-loop control se-
quences u(t) numerically such that a specific output vari-
able matches a predefined time response.

The prerequisite for the application of verified
solvers for the simulation and controller design of dy-
namic systems is the availability of suitable mathematical
models which have to be detailed enough (without signif-
icant simplifications and neglections) such that they can
be used to verify control laws. If reduced models are used
to carry out the controller design, the influence of simpli-
fications and unavoidable approximation errors should be
quantified as precisely as possible. One suitable means
for that purpose is the subsumption of the resulting ap-
proximation errors in additive, interval-bounded correc-
tion terms in the state equations which are taken into ac-
count throughout all design stages.

3. Verified sensitivity analysis using
VALENCIA-IVP

In the following, ODEs ẋ (t) = f (x (t) , p, t) are con-
sidered which, as pointed out in Section 2, describe both
open-loop and closed-loop control systems. The vector p
consists of all time-invariant system and controller param-
eters. The differential sensitivities of the solution x (t)
with respect to the parameters p are defined by

ṡi (t) =
∂f (x (t) , p, t)

∂x
· si (t) +

∂f (x (t) , p, t)
∂pi

(2)

for all i = 1, . . . , np.
The new state vectors si(t) in (2) are given by

si (t) :=
∂x (t)
∂pi

∈ R
nx (3)

with the corresponding initial conditions

si (t0) =
∂x (t0, p)

∂pi
. (4)

If the initial states x (t0) ∈ [x (t0) ; x (t0)] are in-
dependent of p ∈ [p; p], the equality si (t0) = 0 holds.
In VALENCIA-IVP, the ODEs (2) do not have to be de-
rived symbolically, since all required partial derivatives
with respect to x and p are computed using automatic
differentiation provided by FADBAD++ (Bendsten and
Stauning, 2007).

For example, defining the linear state equation

ẋ(t) = p · x(t) (5)

directly leads to the sensitivity equation

ṡ(t) =
d
dt

(
∂x (t)

∂p

)
= p · ∂x (t)

∂p
+ x(t). (6)

This expression does not have to be computed symboli-
cally since it is determined in a straightforward way by
VALENCIA-IVP using automatic differentiation.

As for the case of solving an IVP for the ODEs
ẋ (t) = f (x (t) , p, t) using VALENCIA-IVP, guaranteed
state enclosures

[x(t)] := xapp(t) + [Rx (t)] (7)

are determined in a first stage. In (7), the approximate
solution xapp(t) for the IVP is determined numerically
using a non-verified ODE solver. The guaranteed er-
ror bounds [Rx(t)] are calculated iteratively (Rauh et al.,
2007a). In a second stage, after convergence of the iter-
ation for the interval bounds [x(t)], suitable approximate
solutions si,app(t) and additional enclosures

[si (t)] := si,app(t) + [Rs,i(t)] (8)

with si,app(t) ∈ R
nx and i = 1, . . . , np are determined

for the sensitivities. For both exactly known and uncertain
values of p and x (t0), the intervals [si (t)] are determined
such that the partial derivatives of all reachable states with
respect to all possible pi are included. For time-varying
parameters p (t), the sensitivities si (t) are computed with
respect to time-invariant variables εi ≈ 0 after substituting
p (t)+ ε with ε ∈ R

np for p (t). The variables εi are either
replaced by the value zero or by time-invariant intervals
containing the value zero.

The calculation of the differential sensitivities si (t)
using a verified ODE solver provides useful information
for the design of controllers. Guaranteed bounds of sensi-
tivities of the state variables can be obtained for uncertain
parameters p ∈ [p] using a single evaluation of the state
equations even for non-monotonic relations between the
parameters p and the state variables x. Techniques for
the reduction of overestimation are available which com-
bine consistency tests and exponential state enclosures to
avoid the growth of the diameters of the state enclosures,
especially for asymptotically stable systems (Rauh et al.,
2007b).

4. Application of VALENCIA-IVP to DAEs

In previous work, VALENCIA-IVP has been ex-
tended to determine guaranteed state enclosures also for
DAEs (Rauh et al., 2007b). In the following, semi-explicit
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DAEs

ẋ(t) = f (x(t), y(t), t) with f : D �→ R
nx , (9)

0 = g (x(t), y(t), t) with g : D �→ R
ny , (10)

D ⊂ R
nx × R

xy × R
1, with the consistent initial con-

ditions x (t0) and y (t0) are evaluated. These DAEs may
further depend on uncertain parameters p. To simplify the
notation in Sections 4 and 5, the dependence on p is not
explicitly denoted. However, all properties are also appli-
cable to systems with p ∈ [

p ; p
]
, p < p.

For verified DAE solvers, there are two important ap-
plications. First, as for verified simulation of ODEs, the
influence of uncertainties can be analyzed by calculating
guaranteed state enclosures if consistent initial conditions
are given for x (t0) and y (t0). Second, open-loop con-
trol strategies are determined such that the system’s out-
put signal matches a predefined time response. This task
is often referred to as the inverse control problem. For
example, for nonlinear exactly input-to-state linearizable
sets of ODEs, this task can be solved symbolically by ex-
pressing u (t) (as one component of y (t) in (9) and (10))
in terms of the state variables of the exactly linearized sys-
tem. However, numerical design approaches based on in-
terval analysis provide more flexibility since uncertainties
and robustness requirements can be taken into account di-
rectly. For that purpose, sets of ODEs and DAEs are ex-
tended by time-dependent algebraic constraints to specify
the desired output. The corresponding solution provides
the desired control and an enclosure of all reachable states.

5. Analysis of reachability and observability
and exact feedback linearization

In this section, nonlinear input-affine dynamical systems

ẋ (t) = f (x(t)) + g (x(t)) · u(t) (11)

with output equations

y(t) = h(x(t)) (12)

are considered. Non-input-affine systems ẋ = f(x, u) can
be transformed using artificial control inputs ũ according
to ẋ = f(x, u), u̇ = ũ, y = h(x).

5.1. Analysis of reachability for nonlinear dynamical
systems. Prerequisites for the implementation of con-
trollers are the reachability and observability of states.
The corresponding criteria for nonlinear systems are gen-
eralizations of Kalman’s criteria for state controllability
and observability for linear systems. To derive these crite-
ria, techniques from differential geometry have to be ap-
plied (Isidori, 1989). For nonlinear dynamical systems the
question whether a specific state is reachable with a given

input has to be analyzed to design for example a controller
with input-to-state linearization.

The Lie brackets of f(x) and g(x) which are defined
by [f (x) , g (x)] = ∂g(x)

∂x f (x) − ∂f(x)
∂x g (x) describe a

new direction that can be reached by a control for a given
dynamical system (11). After applying these Lie brack-
ets successively one gets all possible reachable directions
in the state-space. Thus with the help of P0(x) = g(x),
P1(x) = [f(x), g(x)], and Pk(x) = [f(x), Pk−1(x)],
k = 2, . . . , nx−1, the state-dependent reachability matrix

P (x) =
[
P0 (x) P1 (x) . . . Pnx−1 (x)

]
(13)

is determined. This matrix is evaluated for the intervals [x]
of the state variables. Using a verified LU-decomposition
of interval matrices, the rank of P (x) ∈ R

nx×nxnu is de-
termined. It corresponds to the dimension of the reach-
able manifold of the dynamical system for all x ∈ [x],
where [x] is identified using interval techniques.

5.2. Analysis of observability for nonlinear dynam-
ical systems. The observability matrix is defined with

the help of the Lie derivatives Li
fh(x) = Lf

(
Li−1

f h(x)
)

with L0
fh(x) = h (x) and Lfh(x) = ∂

∂xh(x) ·f(x) which
provide information about the variation of the output h (x)
along the vector field f (x). Successive application of the
Lie derivatives leads to the observability matrix

Q(x) =
[
QT

0 (x) QT
1 (x) . . . QT

nx−1(x)
]T

(14)

with Qi (x) = ∂
∂xLi

fh(x) for all i = 0, . . . , nx−1. Again,
using a verified LU-decomposition of interval matrices,
the rank of Q(x) ∈ R

nxny×nx has to be determined,
which is equal to a sufficient criterion for the dimension
of the observable manifold of the dynamical system. Rou-
tines for path and trajectory planning have to make sure
that both matrices P (x) and Q(x) have full rank nx to
guarantee reachability and observability in a verified sense
even if system parameters are not known exactly.

In Appendix, a sample program is shown which can
be used to compute the observability matrix Q(x) using
automatic differentiation in C++. The observability ma-
trix Q(x) is computed using the interval arithmetic library
PROFIL/BIAS (Keil, 2007) and FADBAD++ (Bendsten
and Stauning, 2007) providing functionalities of auto-
matic differentiation.

The application of libraries for automatic differentia-
tion for the computation of Lie derivatives was presented
in (Röbenack, 2002). However, the author did not use the
results in an interval-based framework for model-based
controller design. The routines for the computation of Lie
derivatives are based on determining Taylor coefficients of
the dynamic system model. These Lie derivatives are also
necessary to identify hidden constraints in the simulation
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of DAEs. In this case, the time derivatives dig/dti = 0,
i ≥ 1, of (10) are required.

Note that the rank criteria for reachability and ob-
servability only provide local information within an inter-
val box [x]. In addition, unique identifiability of states
is required if non-measured internal variables are to be
reconstructed using state estimators. For a simple ex-
ample with indistinguishable states, consider ẋ = u,
y1 = cos (x), y2 = sin (x) for which the states x̃ and
x̃ + 2πk, k ∈ Z, are indistinguishable by the measured
outputs y1 and y2. For further references about the reach-
ability and observability of nonlinear dynamical systems,
see (Hermann and Krener, 1977; Sontag, 1998).

Interval techniques can be easily applied to check if
a state vector x can be reconstructed uniquely using the
measured data y. For that purpose, enclosures of all states
within a priori given domains are determined using inter-
val Newton methods such that they are consistent with y
and a finite number of its time derivatives. Unique iden-
tifiability is guaranteed if a single consistent state vector
exists in the domain under consideration.

5.3. Controller design: Input-to-state linearization.
The goal of controller design is to convert the input-affine
dynamical system into a set of linear ODEs

ż(t) = A · z(t) + B ·w(t) with y(t) = C · z(t) (15)

using a coordinate transformation z = τ(x) : D ⊂
R

nx �→ R
nx and a control law u = r(x) + W (x) · w

for exact input-to-state linearization. Let δi be the relative
degree of the output yi, i = 1, . . . , m, i.e., the smallest or-
der of the derivative dδiy/dtδi which explicitly depends
on u. Then, the state transformation

z = τ(x) =
[
τ1
1 (x) . . . τδ1

1 (x) τ1
2 (x) . . .

]T

(16)
can be computed using the Lie derivatives τri

i =
Lri−1

f hi(x), ri = 1, . . . , δi.
The feedback control law u = r(x) + W (x) · w is

given by

r(x) = −D−1(x)ϕ(x) and W (x) = D−1(x). (17)

In (17), the vector

ϕ(x) =
[
ϕ1(x) ϕ2(x) . . . ϕm(x)

]T

x(t)=τ−1(z)

(18)
is defined by ϕi(x) = Lδi

f hi(x) for all i = 1, . . . , m.
Furthermore, the decoupling matrix D(x) is computed by

D(x) =

⎡
⎢⎢⎢⎢⎣

Lg1L
δ1−1
f h1(x) · · · LgmLδ1−1

f h1(x)
Lg1L

δ2−1
f h2(x) · · · LgmLδ2−1

f h2(x)
...

...
...

Lg1L
δm−1
f hm(x) · · · LgmLδm−1

f hm(x)

⎤
⎥⎥⎥⎥⎦ .

(19)

Linear feedback controllers can be designed for (15)
if rank{D (x)} = nx and δ = δ1+. . .+δm = nx hold for
all desired states x (t), all possible parameter values p, and
uncertainties of x (t0). These prerequisites can be verified
by interval evaluation of D(x) for all reachable states. The
required derivatives in (18) and (19) have already been
computed by automatic differentiation for the reachability
and observability matrices (13) and (14), respectively.

6. Relations to controller design for
differentially flat systems

A dynamic system ẋ (t) = f (x (t) , u (t)) is called differ-
entially flat if the so-called flat outputs

y = y
(
x, u, u̇, . . . , u(α)

)
(20)

exist such that

(i) all system states x as well as all inputs u can be ex-
pressed as functions of the flat outputs and their time
derivatives according to

x = x
(
y, ẏ, . . . , y(β)

)
(21)

and
u = u

(
y, ẏ, . . . , y(β+1)

)
; (22)

(ii) the flat outputs y are differentially independent, i.e.,
they are not coupled by differential equations.

Differential flatness is a generalization of input-to-
state linearizability, because the flat outputs y need not
be the physical outputs of the dynamical system. Fur-
thermore, it results from (i) that (ii) is equivalent to
dim (u) = dim (y). For the special case of linear systems,
differential flatness is equivalent to controllability (Fliess
et al., 1995).

7. Robust trajectory planning

As shown in the preceding sections, the reachability as
well as the observability of states are two basic require-
ments for the design of most control strategies for dy-
namic systems. In order to fulfill the design requirements,
it is necessary on the one hand to influence the state vari-
ables of a dynamic system in a deterministic way (guar-
antee of reachability). On the other hand, those quanti-
ties that are required for state feedback controllers which
are either not measurable directly or for which sensors are
avoided due to reasons of reliability or cost-effectiveness
have to be guaranteed to be reconstructable by model-
based observer techniques (guarantee of observability).
An application for which this is crucial is discussed in
Section 10.
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However, often further restrictions have to be in-
corporated during controller design. The previously dis-
cussed criteria for the analysis of reachability and observ-
ability do not take into account limitations of control vari-
ables and states which are usually relevant. In general,
there are two possibilities how such limitations can be
considered by model-based approaches in the design of
controllers.

First, the so-called sigmoid functions such as arc-
tangent or hyperbolic tangent can be applied. For exam-
ple, if a control input u is limited to the range [u; u], a
suitable limiting function is

u :=
(

1
π

arctan (ũ) +
1
2

)
· (u − u) + u, (23)

where the reachability of states now has to be verified with
respect to the artificial input ũ.

Second, verified simulation of time responses using
interval techniques is applicable to check whether control
sequences are guaranteed to stay within their prescribed
bounds and to determine strategies how they have to be
modified to meet the restrictions, see Section 9.

This directly leads to the problem of path and tra-
jectory planning. For given initial and final points of
trajectories in the design of tracking controllers, states
for which reachability and/or observability are lost have
to be avoided by suitable reference inputs of the closed-
loop control system. Furthermore, trajectories have to be
planned such that limitations of states and control vari-
ables are preserved. Typical state constraints in path plan-
ning for applications in robotics are obstacles as well as
safety critical operating conditions which are considered,
for example, in (Pepy et al., 2008).

Finally, requirements for the validity of a specific de-
sign approach such as the regularity of the decoupling ma-
trix D(x) in Section 5 have to be guaranteed for all states
along planned trajectories.

8. Stability analysis for nonlinear control
systems with uncertainties

For nonlinear dynamical systems, Lyapunov functions
provide a suitable means for the numerical and—in spe-
cial cases—analytical proof of asymptotic stability. In
general, both nominal system models as well as system
models with parameter uncertainties can be considered.

An equilibrium x∞ of a nonlinear dynamical sys-
tem (1) is stable, if a continuously differentiable function
V (x, p) : D �→ R with

V (x, p) = 0 for x = x∞,

V (x, p) > 0 for x �= x∞,

V̇ (x, p) ≤ 0 for x �= x∞

(24)

exists. The equilibrium x∞ of the dynamical system (1)
is characterized by

f(x∞, p, u, t) = 0, (25)

where u = u(x∞) = u∞ = const and p = p∞ = const
hold. The validity of the stability criterion (24) must be
guaranteed in a neighborhood of the equilibrium x∞. A
dynamical system is globally stable if (24) holds for all
x ∈ R

nx .
If the derivative with respect to time of the function

V (·) in (24) can be proven to be negative definite instead
of negative semi-definite along the trajectories of the dy-
namical system, it is asymptotically stable in a neighbor-
hood of the equilibrium (Marquez, 2003; Khalil, 2002).
Furthermore, using these conditions, regions in the state-
space can often be identified which belong to the region
of attraction of asymptotically stable equilibria (Marquez,
2003).

Using interval arithmetic techniques, two different
approaches for the verification of stability properties of
nonlinear dynamical systems can be distinguished:

• stability analysis based on interval evaluation of the
above-mentioned Lyapunov functions, and

• tests for the convergence of guaranteed enclosures of
the sets of all reachable states over time towards an
equilibrium.

The prerequisite for both approaches is the calcula-
tion of a guaranteed enclosure [x∞] of the unique equilib-
rium x∞ using interval Newton techniques. If the dynam-
ical system model depends on interval parameters p ∈ [p],
the equilibrium is usually parameter dependent. Then, the
set of all possible equilibria has to be included within the
box [x∞].

For the sake of simplicity, only time-invariant dy-
namical systems are considered in the following. How-
ever, time-varying characteristics can be dealt with after
suitable modification of the algorithms.

8.1. Stability analysis using interval evaluation
of Lyapunov functions. The following description of
interval-based stability analysis using Lyapunov functions
is based on (Delanoue, 2006). After the computation of
the interval enclosure [x∞], a double-valued approximate
solution x̃∞ ∈ [x∞] is chosen. Then, an approximation A
of the system’s Jacobian is determined for x̃∞, i.e.,

A :=
∂f

∂x

∣∣∣∣
x=x̃∞

. (26)

Using this matrix, the Lyapunov equation

AT P + PA = −I (27)
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of the linearized system is solved for the symmetric ma-
trix P . If P is positive definite, i.e., if the linearized sys-
tem can be proven to be asymptotically stable, an esti-
mate for the region of attraction of an asymptotically sta-
ble equilibrium of the original nonlinear system can be
determined.

For that purpose, an interval box [x0] for which
[x∞] ⊂ [x0] holds is assumed. Additionally, this box
must not contain further equilibria. Therefore, typically
the initialization of the interval Newton iteration used to
determine [x∞] is chosen.

To analyze the stability of the dynamical system, the
quadratic Lyapunov function

V (x, p) = (x − x∞)T · P · (x − x∞) (28)

with P determined in (27) is used. For the time derivative
of this Lyapunov function, the properties

V̇ (x, p)
∣∣∣
x=x∞

= 0 and
∂V̇ (x, p)

∂x

∣∣∣∣∣
x=x∞

= 0 (29)

hold. Then the Hessian

H := −∂2V̇ (x, p)
∂x2

(30)

has to be shown to be positive definite for all x ∈ [x0].
This can be done using a procedure described by Rohn
in (Rohn, 1994). A symmetric interval matrix [H ] =
{H |Hc − Δ ≤ H ≤ Hc + Δ} with Hc = 1

2

(
H + H

)
and Δ = 1

2

(
H − H

)
is positive definite if the follow-

ing 2nx−1 point matrices Hz = H−z are positive defi-
nite. The matrices Hz are defined according to Hz :=
Hc − Tz ·Δ · Tz with Tz := diag {(z)}. The vector z has
to be replaced by all possible combinations of the compo-
nents zi = ±1, i = 1, . . . , nx. Thus, Hz = H−z holds.

As shown in (Delanoue, 2006), the interval box [x]
with center in [x∞] and radius

√
nx

λmin

λmax
d ([x∞] , [x0]) (31)

certainly belongs to the region of attraction of an asymp-
totically stable equilibrium x∞. In (31), λmin and λmax

are the minimum and maximum eigenvalues of P , respec-
tively. Furthermore, d is a function defined on IR

nx ×
IR

nx with

d : ([x] , [y]) �→ sup {r ∈ R|B (r, [x]) ⊂ [y]} , (32)

an interval box [x] ⊂ IR
nx , and B (r, [x]) denoting the set

{
x ∈ R

nx

∣∣∣ min
a∈[x]

‖a − x‖ < r

}
. (33)

Example 1. Consider the nonlinear dynamical system

ẋ (t) = −x (t) + x (t)3 . (34)

Using interval Newton methods such as
verifynlss in the MATLAB toolbox INT-
LAB (Rump, 2007), tight enclosures of the three
equilibria x∞ = 0 and x∞ = ±1 can be verified.
Considering the equilibrium x∞ = 0, the evaluation of
the Lyapunov equation (27) leads to P = 0.5. Due to the
positivity of P and due to the requirement for positivity
of H = 2 − 12x2 in a neighborhood of x∞ = 0, the
evaluation of (31) leads to the interval [−0.4082; 0.4082]
which is guaranteed to be contained in the region of at-
traction of the asymptotically stable equilibrium x∞ = 0.

�

Example 2. Now, the nonlinear system

ẋ1(t) = 3x2(t),

ẋ2(t) = −5x1(t) + x1(t)3 − 2x2(t)
(35)

is considered.
In this example, asymptotic stability of the equilib-

rium x∞ =
[
0 0

]T
is verified. According to Subsec-

tion 8.1, positive definiteness of the symmetric matrices

H1 :=
[
H11 H12

H12 H22

]
and H2 :=

[
H11 H12

H12 H22

]
(36)

has to be proven. These matrices are determined with the
help of (26)–(30). To check definiteness properties, the
eigenvalues of H1 and H2 are determined with the inter-
val routine verifyeig provided by INTLAB to take into
account the effect of rounding errors. Finally, the equilib-
rium under consideration can be shown to be asymptoti-
cally stable. Additionally, the interval

[x] =
[
[−0.496; 0.496]
[−0.496; 0.496]

]
(37)

is guaranteed to be contained in its region of attraction.
�

8.2. Stability analysis using verified integration of
ODEs. In addition to the stability analysis using Lya-
punov functions, the computation of guaranteed state en-
closures can also be used to determine interval boxes in-
cluded in the regions of attraction of stable equilibria. For
that purpose, the set of all reachable states is computed,
starting from an interval box [x0] at a point of time t = t1,
see the left hand side of Fig. 1.

If it can be shown that the set of reachable states at a
point of time t2 > t1 is included completely in the inte-
rior of [x0], the stability of the dynamical system has been
proven under the condition that the mathematical system
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[x0]
x∞

x1 x1

x2x2
[x0]

t = t1 t = t2 > t1

x∞

Fig. 1. Stability analysis of nonlinear dynamical systems using
verified integration of ODEs.

model does not explicitly depend on time. On the right
hand side of Fig. 1, a typical result is shown. In order to
identify stability, the splitting of interval enclosures into
smaller subdomains is usually inevitable. The result of
the propagation of these subintervals is illustrated by grey
boxes in Fig 1.

Note that due to overestimation, which often occurs
in interval evaluation of dynamical system models, both
approaches for the verification of stability properties are
only sufficient criteria. If one of these methods fails to
verify (asymptotic) stability, either the attempt to prove
instability or the exploitation of further techniques for re-
duction of overestimation—and thus for computation of
tighter interval bounds—are suitable further steps.

9. Integration in an interval arithmetic
framework for the design of robust and
optimal controllers

The interval arithmetic techniques introduced so far in this
paper can be integrated in a systematic approach for the
computation of optimal control strategies. In this frame-
work for the computation of control laws, verified evalua-
tion of integral performance indices

J = ftf

(
x(tf ), p(tf ), tf

)

+

tf∫
0

f0

(
x(t), p(t), u(t), t

)
dt

(38)

is carried out. The performance indices J to be mini-
mized generally consist of two additive terms. The term
ftf

(
x(tf ), p(tf ), tf

)
corresponds to terminal costs at the

prescribed final point of time tf if final states x (tf ) are
not specified exactly. The integrand f0

(
x(t), p(t), u(t), t

)
quantifies both deviations of the current states from the
desired trajectories of the state variables and the required
control effort u(t).

A general framework for interval arithmetic struc-
ture and parameter optimization for dynamic systems with
both nominal and uncertain parameters was presented
(Rauh and Hofer, 2009; Rauh et al., 2007d). Using the

definition of optimality for uncertain systems introduced
therein, a control strategy is optimal if it leads to the small-
est upper bound of the performance index for all possi-
ble p ∈ [p].

The techniques presented in Sections 3–8 provide
further information that is included in this framework for
controller design. First, the results of reachability, observ-
ability, and stability analysis of the open-loop control sys-
tem make clear whether the desired control task can be
solved at all for a specific dynamic system model under
consideration of the available actuators and available sen-
sors. Before the initialization of the routine for structure
and parameter optimization, a choice between these two
different tasks is possible. Furthermore, also combina-
tions between structure optimization for some of the con-
trol inputs and classical design approaches for feedback
control of other control inputs are possible at this stage if
multi-input systems are handled.

For structure optimization, the result of the optimiza-
tion algorithm is a control sequence which directly aims at
the minimization of the performance index. In the case of
parameter optimization, a control law u(x) with free pa-
rameters is given. This control law is parameterized again
such that the performance index J is minimized.

In Fig. 2, an algorithm for the calculation of both op-
timal control strategies in structure optimization problems
as well as parameter optimization problems is summa-
rized. Since it relies on verified integration of the set of
state equations for different controller parameterizations,
it can be easily parallelized. For that purpose, different
independent tasks are defined. In the case of structure
optimization, usually independent optimization problems
are solved in separate tasks which correspond to control
strategies with different numbers of switchings between
piecewise constant control inputs u(t), where their num-
ber is denoted by N1, . . . , Nm. Alternatively, piecewise
linear control strategies can be determined, where the vari-
ation rates of the control input u are constant between two
subsequent switching points. In the case of parameter op-
timization, the number of piecewise constant controls is
N1 = · · · = Nm = 1 in all tasks. This means that the free
parameters in the control law u(x) to be determined are
formally treated as time-invariant inputs which are calcu-
lated with exactly the same routine that is used for struc-
ture optimization. However, the assignment of the subin-
tervals of the controller parameters to the different tasks,
which is related to the number of switchings of the con-
trol input in the structure optimization problem, now has
to be carried out in a slightly different way. All candi-
dates for controller parameterizations for which inadmis-
sibility (due to the violation of state constraints or due to
the violation of constraints for the range of the control
inputs u after the parameterization of a predefined con-
troller structure) or non-optimality (due to the existence
of a control sequence with a smaller upper bound J

∗
of
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(1) Extension to robust trajectory planning by exclusion of inadmissible controls and inadmissible reference signals

task m

no

yes

task 1

no

yes

Nm piecewise constant/ linear controls

Splitting of Lm control strategies

Verified evaluation of state equations:
piecewise constant/ linear control

• Computation of guaranteed state
enclosures

• Computation of guaranteed bounds for
the cost function

Exclusion of control strategies (1)

• Violation of state constaints

• Computation of upper bound JNm for
the performance index

• Exclusion of non-optimal control
sequences

Has the desired number of iterations been
reached?

Splitting of L1 control strategies

N1 piecewise constant/ linear controls

Verified evaluation of state equations:
piecewise constant/ linear control

• Computation of guaranteed state
enclosures

• Computation of guaranteed bounds for
the cost function

Exclusion of control strategies (1)

• Violation of state constaints

• Computation of upper bound JN1 for the
performance index

• Exclusion of non-optimal control
sequences

Has the desired number of iterations been
reached?

Comparison of the upper bounds JNj
for the performance index obtained for control strategies with

different Nj: Calculation of the best upper bound J
∗

:= min
j=1,...,m

{
JNj

}

Elimination of non-optimal control strategies if J<l>
Nj

> J
∗ holds

Output of the best approximation for the optimal control strategy or continuation of the parallelized
optimization routine

Stability analysis of the closed-loop control system
Verified sensitivity analysis of the trajectories with respect to uncertain parameters

Computation of regions of attraction and maximum admissible deviations from desired trajectories to
ensure asymptotic stability

Coice between parameterization of predefined control structure or structure optimization
Combination of structure optimization and feedback control

Reachability and observability analysis of open-loop control system with uncertainties
Stability analysis of open-loop control system

Fig. 2. Parallelized implementation of the interval arithmetic procedure for the calculation of optimal and robust control strategies.
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the performance index for all p ∈ [p]) has not yet been
shown are distributed equally to the available processors
using m tasks.

In addition to optimality criteria, also sensitivity
measures for the system states x (t) as well as the perfor-
mance index J with respect to the uncertain parameters
can be taken into account to find a specific robust con-
troller parameterization in a systematic way.

After the termination of the optimization procedure,
again the stability of the closed-loop control system can
be analyzed. Performing a verified sensitivity analysis
using VALENCIA-IVP helps to choose a specific con-
troller parameterization if several admissible candidates
for the controller structure or controller parameterization
with similar values of the underlying cost function exist.

Finally, information about regions of attraction of
asymptotically stable equilibria allows identifying the set
of admissible operating conditions. These can be ex-
pressed in terms of sets of admissible initial states. Fur-
thermore, the maximum admissible deviations of the ac-
tual trajectories of a dynamical system from the desired
ones can be quantified such that the stability of the com-
plete system is ensured also in the case of disturbances.
This task as well as extensions for path and trajectory
planning which help to fulfill design criteria for specific
approaches for controller design (such as exact feedback
linearization) will be investigated in greater detail in fu-
ture research.

10. Application scenario: A biological
wastewater treatment process

10.1. Modeling and controller design. Basic applica-
tions of verified techniques for controller design and sen-
sitivity analysis are demonstrated for the subsystem model
of biological wastewater treatment depicted in Fig. 3.
This subsystem model is a simplification of the Activated
Sludge Model No. 1 of the International Water Associa-
tion (Henze et al., 2002). In contrast to the complete Ac-
tivated Sludge Model, the reduction of nitrogen fractions
is not considered in this subsystem model.

aeration tank
volume: VA

S, X , SO

settler
volume: VSet

XSet

QW QW + QRS

QRS

uO2
QW − QEX

QEX

Fig. 3. Block diagram of a simplified biological wastewater
treatment process.

The concentration S of biodegradable organic sub-
strate is reduced by heterotrophic bacteria with the con-
centration X under external oxygen supply with the flow
rate uO2. The concentration of dissolved oxygen in the

aeration tank is denoted by SO. The bacteria concentra-
tion in the settler, which is modeled as a perfect separator
of sludge and purified water, is denoted by XSet. A por-
tion of the activated sludge is fed back into the aeration
tank with the flow rate QRS of return sludge. The excess
sludge QEX is removed from the process.

According to (Rauh, Auer and Hofer, 2007), this pro-
cess is described by the nonlinear ODEs

Ṡ =
QW

VA
(SW − S) − μ (S, SO)

1
Y

X,

Ẋ = − QW

VA
X +

QRS,nom

VA
(XSet − X)

+ (μ (S, SO) − b)X

+
QRS,nom

VA
(XSet − X)ΔQRS ,

ṠO =
QW

VA
(SOW − SO) − μ (S, SO)

1 − Y

Y
X

+
ρO2

VA

(
1 − SO

SO,sat

)
uO2,

ẊSet =
QW + QRS,nom

VSet
X − QEX + QRS

VSet
XSet

+
QRS,nom

VSet
XΔQRS,

(39)

where the nonlinear growth rate of substrate consuming
bacteria is modeled by the Monod kinetics

μ (S, SO) = μ̂H
S

S + KS

SO

SO + KOS
. (40)

A complete list of all parameters can be found in (Rauh et
al., 2007c). In contrast to the above-mentioned references,
two control inputs uO2 and ΔQRS are considered in the
state equations (39).

In the following, the design and parameterization of
controllers which compensate variations of states caused
by parameter uncertainties rely on the adaptation of the
available control variables based on the results of a sensi-
tivity analysis. In addition to the oxygen input rate uO2,
related to the desired oxygen concentration ŜO via (41),
the flow rate QRS = QRS,nom · (1 + ΔQRS) of re-
turn sludge is considered as a second control variable in
this paper. As usual for biological wastewater treatment
plants, the flow rate QRS is assumed to be time-invariant.
Additionally, it is assumed that the sum of the flow rates
QRS + QEX does not change if QRS is adjusted.

Available measured data are provided by a sensor for
the concentration SO of dissolved oxygen and a sensor
determining a signal that is proportional to the sum of the
concentrations S and X via the measurement of the atten-
uation of light intensity in the aeration tank.

Assuming a constant oxygen concentration SO =
ŜO = const, i.e., ṠO = 0, the corresponding feedforward
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control for the oxygen input rate uO2 is defined by

uO2 =
VA

ρO2

S0,sat

S0,sat − Ŝ0

(
μ

(
S, ŜO

) 1 − Y

Y
X

−QW

VA

(
SOW − ŜO

))
.

(41)

10.2. Verified analysis of the observability and reach-
ability of states. Using the criterion for observability
analysis of nonlinear systems and evaluating it for inter-
val boxes containing the trajectories of all reachable states
with SO = ŜO and the initial conditions and parameters
from (Rauh et al., 2007c), complete state observability can
be verified for all μ̂H ∈ [0.9 ; 1.1] μ̂H,nom. Although the
observability of the system can also be proven for tight
enclosures of the system states if SO is considered as the
only measured state variable, additional use of S +X sig-
nificantly improves the robustness of state observability.
This fact is even more advantageous in practical applica-
tion since sensors in wastewater treatment processes are
subject to rough environmental conditions leading to non-
negligible measurement uncertainties and reduced relia-
bility.

In contrast to observability analysis, the reachabil-
ity of states can only be verified for small uncertainties
of μ̂H and tight enclosures of the state trajectories. For
larger intervals, the reachability matrix contains elements
for which its full rank cannot be proven.

Since a flatness-based control strategy was im-
plemented for this system after minor simplifications
in (Aschemann et al., 2006) and since the following
sensitivity-based approach shows a possibility regarding
how to influence the substrate concentration S in a de-
sired way, this shortcoming is of minor importance for the
application considered. In general, the problem to decide
whether the reachability matrix has full rank and whether
a possible loss of this property is only caused by overesti-
mation resulting from interval evaluation of the Lie brack-
ets can be solved by systematic subdivisions of the interval
enclosures of the reachable states. Afterwards, the reach-
ability criterion has to be evaluated for each of the subin-
tervals.

10.3. Sensitivity analysis for the adaptation of con-
trol variables. The differential sensitivities of the state
variables S, X , and XSet with respect to variations ΔSO

and ΔQRS of the control variables and with respect to
variations Δμ̂H of the growth rate of substrate consuming
bacteria with

SO := ŜO · (1 + ΔSO),
μ̂H := μ̂H,nom · (1 + Δμ̂H),

QRS := QRS,nom · (1 + ΔQRS),
QEX := QEX,nom − QRS,nom · ΔQRS

(42)

provide useful information for the parameterization of
ΔSO and ΔQRS to influence the state variables for all
parameters μ̂H ∈ [0.9; 1.1]μ̂H,nom.

For ŜO = 3.5 · 10−3 kg/m3, these sensitivities
were computed using VALENCIA-IVP for three different
growth rates of substrate consuming bacteria as well as for
its complete parameter interval μ̂H ∈ [0.9; 1.1]μ̂H,nom.
The results of these simulations are shown in Fig. 4, where
each curve represents the guaranteed enclosure for one
of the examined values of μ̂H . Note that the diameters
of the resulting enclosures computed for the point values
0.9μ̂H,nom, 1.0μ̂H,nom, and 1.1μ̂H,nom are below the res-
olution of these graphs. For the complete parameter in-
terval, the interval bounds which contain the results for
evaluation with point values are clearly visible in Fig. 4.

In this case, the evaluation was aborted at the point
of time at which the interval enclosures of the state vari-
ables had become negative due to overestimation. This
overestimation arises since the state enclosures have been
described by a single interval box. Special techniques for
the reduction of overestimation which make use of sub-
division strategies are not necessary in this scenario since
the required modifications of ŜO and ΔQRS to influence
S (t) in a deterministic way can already be derived from
the results shown in Fig. 4.

Furthermore, negative states are guaranteed to be
caused by overestimation since the analysis of (39) shows
that the variation rates of all state variables are guaranteed
to remain non-negative for physically reasonable, positive
parameters and positive initial states as soon as one of the
state variables reaches the zero.

According to the results of sensitivity analysis in
Fig. 4, smaller growth rates μ̂H < μ̂H,nom lead to a re-
duced rate of the reduction of the substrate concentra-
tion S. Furthermore, they also cause reduced bacteria con-
centrations X . This can be compensated by increasing ŜO

and reducing QRS . These measures are necessary to meet
legal performance requirements for wastewater treatment
plants which are specified, for example, in (Office for Of-
ficial Publications of the European Communities, 2003).

The effects that are achievable by modifications of
ŜO and QRS at a fixed point of time can be estimated by

ΔS (t) ≈ ∂S(t)
∂ΔSO

· ΔSO +
∂S(t)

∂ΔQRS
· ΔQRS . (43)

This estimate makes use of the differential sensitivities
of the substrate concentration S(t) which are depicted in
Figs. 4(a) and 4(e). Due to physical restrictions, only val-
ues ΔSO are admissible which lead to oxygen concentra-
tions ŜO that are smaller than the saturation concentration
SO,sat = 5.3·10−3 kg/m3. Similarly, only positive values
are admissible for QRS .

Thus, for the compensation of the influence of a re-
duced growth rate μ̂H , the choice ΔSO = 0.50 and
ΔQRS = −0.90 is investigated.
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μ̂H = 1.0μ̂H,nom
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μ̂H = 0.9μ̂H,nom
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Fig. 4. Sensitivity analysis of a biological wastewater treatment process for t ∈ [0 ; 40, 000] s: (a) legend, (b) substrate concentra-

tion S (t), (c) oxygen input rate uO2 (t), (d) sensitivity ∂S(t)
∂ΔSO

, (e) sensitivity ∂S(t)
∂ΔQRS

, (f) sensitivity ∂S(t)
∂Δμ̂H

.

Figure 5(a) shows that larger reductions in the sub-
strate concentration S(t) can be achieved over the com-
plete time horizon by the adaptations ΔSO and ΔQRS .
The drawback of the increased oxygen concentration ŜO

and the reduced flow rate of return sludge QRS is that
the oxygen input rate increases by a factor of approxi-
mately 30, see Fig. 5(b). Further improvements are possi-
ble if time-varying control sequences ΔQRS(t) are con-
sidered. However, such strategies are hard to implement
since most wastewater treatment plants are operating with
a constant ratio of the flow rates of both return and ex-
cess sludge. Furthermore, by means of optimization tech-
niques, the parameters ΔSO and ΔQRS can be adjusted
such that further influence factors, for example, cost func-
tions describing the effort for oxygen supply are taken into
account.

Stability analysis of the equilibria of (39) is not per-
formed here. In general, the above-mentioned time do-
main analysis provides more information for controller
design of this wastewater treatment process since uncer-
tainties and variations in the amount and concentrations in
the inflow prevent the operation of the plant in its steady
state.

11. Conclusions and outlook

In this paper, an overview of the existing interval arith-
metic routines which are applicable to the design and ver-
ification of control systems has been given.

In future research, further general-purpose strategies
will be developed to make use of the results obtained by
interval evaluation of the criteria in Section 5 to gener-
ate reference signals for controllers such that reachabil-

ity and observability are guaranteed. Additionally, rou-
tines for the analysis of asymptotic stability of closed-loop
controllers will be implemented if the relative degree δ in
the design of feedback linearizing control laws is smaller
than nx. In this case, instabilities of the internal dynamics
have to be detected and avoided in a guaranteed way.

Results obtained for the design of controllers will be
extended to implement software tools which are further-
more also applicable to observer design. Finally, combi-
nations with feedforward control strategies, for example,
control sequences determined by the approach based on
DAEs mentioned in Section 4 will be investigated. With
this approach, alternatives for the design of flatness-based
control laws will be developed for systems which are ei-
ther not differentially flat or for which flatness-based ap-
proaches lead to complicated analytical expressions. In
these cases, this approach is assumed to provide suitable
approximations of control laws within prescribed toler-
ances from the desired time response of the systems’ out-
puts.
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Appendix
Implementation of observability analysis in C++. In
the following, an excerpt of a C++ program for observ-
ability analysis is given, see also Section 5.2. In this pro-
gram, the state equations

ẋ1(t) = x2(t) · p,

ẋ2(t) = x1(t) · x2(t)
(44)

with

y(t) = x2
1(t) (45)

and x1 ∈ [−1; 1], x2 ∈ [2; 2], and p = 1.0 are considered
for the construction of the matrix Q(x) in (14).

typedef vector< T< F<INTERVAL> > > TFINTERVALVEC;

// Definition of state equations f(x)
namespace {

template<typename T1, typename T2>
T1 state_eq(T1 invec, T1 par, T2 in_i) {

T1 outvec(2);
T2 x1,x2;
x1 = invec[0];
x2 = invec[1];
outvec[0] = x2*par[0];
outvec[1] = x1*x2;
return outvec;

}
}

// Definition of output equations h(x)
namespace {

template<typename T1, typename T2>
T1 Output1(T1 invec, T1 par, T2 in_i) {

T1 outvec(1);
outvec[0] = Sqr(invec[0]);
return outvec;

}
}

int main() {
int i,j,k,n,p,q;
double tmp;
INTERVAL_MATRIX observ_mat(n*q,n);
Initialize(observ_mat, Hull(0.0));
TFINTERVALVEC invec(n), par_vec(p);
TFINTERVALVEC outvec(n), outvec1(q);

n = 2; // Dimension of state vector
p = 1; // Dimension of parameter vector
q = 1; // Number of outputs

// Define region for observability analysis
invec[0] = Hull(-1.0,1.0); // component x(1)
invec[1] = Hull( 2.0,2.0); // component x(2)
par_vec[0] = Hull( 1.0,1.0); // system parameters

for(i=1;i<=n;i++) { invec[i-1][0].diff(i-1,n+p); }
for(i=1;i<=p;i++) { par_vec[i-1][0].diff(n+i-1,n+p); }

// Construct ODE and Taylor coefficients
outvec = state_eq(invec, par_vec, invec[0]);
for(i=0;i<n-1;i++) {

for(j=1;j<=n;j++) {
outvec[j-1].eval(i); }

for(j=1;j<=n;j++) {
invec[j-1][i+1]=outvec[j-1][i]/double(i+1); }

}

tmp = 1.0;
outvec1 = Output1(invec, par_vec, invec[0]);
for(i=0;i<=n-1;i++) {

if (i>0) { tmp *= i; }
for(k=1;k<=q;k++) { outvec1[k-1].eval(i); }

}

// Write observability matrix Q(x)
tmp = 1.0;
for(i=0;i<=n-1;i++) {

if (i>0) { tmp *= i; }
for(k=1;k<=q;k++) {

for(j=1;j<=n;j++) {
observ_mat(k+i*q,j)=outvec1[k-1][i].d(j-1)*tmp;}

}
}
cout << "observ_mat = " << observ_mat << endl;
return 0;

}

http://www.ti3.tu-harburg.de/~rump/
intlab/
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