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The problem of fault detection in distributed parameter systems (DPSs) is formulated as that of maximizing the power
of a parametric hypothesis test which checks whether or not system parameters have nominal values. A computational
scheme is provided for the design of a network of observation locations in a spatial domain that are supposed to be used
while detecting changes in the underlying parameters of a distributed parameter system. The setting considered relates to
a situation where from among a finite set of potential sensor locations only a subset can be selected because of the cost
constraints. As a suitable performance measure, the Ds-optimality criterion defined on the Fisher information matrix for
the estimated parameters is applied. Then, the solution of a resulting combinatorial problem is determined based on the
branch-and-bound method. As its essential part, a relaxed problem is discussed in which the sensor locations are given a
priori and the aim is to determine the associated weights, which quantify the contributions of individual gauged sites. The
concavity and differentiability properties of the criterion are established and a gradient projection algorithm is proposed
to perform the search for the optimal solution. The delineated approach is illustrated by a numerical example on a sensor
network design for a two-dimensional convective diffusion process.
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1. Introduction

Experimental design for spatio-temporal physical systems
(especially, in environmental protection, nuclear power
engineering, oil industry, etc.) is often related to an op-
timal choice of measurement conditions in order to obtain
the best information for estimating unknown parameters
which can then be used in optimal control. The impossi-
bility to observe the system states over the entire spatial
domain implies the question of where to locate discrete
sensors so as to accurately estimate the unknown system
parameters. An example which is particularly stimulating
in the light of the results reported in this paper is the opti-
mization of air quality monitoring networks. The question
of how to optimize sensor locations acquires especially
vital importance in the context of recent advances in dis-
tributed sensor networks (Cassandras and Li, 2005).

Over the past years, laborious research on the de-
velopment of strategies for efficient sensor placement has
been conducted (for reviews, see the papers (Kubrusly and
Malebranche, 1985; Uciński, 1992; Uciński, 2000; van de

Wal and de Jager, 2001) and the comprehensive mono-
graphs (Uciński, 2005; Uciński, 1999)). Nevertheless, al-
though the need for systematic methods was widely recog-
nized, most techniques communicated by various authors
usually rely on an exhaustive search over a predefined set
of candidates and the combinatorial nature of the design
problem is taken into account very occasionally (van de
Wal and de Jager, 2001). Needless to say, this approach,
which is feasible for a relatively small number of possible
locations, soon becomes useless as the number of possible
location candidates increases.

Additionally, in spite of the rapid development of
fault detection and localization methods for dynamic sys-
tems (Korbicz et al., 2004; Isermann, 1997; Patton and
Korbicz, 1999; Patton et al., 2000; Chiang et al., 2001),
there are no effective methods tailored to spatiotempo-
ral systems. Some successful attempts at exploiting the
Ds-optimality criterion were reported by Patan and Patan
(2005). The aim of the research reported there was to
develop a practical approach to sensor selection for fault
detection which, while being independent of a particular
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model of the dynamic DPS in question, would be versa-
tile enough to cope with practical monitoring networks
consisting of many stationary sensors. Specifically, we
consider N possible sites at which to locate a sensor, but
limitations on the number of sensors at our disposal allow
only n of them (typically, n is much smaller than N ) to
be selected. Consequently, the problem is to divide the N
available sites between n gauged sites and the remaining
N − n ungauged sites so as to maximize the determinant
of the Fisher information matrix (FIM) associated with the
parameters to be estimated. Since selecting the best sub-
set of sites to locate the sensors constitutes an inherently
discrete large-scale resource allocation problem whose so-
lution may be prohibitively time-consuming, an efficient
guided search algorithm based on the branch-and-bound
method is developed, which implicitly enumerates all the
feasible sensor configurations, using relaxed optimization
problems that involve no integer constraints.

The idea of using branch-and-bound (BB) for sen-
sor selection in a DPS was already applied by Uciński
and Patan (2007) in the context of D-optimality. Obvi-
ously, BB constitutes one of the most frequent approaches
to solve discrete optimization problems and it has in-
deed been used in the context of network design (Boer
et al., 2001). Nevertheless, the main contribution of this
paper consists in creative usage of a simple and powerful
computational scheme to obtain upper bounds to the op-
timal values of the Ds-optimality criterion, which proves
especially attractive in the light of applications in fault de-
tection and diagnosis. Moreover, various properties of the
Ds-optimality criterion are given and a relaxed problem is
introduced whose solution is obtained through a gradient
projection algorithm.

The paper has the following structure: Section 2
states formally the sensor network design problem as a
discrete resource allocation problem. The general BB
scheme for its solution is discussed in Sec. 3. Section
4 describes the algorithmic solution for computing upper
bounds required by the branching rule. In Sec. 5, we illus-
trate the use of our algorithm using the example of a sen-
sor network design problem regarding a two-dimensional
convective diffusion process. We conclude in Sec. 6 with
some comments on related open problems. The proofs of
some essential properties of the Ds-optimality criterion
are contained in Appendix.

Notation. Throughout the paper, R+ and R++ stand for
the sets of nonnegative and positive real numbers, respec-
tively. We adopt the convention that all vectors have the
column form. The set of real m×n matrices is denoted by
R

m×n. We use S
m to denote the set of symmetric m×m

matrices, S
m
+ to denote the set of symmetric nonnegative

definite m × m matrices, and S
m
++ to denote the set of

symmetric positive definite m ×m matrices. The curled
inequality symbol � (resp. �) is used to denote gener-

alized inequalities. More precisely, between vectors, it
represents a componentwise inequality, and between sym-
metric matrices, it represents the Löwner ordering: given
A,B ∈ S

m, A � B means that A − B is nonnegative
definite (resp. positive definite).

2. Sensor selection for fault detection

Consider a bounded spatial domain Ω ⊂ R
d with suf-

ficiently smooth boundary Γ, a bounded time interval
T = (0, tf ], and a distributed parameter system whose
scalar state at a spatial point x ∈ Ω̄ ⊂ R

d and time instant
t ∈ T̄ is denoted by y(x, t). Mathematically, the system
state is governed by the partial differential equation (PDE)

∂y

∂t
= F(

x, t, y, θ
)

in Ω× T , (1)

where F is a well-posed, possibly nonlinear, differen-
tial operator which involves first- and second-order spatial
derivatives and may include terms accounting for forcing
inputs specified a priori. The PDE (1) is accompanied by
the appropriate boundary and initial conditions,

B(x, t, y, θ) = 0 on Γ× T, (2)

y = y0 in Ω× {t = 0}, (3)

respectively, B being an operator acting on the boundary Γ
and y0 = y0(x) a given function. Conditions (2) and (3)
complement (1) such that the existence of a sufficiently
smooth and unique solution is guaranteed. We assume
that the forms of L and B are given explicitly up to an
m-dimensional vector of unknown constant parameters θ
which must be estimated using observations of the system.
The implicit dependence of the state y on the parameter
vector θ will be be reflected by the notation y(x, t; θ).

In what follows, we consider the discrete-continuous
observations provided by n stationary pointwise sensors,
namely,

z�
m(t) = y(x�, t; θ) + ε(x�, t), t ∈ T, (4)

where z�
m(t) is the scalar output and x� ∈ X stands for

the location of the �-th sensor (� = 1, . . . , n), X signifies
the part of the spatial domain Ω where the measurements
can be made and ε(x�, t) denotes the measurement noise.
This relatively simple conceptual framework involves no
loss of generality since it can be easily generalized to in-
corporate, e.g., multiresponse systems or inaccessibility
of state measurements, cf. (Uciński, 2005, p. 95).

It is customary to assume that the measurement
noise is zero-mean, Gaussian, spatial uncorrelated and
white (Quereshi et al., 1980; Omatu and Seinfeld, 1989;
Amouroux and Babary, 1988), i.e.,

E
{
ε(x�, t)ε(x�′ , t′)

}
= σ2δ��′δ(t− t′), (5)
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where σ2 defines the intensity of the noise, δij and δ( · )
standing for the Kronecker and Dirac delta functions, re-
spectively. Although white noise is a physically impossi-
ble process, it constitutes a reasonable approximation to a
disturbance whose adjacent samples are uncorrelated at all
time instants for which the time increment exceeds some
value that is small compared with the time constants of the
DPS. A rigorous formulation for a time-correlated setting
(cf. Appendix C1 of (Uciński, 2005)) is well beyond the
mathematical framework of this paper, but the attendant
difficulties are mainly technical and do not substantially
affect the basic results to be obtained. What is more, the
white-noise assumption is consistent with most of the lit-
erature on the subject.

The most widely used formulation of the parameter
estimation problem is as follows: Given the model (1)–
(3) and the outcomes of the measurements z�

m( · ), � =
1, . . . , n, estimate θ by θ̂, a global minimizer of the output
least-squares error criterion

J (ϑ) =
n∑

�=1

∫

T

{
z�
m(t)− y(x�, t;ϑ)

}2
dt, (6)

where y( · , · ;ϑ) denotes the solution to (1)–(3) for a
given value of the parameter vector ϑ.

The basic idea of fault detection is to compare the re-
sulting parameter estimates with the corresponding known
nominal values, treating possible differences as residuals
which contain information about potential faults. Based
on some thresholding techniques, the appropriate decision
making system could be constructed to detect abnormal
situations in system functioning (Patan and Patan, 2005).

Basically, only some parameters can be useful for the
diagnosis. This accounts for partitioning the parameter
vector into two two subsets. With no loss of generality,
we may write

θ =
[
θ1 . . . θs θs+1 . . . θm

]T
=

[

αT βT

]
, (7)

where α is a vector of s parameters which are essential
for a proper fault detection and β is the vector of some
unknown parameters which are a part of the model but are
useless for fault detection. Based on the observations, it is
possible to test the simple null hypothesis

H0 : α = α0, (8)

where α0 is the nominal value for the vector α correspond-
ing to the normal system performance.

For a fixed significance level (i.e., fixed probability of
rejecting H0 when it is true), the power of the likelihood
ratio test for the alternative hypothesis HA : α �= α∗ (i.e.,
1− the probability of accepting H0 when HA is true) can
be made large by maximizing the Ds-optimality criterion
(see (Patan and Patan, 2005) for details):

Ψs[M ] = log det[Mαα −MαβM−1
ββ MT

αβ ], (9)

where M ∈ R
m×m stands for the so-called Fisher infor-

mation matrix, which is decomposed as

M =

⎡

⎣
Mαα Mαβ

MT
αβ Mββ

⎤

⎦ , (10)

such that Mαα ∈ R
s×s, Mαβ ∈ R

s×(m−s), Mββ ∈
R

(m−s)×(m−s). The FIM is widely used in optimum ex-
perimental design theory for lumped systems (Fedorov
and Hackl, 1997; Pázman, 1986; Pukelsheim, 1993; Wal-
ter and Pronzato, 1997; Atkinson et al., 2007). In our set-
ting, the FIM is given by (Quereshi et al., 1980)

M(x1, . . . , xn) =
n∑

�=1

∫

T

g(x�, t)gT(x�, t) dt, (11)

where

g(x, t) =
[
∂y(x, t;ϑ)

∂ϑ1
, . . . ,

∂y(x, t;ϑ)
∂ϑm

]T

ϑ=θ0

(12)

stands for the so-called sensitivity vector, θ0 being the
nominal value of the parameter vector θ (Uciński, 2005;
Sun, 1994; Rafajłowicz, 1981; Rafajłowicz, 1983). Up
to a constant scalar multiplier, the inverse of the FIM
constitutes a good approximation of cov(θ̂) provided that
the time horizon is large, the nonlinearity of the model
with respect to its parameters is mild, and the measure-
ment errors are independently distributed and have small
magnitudes (Walter and Pronzato, 1997; Fedorov and
Hackl, 1997).

Observe that for the partition

M−1 =

⎡

⎣
Dαα Dαβ

DT
αβ Dββ

⎤

⎦ , (13)

where Dαα ∈ R
s×s, Dαβ ∈ R

s×(m−s), Dββ ∈
R

(m−s)×(m−s), we have (Bernstein, 2005, Fact 2.8.7,
p.44)

Dαα =
(
Mαα −MαβM−1

ββ MT
αβ

)−1
(14)

and further (Bernstein, 2005, Fact 2.15.8, p.73)

det(Dαα) =
det(Mββ)
det(M)

. (15)

Consequently, the maximization of the Ds-
optimality criterion amounts to the minimization of
det(Dαα), which is proportional to the determinant of
the covariance matrix for α.

The optimal sensor location problem considered in
what follows is: Given a set of N possible candidate sen-
sor locations, where N > n, we wish to seek the best sub-
set of n locations from among the N possible, so that the
problem is then reduced to a combinatorial one. In other
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words, the problem is to divide the N available sites be-
tween n gauged sites and the remaining N − n ungauged
sites so as to maximize the determinant of the FIM associ-
ated with the parameters to be estimated. This formulation
will be also adopted here.

Specifically, let xi, i = 1, . . . , N denote the positions
of sites where sensors can potentially be placed. Now that
our design criterion has been established, the problem is
to find an optimal allocation of n available sensors to xi,
i = 1, . . . , N so as to maximize the value of the design
criterion incurred by the allocation. In order to formulate
this mathematically, for each possible location xi intro-
duce a variable vi which takes the value 1 or 0 depending
on whether a sensor is or is not located at xi, respectively.
The FIM in (11) can then be rewritten as

M(v1, . . . , vN ) =
N∑

i=1

viMi, (16)

where

Mi =
∫

T

g(xi, t)gT(xi, t) dt. (17)

It is straightforward to verify that the m × m matri-
ces Mi are nonnegative definite and, therefore, so is
M(v1, . . . , vN ).

Then our design problem takes the following form:

Problem P. Find a sequence v = (v1, . . . , vN ) to maxi-
mize

P(v) = Ψ
(
M(v)

)
(18)

subject to the constraints

N∑

i=1

vi = n, (19)

vi = 0 or 1, i = 1, . . . , N. (20)

This constitutes a 0–1 integer programming problem
which necessitates an ingenious solution. In (Uciński
and Patan, 2007), a general computational scheme is pro-
posed to solve this problem based on the branch-and-
bound method, which is a standard technique for such a
class of tasks. Its presentation constitutes the next section
of the paper.

3. Branch-and-bound solution

3.1. Outline. Branch-and-bound constitutes a general
algorithmic technique for finding optimal solutions of var-
ious optimization problems, especially discrete or combi-
natorial (Floudas, 2001; Bertsekas, 1999). If applied care-
fully, it can lead to algorithms that run reasonably fast on
average.

Principally, the BB method is a tree-search algorithm
combined with a rule for pruning subtrees. Suppose we

wish to maximize an objective function P(v) over a fi-
nite set V of admissible values of the argument v called
the feasible region. BB then progresses by iteratively ap-
plying two procedures: branching and bounding. Branch-
ing starts with smartly covering the feasible region by two
or more smaller feasible subregions (ideally, partitioning
into disjoint subregions). It is then repeated recursively
to each of the subregions until no more division is pos-
sible, which leads to a progressively finer partition of V .
The consecutively produced subregions naturally generate
a tree structure called the BB tree. Its nodes correspond
to the constructed subregions, with the feasible set V as
the root node and the singleton solutions

{
v
}

, v ∈ V as
terminal nodes. In turn, the core of bounding is a fast
method of finding upper and lower bounds to the maxi-
mum value of the objective function over a feasible sub-
domain. The idea is to use these bounds to economize
computation by eliminating nodes of the BB tree that have
no chance of containing an optimal solution. If the upper
bound for a subregion VA from the search tree is lower
than the lower bound for any other (previously examined)
subregion VB , then VA and all its descendant nodes may
be safely discarded from the search. This step, termed
pruning, is usually implemented by maintaining a global
variable that records the maximum lower bound encoun-
tered among all subregions examined so far. Any node
whose upper bound is lower than this value need not be
considered further and thereby can be eliminated. It may
happen that the lower bound for a node matches its upper
bound. That value is then the maximum of the function
within the corresponding subregion and the node is said to
be solved. The search proceeds until all nodes have been
solved or pruned, or until some specified threshold is met
between the best solution found and the upper bounds on
all unsolved problems.

3.2. Relaxed sensor selection problem. Let I denote
the index set

{
1, . . . , N

}
of possible sensor locations.

Consider a slight modification of Problem P, which starts
by replacing the feasible set

V =

{

(v1, . . . , vN )
∣
∣
∣

N∑

i=1

vi = n, vi = 0 or 1, ∀i ∈ I

}

(21)
with

V (I0, I1)

=
{
v ∈ V | vi = 0, ∀i ∈ I0, vi = 1, ∀i ∈ I1

}
, (22)

where I0 and I1 are disjoint subsets of I . Consequently,
V (I0, I1) is the subset of V such that a sensor is placed at
the locations with indices in I1, no sensor is placed at the
locations with indices in I0, and a sensor may or may not
be placed at the remaining locations.
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Then we introduce the following relaxed problem:

Problem R(I0, I1). Find a sequence v̄ to maximize
(18) subject to the constraints

N∑

i=1

vi = n, (23)

vi = 0, i ∈ I0, (24)

vi = 1, i ∈ I1, (25)

0 ≤ vi ≤ 1, i ∈ I \ (I0 ∪ I1). (26)

In Problem R(I0, I1), all 0–1 constraints on the vari-
ables vi are relaxed by allowing them to take any value in
the interval [0, 1], except that the variables vi, i ∈ I0 ∪ I1

are fixed at either 0 or 1.
Each subset V (I0, I1) can be identified with a node

in the BB tree. The key assumption in the BB method is
that for every nonterminal node V (I0, I1), i.e., the node
for which I0 ∪ I1 �= I , there is an algorithm that deter-
mines an upper bound P̄(I0, I1) to the maximum design
criterion over V (I0, I1), i.e.,

P̄(I0, I1) ≥ max
v∈V (I0,I1)

P(v), (27)

and a feasible solution v ∈ V for which P(v) can serve
as a lower bound to the maximum design criterion over
V . Furthermore, we may compute P̄(I0, I1) by solving
relaxed Problem R(I0, I1). A simple and efficient method
for its solution based on the gradient projection technique
constitutes Section 4 of the paper. As a result of its appli-
cation, we set P̄(I0, I1) = P(v̄).

As for v, we can specify it as the best feasible solu-
tion (i.e., an element of V ) found so far. If no solution has
been found yet, we can either set the lower bound to −∞,
or use an initial guess about the optimal solution (expe-
rience provides evidence that the latter choice leads to a
much more rapid convergence).

3.3. Branching rule. The result of solving Prob-
lem R(I0, I1) can serve as a basis to construct a branch-
ing rule for the binary BB tree. We adopt here the ap-
proach in which the node/subset V (I0, I1) is expanded
(i.e., partitioned) by first picking out all fractional values
from among the values of the relaxed variables, and then
rounding to 0 and 1 a value which is the most distant from
both 0 and 1. Specifically, we apply the following steps:

(i) Determine

i� = arg min
i∈I\(I0∪I1)

|vi − 0.5|. (28)

(In case there are several minimizers, randomly pick
one of them.)

(ii) Partition V (I0, I1) into V (I0 ∪
{
i�

}
, I1) and

V (I0, I1 ∪
{
i�

}
) whereby two descendants of the

node in question are defined.

A recursive application of the branching rule starts
from the root of the BB tree, which corresponds to the
trivial subset V (∅, ∅) = V and the fully relaxed problem.
Each node of the BB tree corresponds to a continuous re-
laxed problem, R(I0, I1), while each edge corresponds to
fixing one relaxed variable at 0 or 1.

The above scheme has to be complemented with a
search strategy to incrementally explore all the nodes of
the BB tree. Here we use a common depth-first tech-
nique (Reinefeld, 2001; Russell and Norvig, 2003), which
always expands the deepest node in the current fringe
of the search tree. The reason behind this decision is
that the search proceeds immediately to the deepest level
of the search tree, where the nodes have no successors
(Gerdts, 2005). In this way, lower bounds on the optimal
solution can be found or improved as fast as possible.

A recursive version of the resulting depth-first
branch-and-bound is implemented in Algorithm 1. The
operators involved in this implementation are as follows:

• RELAXED-SOLUTION(I0, I1) returns a solution to
Problem R(I0, I1).

• DS-FIM(v) returns the Ds criterion value for the
FIM corresponding to v.

• INTEGRAL-TEST(v) returns true only if the current
solution v is integral.

• INDEX-BRANCH(v) returns the index defined by
(28).

4. Algorithmic solution for the relaxed
problem

4.1. Problem reformulation. For notational conve-
nience, we replace the variables vi, i ∈ I \ (I0 ∪ I1) with
wj , j = 1, . . . , q, where q = |I \ (I0 ∪ I1)|, since there
exists a bijection π from

{
1, . . . , q

}
to I \ (I0 ∪ I1) such

that wj = vπ(j), j = 1, . . . , q. Consequently, we obtain
the ultimate formulation:

Problem R′(I0, I1). Find w ∈ R
q to maximize

Q(w) = Ψ
(
G(w)

)
(29)

subject to the constraints

q∑

j=1

wj = r, (30)

0 ≤ wj ≤ 1, j = 1, . . . , q, (31)
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Algorithm 1 A recursive version of the depth-first branch-and-bound method. It uses two global variables, LOWER and
v_best, which are respectively the maximal value of the P(v) over feasible solutions found so far and the solution at which
it is attained.

1: procedure RECURSIVE-DFBB(I0, I1)
2: if |I0| > N − n or |I1| > n then
3: return � Constraint on the number of sensors would be violated
4: end if
5: v_relaxed← RELAXED-SOLUTION(I0, I1)
6: Ds_relaxed← DS-FIM(v_relaxed ) � Bounding
7: if Ds_relaxed ≤ LOWER then
8: return � Pruning
9: else if INTEGRAL-TEST(v_relaxed ) then

10: v_best← v_relaxed
11: LOWER← Ds_relaxed
12: return � Relaxed solution is integral
13: else
14: i� ← INDEX-BRANCH(v_relaxed ) � Partition into two descendants (Branching)
15: RECURSIVE-DFBB(I0 ∪

{
i�

}
, I1)

16: RECURSIVE-DFBB(I0, I1 ∪
{
i�

}
)

17: end if
18: end procedure

where

r = n− |I1|, G(w) = A +
q∑

j=1

wjSj , (32)

A =
∑

i∈I1

Mi, Sj = Mπ(j) (33)

for j = 1, . . . , q. (Note that |I1| sensors have already been
assigned to locations xi, i ∈ I1, and thus a decision about
the placement of r remaining sensors has to be made.)

4.2. Gradient projection scheme. It can be demon-
strated (the proof is technical and thus it can be found
in Appendix) that the Ds-optimality criterion is concave
over the cone S

m
++. What is more, its matrix derivative is

◦
Ψ(M) =

∂Ψ(M)
∂M

=

⎡

⎣
Dαα Dαβ

DT
αβ Dββ −M−1

ββ

⎤

⎦ , (34)

which results from the representation

Ψ[M ] = log det(M)− log det(Mββ)

= log det(M)− log det(ATMA),
(35)

where

A =

⎡

⎣ 0

I

⎤

⎦ ∈ R
m×(m−s), (36)

and Proposition 10.6.2 of (Bernstein, 2005, p.410).
In the sequel, W will stand for the set of all vectors

w = (w1, . . . , wq) satisfying (30) and (31). Note that

it forms a polygon in R
q. The objective function (29) is

concave as the composition of the log-determinant with
an affine mapping, see (Boyd and Vandenberghe, 2004,
p. 79). We wish to maximize it over the polyhedral set W .

For that purpose, a number of possibilities exist,
cf. (Bertsekas, 1999, Chapter 2), but gradient projection
methods prove very efficient. The simplest version is a
feasible direction method of the form

wk+1 = wk + λk(w̄k − wk), (37)

where
w̄k =

[
wk + �k∇Q(wk)

]+
. (38)

Here, [ · ]+ denotes projection on the set W , λk ∈ (0, 1]
is a stepsize, and �k is a positive scalar. Thus, to ob-
tain the vector w̄k, we take a step �k∇Q(wk) along the
gradient, as in steepest ascent. We then project the result
wk +�k∇Q(wk) on W , thereby defining the feasible vec-
tor w̄k. Finally, we take a step along the feasible direction
w̄k − wk using the stepsize λk.

An O(r) algorithm of projecting on W , which con-
stitutes an intersection of a hyperplane and a box, was set
forth by Maculan et al. (2003). Let us also note that

∇Q(w)

=
[
trace

( ◦
Ψ(G(w))S1

)
. . . trace

( ◦
Ψ(G(w))Sq

)]T

.

(39)

5. Computational results

As an illustration of the presented approach to the sen-
sor network design, we consider the problem of sensor
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placement for fault detection in the transport process of
an air pollutant over a given urban area. Within this do-
main, which has been normalized to the unit square Ω =
(0, 1)2, an active source of pollution is present, which in-
fluences the pollutant spatial concentration y = y(x, t).
The evolution of y over the normalized observation inter-
val T = (0, 1] is described by the following advection-
diffusion equation:

∂y(x, t)
∂t

+∇ · (v(x)y(x, t)
)

=∇ · (a(x)∇y(x, t)
)

+ f(x), x ∈ Ω
(40)

subject to the boundary and initial conditions

∂y(x, t)
∂n

= 0, on Γ× T, (41)

y(x, 0) = y0, in Ω, (42)

where the term f(x) = 50 exp
(−50‖x−c‖2) represents a

source of the pollutant located at point c = (0.3, 0.3), and
∂y/∂n stands for the partial derivative of y with respect to
the outward normal to the boundary Γ. The mean spatio-
temporal changes in the wind velocity field over the area
were approximated by v = (v1, v2), where

v1 = 2(x1 + x2 − t), v2 = x2 − x1 + t, (43)

which is also illustrated in Fig. 1. The assumed functional
form of the spatial-varying diffusion coefficient a(x) is

a(x) = θ1 + θ2x1x2 + θ3x
2
1 + θ4x

2
2. (44)

The subject of interest here is the detection of a significant
increase in the intensity of the pollutant emission from the
source. As the symptom of this abrupt fault, an excessive
deviation of the parameters θ1 and θ2 from their nominal
values was assumed. Therefore, these parameters need
estimation based on measurement data from monitoring
stations.

In our simulation studies, the described branch-and-
bound technique was applied to determine the locations
of stationary sensors. Given N prospective sites in Ω∪ Γ,
we aim at selecting their subset consisting of the locations
at which the measurements made by n available sensors
would lead to Ds-optimum least-squares estimates of the
parameters θ.

In order to determine the elements of the sensitivity
vector required to calculate the FIM, the direct-differentia-
tion method (Uciński, 2005) was applied assuming the
nominal values of the parameters θ0

1 = 0.02, θ0
2 = 0.01

and θ0
3 = θ0

4 = 0.005. We solved the resulting system
of PDEs using routines of the MATLAB PDE toolbox for
a spatial mesh composed of 682 triangles and 378 nodes.
As for the numerical integration required to evaluate in-
formation matrices for admissible observation sites, the
trapezoidal rule was applied with the time step equal to

0.04, based on the sensitivity vector interpolated at the
nodes representing admissible locations xi, cf. Appendix
I in (Uciński, 2005) for details.

Complex dynamics of the pollution process are
shown in Fig. 1. The pollutant spreads out over the entire
domain reflecting the sophisticated combination of diffu-
sion and advection and follows the temporary direction
of the wind being the dominant transport factor. In the
scenario considered, the observation grid was assumed
to be created at locations selected from among those el-
ements of the above-mentioned 378-point triangulation
mesh which do not lie on the outer boundary (there were
312 such nodes, which are indicated with dots in Fig. 2).

A MATLAB program was written to implement the
recursive version of the depth-first branch and bound
(DFBB) procedure embodied by Algorithm 1. In order
to solve the relaxed problem, which constitutes the princi-
pal part of DFBB, the gradient projection scheme was im-
plemented (Sec. 4) with tolerance and maximum number
of iterations set to ε = 10−8 and κmax = 1000, respec-
tively. Finally, to take full advantage of the efficient gradi-
ent projection scheme performed at each node of the BB
tree, Algorithm 1 was extended to incorporate a rounding
procedure after solving the relaxed problem. Thus, this
solution provides not only an upper bound to the currently
processed branch, but may also lead to a great improve-
ment in the lower bound (LOWER). Intuitively, a proper
way of rounding a relaxed solution is to choose target sites
for locating spare sensors so that they correspond to the
largest weights. In case this choice is complicated by the
presence of sites with identical weights, the target sites
are chosen randomly. As a result, it is not necessary to de-
scend to the bottom level of the BB tree in order to update
LOWER. This fact is of crucial importance for large-scale
problems, where such an action costs many recursive calls
of Algorithm 1. Thus the rounding of relaxed solutions
significantly makes the algorithm faster as evidenced by
numerous simulation experiments.

A well-known fact related to the determination of
Ds-optimum solutions is that the optimal FIM or its diag-
onal components (10) may be singular. As a result, only
some linear combinations or subsets of parameters may
be estimable. This is enough for the purpose of verifying
the hypothesis (8) related to the detection of the parame-
ter changes considered, but it may lead to numerical dif-
ficulties in the implementation of the gradient projection
algorithm presented in Section 4.2. Therefore, for numer-
ical construction of sensor network configurations, some
simple regularization techniques for the FIM should be
applied (Atkinson et al., 2007).

Ds-optimal sensor configurations for different num-
bers of allocated sensors are shown in Fig. 2. It is clear
that the complexity of the system dynamics makes the
proper prediction of the observation locations rather dif-
ficult and nonintuitive. The sensors tend to form a pat-
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Fig. 1. Temporal changes in the wind velocity field and pollutant concentration.

tern reflecting the areas of greatest changes in the pollu-
tant concentration but the observations are averaged over
time and it is not trivial to follow the dynamics of the ob-
servation strategy. Surprisingly, the measurements in the
closest vicinity of the pollution source turned out to be
not very attractive for the fault detection considered. The
results concerning the algorithm performance are sum-
marized in Tab. 1. The number of recursive calls of the
DFBB procedure equals to one, which means that the op-
timal solution is obtained just by rounding the fully re-
laxed problem. The examination of the data from Tab. 1
leads to interesting conclusions. Unexpectedly, with an in-
creased number of sensors (and the size of the correspond-
ing search space), the pruning process becomes more ef-
ficient. This effect can be explained by observing that

a higher density of sensors leads to a better estimate of
the lower bound to the optimal value of the design crite-
rion, which results in an increased efficiency of pruning
and whereupon the search is speeded up.

6. Conclusions

We consider the problem of monitoring network design
which provides proper diagnostic information about the
state of the distributed parameter system considered. One
of the most important issues related to this task is the
choice of a suitable criterion to quantify the quality of
the detection of an abnormal system state indicating po-
tential faults. We state the problem in the form of the
maximization of the power for a parametric hypothesis
test which verifies the nominal values for the system pa-
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Fig. 2. Ds-optimal allocation of different numbers of sensors.

rameters. Then, as an appropriate performance index,
the Ds-optimality criterion defined on the Fisher informa-
tion matrix is proposed. Although this criterion is well
known in optimum design theory, there exist only few at-
tempts to exploit it in the context of fault detection for
DPSs, cf. (Patan, 2004; Patan and Patan, 2005; Patan
et al., 2005; Uciński, 2003). This work contributes to
this issue providing a proper mathematical justification of
some valuable properties of Ds-optimality such as its con-
cavity and differentiability.

Another crucial difficulty here is the large scale of
the resulting global optimization problem, since the mon-
itoring networks encountered in process industry or envi-
ronmental engineering may often consist of several hun-
dreds of stations. Obviously, this makes the exhaustive
search on a candidate-by-candidate basis practically in-

tractable and creates a need for techniques which would
implement a guided search and have acceptable perfor-
mance. With our sensor network design problem, we
started from the most common formulation, in which the
measurement system has a finite number of candidate sen-
sor positions and the aim is to select the best subset of
points (of a desired cardinality) in the sense of maximiz-
ing the Ds-optimality criterion. This fits into the frame-
work of nonlinear 0–1 integer programming. The solution
of this combinatorial design problem using the branch-
and-bound method constitutes quite a natural option, but
the main problem when trying to implement it has been
the lack of a low-cost procedure to obtain upper bounds
to the optimal values of the Ds-optimality criterion. Our
main contribution consists in adapting a specialized gra-
dient projection procedure for criterion maximization to
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Table 1. Comparison of algorithm performance for
different settings.

No. of No. of recur- Time Criterion

sensors sive calls [s] value

10 17 4.697 1.19422e+006

20 41 9.043 4.28668e+006

40 5 3.856 1.59385e+007

60 1 1.092 3.33651e+007

80 1 0.511 5.8198 e+007

100 3 1.698 8.24685e+007

120 1 0.261 1.14538e+008

150 7 3.395 1.59447e+008

produce such bounds. Consequently, the proposed method
can be implemented with ease and our experience pro-
vides evidence that, with this tool, even large-scale design
problems can be solved using an off-the-shelf PC.

Naturally, there still remain some open problems
which need close attention. The following points can be
raised as the main directions of further research:

• Extension of the discussed class of DPSs. The great
advantage of the delineated approach is that it is in-
dependent of a specific form of PDEs used as a math-
ematical model of the DPS considered. In such a
manner the presented approach can be rather easily
adopted for the class of multi-output DPSs or/and
systems with delays, since only the formula for cal-
culating the elements of the FIM will be suitably
changed.

• The structure of the proposed BB algorithm is well
suited for parallel implementation dedicated to clus-
ters of PCs. Such a parallel version of the approach
would be very attractive for solving large-scale prob-
lems.

• The proposed simple branching rule for the binary
BB tree can be refined by incorporating a mechanism
driving the search proces towards the most promising
branches in terms of the objective function or heuris-
tics exploiting specific properties of the DPS consid-
ered.

Appendix

Proof of the concavity of the Ds-optimality criterion
Recall that the Euclidean matrix scalar product

〈G,H〉 = trace(GTH) (1)

turns R
m×m into a Euclidean space of dimension m2.

We denote by S
m its subspace of symmetric matrices.

It is well known that this subspace contains the convex,
pointed and closed cone of nonnegative definite matrices,
S

m
+ , which has the set of positive definite matrices, S

m
++,

as its interior relative to the space S
m, cf. (Pukelsheim,

1993, p. 10).
The Löwner partial ordering � of S

m is defined as
follows:

G � H ⇔ G−H � 0⇔ G−H ∈ S
m
+ . (2)

Recall that

G ∈ S
m
+ ⇔ trace(GH) � 0, ∀H ∈ S

m
+ . (3)

Lemma 1. If G � H � 0, then for all V ∈ S
m we have

trace(GV GV ) ≥ trace(HV HV ). (4)

Proof. From (3) it follows that

trace(GV GV ) ≥ trace(GV HV ) ≥ trace(HV HV ).
(5)

The two inequalities result from V GV � V HV and G �
H , respectively. �

Lemma 2. For the partition (10), if M ∈ S
m
++, then

M−1 � A(ATMA)−1AT, (6)

where A is defined in (36).

Proof. First observe that, given M ∈ S
m
++, we have

Mββ = ATMA ∈ S
m
++ whenever s < m.

From Proposition 2.8.7 of (Bernstein, 2005, p.44) we
deduce that

M−1 −A(ATMA)−1AT

=

⎡

⎣
Dαα −DααMαβM−1

ββ

−M−1
ββ MT

αβDαα M−1
ββ MT

αβDααMαβM−1
ββ

⎤

⎦ .

(7)

Then for any y ∈ R
m partitioned as

y =

[
yα

yβ

]

(8)

we obtain

yT
(
M−1 −A(ATMA)−1AT

)
y

=
(
yα −MαβM−1

ββ yβ

)T
Dαα

(
yα −MαβM−1

ββ yβ

)

≥ 0,

(9)

which yields the desired result. �
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We claim that the criterion (9) is concave over S
m
++.

Indeed, denoting by Ψ′
s(M) the first Fréchet derivative of

Ψs at M ∈ S
m
++, from (35) and Proposition 10.6.2(vi) in

(Bernstein, 2005, p.410) we obtain

Ψ′
s(M)V

= trace
{

∂

∂M

[
Ψs(M)

]
V

}

= trace
{[

M−1 −A(ATMA)−1AT
]
V

}
(10)

for any V ∈ S
m.

As for the second Fréchet derivative of Ψs at M ∈
S

m
++, denoted by Ψ′′

s (M), its value Ψ′′
s (M)(U, V ) at given

U, V ∈ S
m equals the derivative of the mapping M �→

Ψ′
s(M)V applied to U , i.e.,

Ψ′′
s (M)(U, V )

= trace
{

∂

∂M

[
Ψ′

s(M)V
]
U

}

= − trace
{[

M−1V M−1

−A(ATMA)−1ATV A(ATMA)−1AT
]
U

}
,

(11)

the last equality resulting from Proposition 10.6.4(iii) in
(Bernstein, 2005, p.411).

From Lemmas 1 and 2 we then get

Ψ′′
s (M)(V, V )

= − trace
{
M−1V M−1V

}

+ trace
{
A(ATMA)−1ATV A(ATMA)−1ATV

}

≤ 0, ∀V ∈ S
m,

(12)

which establishes the concavity of Ψs.
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Uciński D. (2003). On optimum experimental design for techni-
cal diagnostics of processes, in Z. Kowalczuk (Ed), Pro-
ceedings of 6-th National Conference on Diagnostics of
Industrial Processes, Władysławowo, Poland, Technical
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