
Int. J. Appl. Math. Comput. Sci., 2008, Vol. 18, No. 3, 369–375
DOI: 10.2478/v10006-008-0033-8

DETERMINING THE WEIGHTS OF A FOURIER SERIES NEURAL NETWORK
ON THE BASIS OF THE MULTIDIMENSIONAL DISCRETE FOURIER

TRANSFORM

KRZYSZTOF HALAWA

Institute of Computer Engineering, Control and Robotics
Wrocław University of Technology, Wybrzeże Wyspiańskiego 27, 50–370 Wroclaw, Poland

e-mail: krzysztof.halawa@pwr.wroc.pl

This paper presents a method for training a Fourier series neural network on the basis of the multidimensional discrete
Fourier transform. The proposed method is characterized by low computational complexity. The article shows how the
method can be used for modelling dynamic systems.

Keywords: orthogonal neural networks, Fourier series, fast Fourier transform, approximation, nonlinear systems.

1. Introduction

Fourier series neural networks (FSNNs) belong to the
class of orthogonal neural networks (ONNs) (Zhu et al.,
2002; Sher et al., 2001; Tseng and Chen, 2004; Rafajło-
wicz and Pawlak, 1997). They are feedforward networks,
similarly to sigmoidal neural networks.

The inputs of an MISO (multiple-input single-
output) FSNN are connected with neurons having ortho-
gonal harmonic activation functions from the trigonome-
tric series c0, c · sin(αu), c · cos(αu), α = 1, 2, 3, . . . ,
where c0 and c are constants. These neurons have solely a
single input.

Multiplying nodes calculate products for all combi-
nations of output signals from the aforementioned neu-
rons. The linear neuron sums the weighted outputs of the
multiplying nodes yielding the output of the network. The
weights of this neuron are subjected to changes during
the network learning process. The network architecture
is designed so that the same transformation as in a multi-
dimensional Fourier series could be achieved. An MIMO
(multiple-input multiple-output) FSNN may be created by
joining additional linear neurons to the output layer. The
number of linear neurons equals the number of network
outputs. In order to get a simple notation, in this paper
(except Section 4), a case is considered wherein each in-
put of the neural network is interconnected with the same
number of orthogonal neurons. If each input is associa-
ted with a different number of neurons, the procedure is
analogous. The procedure to be used in such a situation is

also described here. The orthogonal neural network with a
single output is shown in Fig. 1. In this figure, O denotes
orthogonal neurons, Π represents product nodes, and Σ is
the linear neuron. If each input of a network is associated
with N−1 harmonic neurons, where N is an even number
and c = 1, c0 = 1, the network output is given by
y =

[
w1, w2, . . . , w(N−1)S

]

·

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
sin(u1)
cos(u1)
sin(2u1)
cos(2u1)

...

sin((N/2 − 1)u1)
cos((N/2 − 1)u1)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⊗

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
sin(u2)
cos(u2)
sin(2u2)
cos(2u2)

...

sin((N/2 − 1)u2)
cos((N/2 − 1)u2)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⊗ · · · ⊗

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
sin(uS)
cos(uS)
sin(2uS)
cos(2uS)

...

sin((N/2 − 1)uS)
cos((N/2 − 1)uS)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (1)

where ⊗ denotes the Kronecker product, S is the

krzysztof.halawa@pwr.wroc.pl

370 K. Halawa

number of network inputs, w1, w2, . . . , w(N−1)S are
network weights, u1, u2, . . . , uS are network inputs,
1, sin(kui), cos(kui) are the activation functions of the
neurons connected to the i-th network input k =
{1, 2, . . . , N/2}, y is the network output. What is worth
mentioning is that the values we get upon calculating
Kronecker’s products inside the round brackets in (1) are
equal to the outputs of multiplying nodes. The input va-
lues to the network must be within the interval [0, 2π).

FSNNs have numerous advantages which are unava-
ilable in sigmoidal networks, e.g.,

• high-speed convergence of the learning process, if
the cost function is the mean squared error, through
the lack of local minima for the gradient descent al-
gorithm,

• the output is linear with respect to the weights,

• the relationship between the number of inputs and
outputs and the maximum number of orthogonal neu-
rons is well known.

The comparison of the learning speeds between the
two-input-one-output FSNN having 30 harmonic neu-
rons, which was trained with a gradient descent algo-
rithm, and a 2-10-1 sigmoidal network, which was tra-
ined with the Levenberg-Marquardt method, is depic-
ted in Fig. 2. The networks were trained to map the
function f(x1, x2) = exp

(−(x1 − 2)2 − (x2 − 1.5)2
)−

exp
(−(x1 − 4)2 − (x2 − 4)2

)
. The training set was ge-

nerated according to the equation ym = f(x1m, x2m) +
0.5 · em, where em are normally distributed random num-
bers with zero mean and unit standard deviation, x1m and
x2m are random numbers uniformly distributed on the in-
terval [0, 2π), m = {1, 2, . . . , 1000}. Learning results
were evaluated on a testing set composed of 2000 ele-
ments. It had been generated in an analogous way as that
for the training set. In the case of an FSNN, the values of
the weights and output signals from neurons may easily

Fig. 1. MISO structure of an orthogonal neural network.

Fig. 2. Comparison of learning process speeds between the
FSNN having 30 orthogonal neurons which was tra-
ined with a gradient descent algorithm (dotted line) and
a sigmoidal 2-10-1 network which was trained with a
Levenberg-Marquardt algorithm (solid line). MSE de-
notes the mean squared error.

take physical interpretations, which is of importance when
these networks are used in data stream processing.

The paper shows how to calculate the weights
w1, w2, . . . , w(N−1)S on the basis of the S-dimensional
discrete Fourier transform (DFT) (Gonzalez and Wo-
ods, 1999), which is obtained by the fast Fourier transform
(FFT) (Bracewell, 1999; Chu and George, 2000; Walker,
1996; Van Loan, 1992). The method set forth here enables
us to calculate weight values quickly and efficiently. A si-
milar method for a one-dimensional case was described in
(Rafajłowicz and Skubalska-Rafajłowicz, 1993). The re-
mainder of this work is organized as follows: Section 2
provides the method used to determine the weights on the
basis of an S-dimensional DFT. Two ways of applying the
proposed algorithm when input data are not evenly spaced
are also shown there. The network pruning is described.
Section 3 is devoted to the computational complexity of
the proposed method. Section 4 contains necessary modi-
fications of the presented method which have to be carried
out when each input is associated with a different number
of neurons.

2. Calculating the weights on the basis of the
S-dimensional DFT

In what follows we describe how the weights are deter-
mined on the basis of the S-dimensional DFT when the
network should approximate a function f(X), X ∈ R

S

which is piecewise continuous and satisfies Dirichlet con-
ditions.

The presented method can be applied directly if the
training set of values {ym, Um · p}, m =

{
1, 2, . . . , NS

}
,

Determining the weights of a Fourier series neural network. . . 371

ym ∈ R, Um ∈ R
S is at our disposal, where ym =

fe(Um · p) = f(Um · p) + εm, p = 2π/N , εm are un-
correlated random variables with zero expectations and
finite variances, the components of Um multiplied by
p are evenly spaced in a hypercube and are equal to{
0, 1 2π

N , 2 2π
N , . . . , (N − 1)2π

N

}
.

Necessary modifications that have to be made if Um ·
p are not evenly spaced in a hypercube with side length
2π are described at the end of this section. This situation
is typical for a passive experiment and dynamic system
modelling.

In the first step of the proposed method we calcu-
late the DFT using the values of ym. Then we determine
the weights on the basis of the approximation (5) outli-
ned below. This method makes use of a relation between
the multidimensional Fourier series decompostion and the
multidimensional DFT.

The S-dimensional DFT from fe is defined by

F (K) =
N−1∑
u1=0

N−1∑
u2=0

· · ·
N−1∑
uS=0

fe(U · p)

· e−j2π(k1u1+k2u2···+kSuS)/N

=
N−1∑
u1=0

N−1∑
u2=0

· · ·
N−1∑
uS=0

fe(U · p)e−j2πKT U/N ,

where K = [k1, k2, . . . , kS]T , U = [u1, u2, . . . , uS]T ,
the components of U and K being nonnegative integers
less than or equal to N − 1.

Using the inverse discrete Fourier transform (IDFT),
we can write

fe(U · p) =
1

NS

N−1∑
k1=0

N−1∑
k2=0

· · ·
N−1∑
kS=0

F (k1, k2, . . . , ks)

· ej2π(k1u1+k2u2+···+kSuS)/N

=
1

NS

N−1∑
k1=0

N−1∑
k2=0

· · ·
N−1∑
kS=0

F (K)ej2πKT U/N .

(2)

We also note that

f(UR · p) ≈ 1
NS

N−1∑
k1=0

N−1∑
k2=0

· · ·
N−1∑
kS=0

F (k1, k2, . . . , ks)

· ej2π(k1uR1+k2uR2+···+kSuRS)/N

=
1

NS

N−1∑
k1=0

N−1∑
k2=0

· · ·
N−1∑
kS=0

F (K)ej2πKT UR/N ,

(3)

where UR = [uR1, uR2, . . . , uRS]T and the components
of UR are nonnegative real numbers less than or equal to

N − 1. The accuracy of the approximation (3) depends
on the additive noise ε and the number N . The larger N ,
the better the approximation result. The approximation
(3) can be rewritten as

f(U · p) ≈ r +
1

NS

N/2−1∑
k1=1

N/2−1∑
k2=1

· · ·
N/2−1∑
kS=1

F (A1)ej2πUT A1/N

+ F (A2)ej2πUT A2/N

+ · · · + F (A2S)ej2πUT A2S /N .

(4)

In the above equation, r is the sum of all combinations of
the following sums:

N−1∑
k1=0

N−1∑
k2=0

· · ·
N−1∑
kS=0

1
NS

F (K)ej2πUT K/N ,

where at least one component of the vector K is zero and
where we omit the symbols of the sum corresponding to
the zero components of K . The vector An is determined
as follows:

(a) we write n − 1 as a binary number which has S bits,

(b) we create a vector An on the basis of the vector K
in the following manner: if the i-th bit of a binary
number is not zero, then the i-th component of the
vector An is equal to (N − ki), otherwise it is equal
to ki.

For example, S = 4, n = 4, n − 1 is expressed as
the binary number 0011, An = [k1, k2, N −k3, N −k4]T .

We observe that

e−j2π((N−k1)u1+(N−k2)u2+(N−k3)u3+···+(N−kS)uS)/N

=
(
e−j2π(k1u1+k2u2+k3u3+···+kSuS)/N

)∗
,

e−j2π((k1u1+(N−k2)u2+(N−k3)u3+···+(N−kS)uS)/N

=
(
e−j2π((N−k1)u1+k2u2+k3u3+···+kSuS)/N

)∗
,

e−j2π((k1u1+k2u2+(N−k3)u3+···+(N−kS)uS)/N

=
(
e−j2π((N−k1)u1+(N−k2)u2+k3u3+···+kSuS)/N

)∗
,

... .

We also note that in the case of the DFT calculated using

372 K. Halawa

real data we get

F (N − k1, N − k2, N − k3, . . . , N − kS)
= F ∗(k1, k2, k3, . . . , kS),

F (k1, N − k2, N − k3, . . . , N − kS)
= F ∗(N − k1, k2, k3, . . . , kS),

F (k1, k2, N − k3, . . . , N − kS)
= F ∗(N − k1, N − k2, k3, . . . , kS),

... .

It is the symmetry feature of DFT coefficients. Thus,
using the two foregoing dependencies and the relationship
(ab)∗ = (a∗) (b∗), we can rewrite (4) as

f(U · p)
≈ r

+
2

NS

N/2−1∑
k1=1

N/2−1∑
k2=1

· · ·
N/2−1∑
kS=1

Re {F (k1, k2, . . . , kS)}

· cos (p(k1u1 + k2u2 + · · · + kSuS))
− Im {F (k1, k2, . . . , kS)}
· sin (p(k1u1 + k2u2 + · · · + kSuS))
+ Re {F (k1, k2, . . . , N − kS)}
· cos (p(k1u1 + k2u2 + · · · + kS−1uS−1 − kSuS))
− Im {F (k1, k2, . . . , N − kS)}
· sin (p(k1u1 + k2u2 + · · · + kS−1uS−1 − kSuS))
+ · · ·
+ Re {F (k1, N − k2, . . . , N − kS)}
· cos (p(k1u1 − k2u2 − · · · − kSuS))
− Im {F (k1, N − k2, . . . , N − kS)}
· sin (p(k1u1 − k2u2 − · · · − kSuS)) . (5)

The approximation (5) allows efficient calculation of the
weights independently of the value S. In order to get the
values of individual weights, it is sufficient to express the
sine and cosine functions whose arguments are the weigh-
ted sums of several inputs in (5) as the sums of products
of the sine and cosine functions whose arguments depend
on individual inputs only. Next, the coefficients before
identical products of functions with the same arguments
have to be summed up. The weights are equal to these
sums. (The sum of the coefficients preceding the product
of the functions calculated by the i-th multiplying node,
i = 1, . . . , NS , is equal to the weight connected with this
node.)

Example 1. For a two-input network, we have

f(Up) ≈ r +
2

N2

N/2−1∑
k1=1

N/2−1∑
k2=1

(Re {F (k1, k2)}

· cos(pk1u1 + pk2u2)

− Im {F (k1, k2)} sin(pk1u1 + pk2u2)
+ Re {F (k1, N − k2)} cos(pk1u1 − pk2u2)
− Im {F (k1, N − k2)} sin(pk1u1 − pk2u2))

= r +
2

N2

N/2−1∑
k1=1

N/2−1∑
k2=1

(Re {F (k1, k2)}

+ Re {F (k1, N − k2)})
· cos(pk1u1) cos(pk2u2)
+ (−Re {F (k1, k2)} + Re {F (k1, N − k2)})
· sin(pk1u1) sin(pk2u2)
+ (−Im {F (k1, k2)} − Im {F (k1, N − k2)})
· sin(pk1u1) cos(pk2u2)
+ (−Im {F (k1, k2)} + Im {F (k1, N − k2)})
· cos(pk1u1) sin(pk2u2),

where

r =
F (0, 0)

N2

+
2

N2

N/2−1∑
k1=1

(Re {F (k1, 0)} cos(pk1u1)

− Im {F (k1, 0)} sin(pk1u1))

+
2

N2

N/2−1∑
k2=1

(Re {F (0, k2)} cos(pk2u2)

− Im {F (0, k2)} sin(pk2u2)).

�
Using (5), it is easy to implement a computer pro-

gram which will symbolically compute the weights. To
this end, it is sufficient to implement symbolic calcula-
tions for the sine and cosine functions for many argu-
ments (for example, recurrently) and to group the coeffi-
cients preceding the products of the same harmonic func-
tions. No iteration learning is feasible for the presented
method. Additional learning of the network can be run on-
line with, e.g., a simple gradient descent algorithm which,
in the case of an ONN, ensures good results (see Fig. 2).

The described algorithm cannot be directly applied
when input data are not evenly spaced. Such a situation is
typical when modelling dynamic systems where the cur-
rent output value depends on the previous output values.
Two methods are proposed in such a case.

The first method is based on partitioning the input
data hypercube into identical smaller sub-hypercubes. All
input data which fall into each hypercube are averaged.
These averages are used to calculate a multidimensional
FFT. Due to the speed of the FFT calculations, it is re-
commended to choose N as a highly factorizable num-
ber. The method can be applied when we are able to
select training data which fall evenly enough into these

Determining the weights of a Fourier series neural network. . . 373

sub-hypercubes. This method requires the training set to
be sufficiently large. If the data are not evenly spaced in
some dimensions only, then they can be averaged just in
these dimensions. It is worth mentioning that the method
ensures favourable generalization properties for the for-
mulated model, even without network pruning. This is
because the number of sub-hypercubes is much less than
the number of averaged data items. The second method
makes use of the property of multidimensional DFT sepa-
rability. It requires modification in computations for the
one-dimensional DFT in those dimensions where the data
are not evenly spaced. The nonuniform fast fourier trans-
form (NUFFT) algorithm with O(N log2N) complexity is
especially useful here. The NUFFT is described in (Dutt
and Rokhlin, 1993; Liu and Nyguen, 1998).

The methods may be combined with each other, i.e.,
one of them might be used for some dimensions and ano-
ther for the remaining dimensions. �
Example 2. The example of the first method applied
in modelling a nonlinear dynamic system by an FSNN is
depicted in Fig. 3. The system was described by

yk = 6 exp
(−(yk−1 − 3)2/4 − (yk−2 − 3)2/4

)
,

where yk, yk−1, yk−2 denote the system output values at
time instants k, k − 1, k − 2, respectively.

It was assumed that at our disposal are only the me-
asurements of the output values disturbed by the additive
white noise with zero mean and a variance of 0.25. In this
example, 100,000 data items were used which were then
averaged in 15×15 fields. The weights were calculated on
the basis of the two-dimensional FFT of the size 15 × 15.

Due to the high speed of operation, the method is
suitable for processing intense data streams which force
continuous learning or extra learning of the network. �

After calculating the weights, pruning can be perfor-
med by removing some of the connections. Network ge-
neralization capabilities could be improved by means of
network pruning. The model variance is reduced, but its
bias increases. Therefore, attempts have to be made for
an appropriate bias/variance trade-off (Nelles 2001). Let

bi = wi · (
√

π)αi · (√
2π

)βi , i = {1, 2, (N − 1)S},
where αi is the number of neurons that have an activa-
tion function equal to 1 and are connected with a pro-
duct node, which is associated with wi, whereas βi is
the number of neurons interconnected with the same pro-
duct node and having other activation functions. The
smallest mean squared error is obtained when we remove
connections with smallest |bi|. This stems from the fact
that the trigonometric basis functions, spanning regression
in R

S , which we obtain calculating the Kronecker pro-
ducts within the round brackets in (1) after multiplying by

(1/
√

π)αi · (
1/

√
2π

)βi
, are orthonormal. Therefore, to

run pruning when the weight values are known, the follo-
wing procedure is proposed:

(a)

(b)

(c)

Fig. 3. First method applied for modelling a nonlinear dynamic
system: (a) system output, (b) FSNN output, (c) model-
ling error (the system output minus the FSNN output).

Step (a): Compute |bi| for all weights.

Step (b): Sort the values of |bi|.
Step (c): Remove those product nodes which are correla-

ted with the smallest values of |bi| out of the network.

374 K. Halawa

Table 1. Results of Example 3.

No. of

neurons
1023 501 151 61 41

MSE 0.9776 0.9229 0.6122 0.5465 0.7342

An example illustrating how pruning affects results atta-
ined is shown below.

Example 3. An FSNN was taught to model a nonli-
near SISO system whose output value was given by the
function f(x) = −0.1x3 + 0.5 · x2 sin(3.5x) + 2x + 2 +
8/(x+1), where x denotes its input. The network was tau-
ght using 1024 measurements of a network system output
disturbed by additive Gaussian noise with zero mean and
unit standard deviation. When learning was completed,
network pruning was run. The network performance was
evaluated on a testing set. Table 1 summarizes the number
of neurons after pruning and the MSE reached between the
network output and the true output value from the system
(undisturbed by noise).

An acceptable bias/variance trade-off exists for 61
neurons. �

The proposed algorithm may be briefly summarized
as follows:

Step 1: If the data are evenly spaced, then calculate the
FFT. Otherwise, proceed according to one of the afo-
rementioned methods.

Step 2: Derive the weights of the network using (5).

Step 3: Prune the network.

When compared with the least squares method, the way of
determining the FSNN weights has several good features
which include, but are not limited to, a lesser computatio-
nal complexity, which is detailed in the next section. This
yields a quick learning process for large networks. Then,
when the weights are known, there is no problem with pru-
ning. Therefore, good properties of network generaliza-
tion can be ensured along with a good bias/variance trade-
off. In the case of algorithms of a larger computational
complexity, sometimes the only reasonable selection is to
repeat the forward selection several times (Nelles, 2001).

3. Computational complexity

The computational complexity of the FFT algorithm
for determining the N -point one-dimensional DFT is
O(N log2 N). To determine the S-dimensional DFT,
it is necessary to calculate SNS−1 one-dimensional
DFTs. The computational complexity of calculating
the S-dimensional DFT is O(SNS log2 N). If an S-
dimensional DFT is to be used to determine (N − 1)S

weights, 2S−1 real numbers will be summed for each we-
ight. Hence the total computational complexity of the pro-
posed method is O(NS log2 N + NS) . When (N − 1)S

weights are to be calculated directly from the inner pro-
ducts wk = 〈fe(U), vk(U)〉, k = 1, 2, . . . , (N − 1)S , this
would require about (N−1)SNS = (N2−N)S additions
and multiplications of complex numbers.

FFT algorithms are most efficient when N is a highly
factorizable number. This paper provides no description
of well-known methods of handling other data sizes (Chu
and George, 2000; Bracewell, 1999). Most often, the in-
put data are purely real, in which case the DFT satisfies a
symmetry condition. Efficient FFT algorithms have been
designed for this situation.

4. Necessary modifications when network
inputs are associated with different
numbers of neurons

If the i-th input is associated with Ni − 1 neurons, where
Ni is an even number, then instead of the approximation
(5), the following approximation should be used to calcu-
late the weights:

f(u1p1, . . . , uSpS)

≈ rM +
2

S∏
i=1

Ni

·
N1/2−1∑

k1=1

N2/2−1∑
k2=1

· · ·
NS/2−1∑

kS=1

Re {F (k1, k2, . . . , kS)}

· cos (p1k1u1 + p2k2u2 + · · · + pSkSuS)
− Im {F (k1, k2, . . . , kS)}
· sin (p1k1u1 + p2k2u2 + · · · + pSkSuS)
+ Re {F (k1, k2, . . . , N − kS)}
· cos (p1k1u1 + · · · + pS−1kS−1uS−1 − pSkSuS)
− Im {F (k1, k2, . . . , N − kS)}
· sin (p1k1u1 + · · · + pS−1kS−1uS−1 − pSkSuS)
+ · · ·
+ Re {F (k1, N − k2, . . . , N − kS)}
· cos (p1k1u1 − p2k2u2 − · · · − pSkSuS)
− Im {F (k1, N − k2, . . . , N − kS)}
· sin (p1k1u1 − p2k2u2 − · · · − pSkSuS) . (6)

In the above approximation, pi = 2π/Ni, and rM is
the sum of all the combinations of the following sums:

N1−1∑
k1=0

N2−1∑
k2=0

· · ·
NS−1∑
kS=0

1
S∏

i=1

Ni

F (k1, k2, . . . , ks)

·ej(p1k1u1+p2k2u2+···+pSkSuS),

Determining the weights of a Fourier series neural network. . . 375

where at least one component of the vector K is zero and
where we omit the symbols of the sum corresponding to
the zero components of K .

In order to derive (6), the following equation is used:

fe(p1u1, p2u2, . . . , pSuS)

=
1

S∏
i=1

Ni

N1−1∑
k1=0

N2−1∑
k2=0

· · ·
NS−1∑
kS=0

F (k1, k2, . . . , kS)

· ep1k1u1+p2k2u2+···+pSkSuS

instead of (2), and then the calculations described in Sec-
tion 2 are applied.

5. Conclusion

The presented method of determining weights has several
advantages. It is characterized by a low computational
complexity. It is far more efficient than computing
inner products using numerical integration. Software
calculating the inverse discrete Fourier transform using
FFT algorithms is widespread and easily available. Using
the property of separability, we can obtain a multidimen-
sional DFT by successive calculations of one-dimensional
DFTs. The described method is especially well-suited
for processing data streams which have been sampled
at regular intervals. A drawback of the ONN is that
the number of weights increases exponentially with the
dimension of input data. In order to reduce the dimension
of input data, we can try to use projection pursuit methods
(Hyvarinen and Oja, 2000; Kegl et al., 2000; Li and
Sun, 2005; Joliffe, 1986). It is worth mentioning that
the FFT algorithm can be also applied for effective
calculation of FSNN outputs. In such a case, at first we
need to determine the coefficients of the DFT on the basis
of the network weights, and then we calculate the IDFT.
This method was described in detail in (Halawa, 2008).
As the method has a low calculation complexity, it is
especially suitable for data stream processing.

Acknowledgment

This work was supported by the Polish Ministry of
Science and Higher Education under a research grant con-
tract from 2006 to 2009.

References
Bracewell R. (1999). The Fourier Transform and Its Applica-

tions, 3rd Edn., McGraw-Hill, New York, NY.

Chu E. and George A. (2000). Inside the FFT Black Box: Se-
rial and Parallel Fast Fourier Transform Algorithms, CRC
Press, Boca Raton, FL.

Dutt A. and Rokhlin V. (1993). Fast Fourier transforms
for nonequispaced data, Journal of Scientific Computing
14(6): 1368–1393.

Gonzalez R. C. and Woods R. E. (1999). Digital Image Proces-
sing, 2nd Edn., Prentice-Hall, Inc., Boston, MA.

Halawa K. (2008). Fast method for computing outputs of Fo-
urier neutral networks, in: K. Malinowski and L. Rutkow-
ski, Eds., Control and Automation: Current Problems and
Their Solutions, EXIT, Warsaw, pp. 652–659, (in Polish).

Hyvarinen A. and Oja E. (2000). Independent component
analysis: Algorithms and applications, Neural Networks
13(4): 411–430.

Joliffe I. T. (1986). Principal Component Analysis, Springer-
Verlag, New York, NY.

Kegl B., Krzyżak A., Linder T. and Zeger K. (2000). Learning
and design of principal curves, IEEE Transactions on Pat-
tern Analysis and Machine Intelligence 22(13): 281–297.

Li H. and Sun Y. (2005). The study and test of ICA algori-
thms, Proceedings of the International Conference on Wi-
reless Communications, Networking and Mobile Compu-
ting, Wuhan, China, pp. 602–605.

Liu Q. H. and Nyguen N. (1998). An accurate algorithm for no-
nuniform fast Fourier transforms, Microwave and Guided
Wave Letters 8(1): 18–20.

Nelles O. (2001). Nonlinear System Identification: From Clas-
sical Approaches to Neural Network and Fuzzy Models,
Springer-Verlag, Berlin.

Rafajłowicz E. and Pawlak M. (1997). On function recovery by
neural networks based on orthogonal expansions, Nonli-
near Analysis, Theory and Applications 30(3): 1343–1354.

Rafajłowicz E. and Skubalska-Rafajłowicz E. (1993). FFT in
calculating nonparametric regression estimate based on tri-
gonometric series, International Journal of Applied Mathe-
matics and Computer Science 3(4): 713–720.

Sher C. F., Tseng C. S. and Chen, C. (2001). Properties and
performance of orthogonal neural network in function ap-
proximation, International Journal of Intelligent Systems
16(12): 1377–1392.

Tseng C. S. and Chen C. S. (2004). Performance comparison
between the training method and the numerical method of
the orthogonal neural network in function approximation,
International Journal of Intelligent Systems 19(12): 1257–
1275.

Van Loan C. (1992). Computational Frameworks for the Fast
Fourier Transform, SIAM, Philadelphia, PA.

Walker J. (1996). Fast Fourier Transforms, CRC Press, Boca
Raton, FL.

Zhu C., Shukla D. and Paul, F. (2002). Orthogonal functions
for system identification and control, in: C.T. Leondes
(Ed.), Neural Networks Systems, Techniques and Apllica-
tions: Control and Dynamic Systems, Academic Press, San
Diego, CA, pp. 1–73.

Received: 15 January 2007
Revised: 16 April 2007
Re-revised: 14 May 2008

	Introduction
	Calculating the weights on the basis of the S-dimensional DFT
	Computational complexity
	Necessary modifications when network inputs are associated with different numbers of neurons
	Conclusion

