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MODEL BASED ANALYSIS OF SIGNALING PATHWAYS
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The paper is concerned with application of mathematical modeling to the analysis of signaling pathways. Two issues,
deterministic modeling of gene transcription and model-driven discovery of regulatory elements, are dealt with. First, the
biological background is given and the importance of the stochastic nature of biological processes is addressed. The as-
sumptions underlying deterministic modeling are presented. Special emphasis is put on describing gene transcription. A
framework for including unknown processes activating gene transcription by means of first-order lag elements is introduced
and discussed. Then, a particular interferon-β induced pathway is introduced, limited to early events that precede activation
of gene transcription. It is shown how to simplify the system description based on the goals of modeling. Further, a compu-
tational analysis is presented, facilitating better understanding of the mechanisms underlying regulation of key components
in the pathway. The analysis is illustrated by a comparison of simulation and experimental data.
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1. Introduction

The term signaling pathways (also called regulatory, or
transduction pathways) relates to a cascade of processes,
initiated by an external event (e.g., ligand binding to its
specific receptor on a cell surface) or by an internal event
(e.g., DNA damage). These processes involve creation or
degradation of protein complexes, activation of enzymes,
and usually lead to activation or repression of transcrip-
tion of genes specific for a given pathway. This results
in production of new proteins (or their disappearance, if
the genes are suppressed) which may affect earlier stages
of the cascade, thus creating positive or negative feedback
loops.

Following rapid developments in new experimental
techniques, mathematical modeling of regulatory path-
ways that control intracellular biological and chemical
processes is gaining increasing interest in the biomedi-
cal research. Though the models are unavoidably much
simplified, they can significantly contribute to the biolo-
gical field (Tyson et al., 2003). Knowledge about the dy-
namics of the processes involved in a given pathway faci-
litates better experiment planning. Mathematical models
can help formulate or reject new hypotheses about unk-
nown processes underlying results observed in experimen-
tal work. As a result, directions to be taken in experimen-

tal work may be suggested by mathematical models. Mo-
reover, modeling can be used to analyze perturbed beha-
vior even before experiments are undertaken, and answer
the question if the desired effects are possible. Finally, an
analysis of dynamics leads to determination of parameters
defining system time responses (such as time constants,
oscillation periods, damping coefficients) and thus helps
us in experiment design, if only a limited number of me-
asurements can be taken.

Though ordinary differential equations are not the
only tool in mathematical modeling of signaling path-
ways, they undoubtedly are one of the most often used. In
this approach variables describe molar concentrations of
the molecules playing important roles in an analyzed pa-
thway, and the processes taken into account include pro-
duction of new molecules and their degradation, dissocia-
tion of complexes, nuclear shuttling and conformational
changes in the form of molecules (e.g., caused by their
posphorylation or dephosphorylation) leading to their ac-
tivation or inactivation.

2. Applicability of deterministic modeling

While stochastic effects play a great role in any signaling
pathway, deterministic modeling seems to be justifiable,
at least in some cases. In this approach the model descri-
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bes the behavior of an average cell in a population (even
though such a cell does not exist), and the dynamics ob-
tained reflects the cellular behavior seen at the population
level. It corresponds to data collected by means of We-
stern Blots, EMSA blots, Real-Time PCR, etc., where ac-
tually the average levels of molecules of interest over po-
pulation are measured. In real life, however, the heteroge-
neity of cells contributes to the stochastic distribution of
initial conditions, which, in turn, results in different dy-
namics of intracellular processes. Moreover, if there are
large oscillations of state variables (molecular levels) in
single cells, data gathered during experiments do not re-
flect real dynamics at all (Lipniacki et al., 2006).

Taking into account that in the pathway analyzed in
this paper there are no oscillations in single cells and that
very clear trends in experimental data (in terms of incre-
asing or decreasing levels of essential pathway compo-
nents) are observed, it is reasonable to adopt a determi-
nistic approach. Moreover, if the goal of the modeling is
to link intracellular processes with population responses,
it is the average response, not that of an individual cell,
that should be taken into account.

The modeling of complex formation is based on the
law of mass action (Segel, 1991). Though it does not ap-
ply when the number of molecules is small, the number
of interacting proteins reaches a high level very quickly
in the analyzed pathway, and therefore it can be assumed
that the influence of this simplification on the results is
negligible.

The stochastics of the binding of molecules activa-
ting the pathway to their respective receptors has been ne-
glected. The model have been built for very high extra-
cellular ligand concentration, for which all receptors can
be assumed to be used. This is particularly relevant if the
ligands are active drug components, further justifying the
approach describing the average dynamics of a cell in a
given population.

3. Induced gene transcription

In the deterministic approach the induced gene transcrip-
tion is usually modeled by a single ODE:

d(mRNA)
dt

= f [(TF )] − kdeg(mRNA), (1)

where (TF ) and (mRNA) denote the concentrations of
an active transcription factor (TF) and mRNA produced,
respectively, and f [(TF )] is a transcription rate. The
function f [(TF )] is given by

f [(TF )] =
vmax · (TF )
k + (TF )

, (2)

with a Michaelis-Menten nonlinearity resulting from phy-
sical constraints of the speed of polymerase movement

Fig. 1. Block diagram of the transcription initiation in
the case when several processes are involved in
transcription activation (a) for long genes, (b)
for short genes, where the delay in finishing the
first polymerase run can be neglected.

along the transcribed DNA. However, if the (TF ) is re-
latively small ((TF ) � k), which is often the case in the
analyzed systems, this can be reduced to the following:

f [(TF )] = v · (TF ), (3)

which will be used further in this section.
Since a single event of binding an active TF to the

promoter region can result in a burst of the mRNA level
and, consequently, newly synthesized proteins, transcrip-
tion is a process where stochastic effects are most apparent
(Paszek et al., 2005). However, taking into account that at
least some TF proteins bind to their respective regulatory
elements for time ranging from seconds up to maximum a
few minutes and the transcription induction can be obse-
rved for over one hour or more, it can be safely assumed
that in such cases the transcription rate is proportional to
the nuclear concentration of the TF. This is the case in the
analyzed pathway (Vinkemeier et al., 1996), and hence
the deterministic modeling of early gene transcription is
justified. By contrast, when in addition to the binding of
the known TFs other processes must take place in order to
initiate transcription, another approach is required. It has
been shown that, if these processes include the binding
of the molecules of the transcriptional machinery, which
is necessary for chromatin remodeling and attracting sub-

Fig. 2. Typical time evolution of an active TF concentration
(crosses) and its approximation by a sum of two expo-
nents (solid line).
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sequent elements of polymerase complex, each of them
can be represented by a first-order time-lag element, as il-
lustrated in Fig. 1 (Śmieja et al., 2006). A typical time
evolution of the TF level can be represented by a sum of
two exponential functions (see Fig. 2):

(TF ) = k0 (exp(−t/T0) − exp(−t/T1)) , (4)

with T1 and T2 being time constants to be identified from
experimental data. If such a signal is applied to the input
of serially connected time-lag elements, as in Fig. 1(a), the
output of the last element, determining the transcription
rate, is given by

d(mRNA)
dt

= vmax ·
n∑

k=0

n∏
i=1

1/Ti

n∏
i=0,i �=k

(1/Ti − 1/Tk)
exp(−t/Tk)

− kdeg · (mRNA), (5)

where Tis (i > 1) are time constants of successive time-
lag elements. This result corresponds directly to the
expected value of the mRNA level derived in (Paszek et
al., 2005) for a stochastic model. This approach allows in-
cluding unknown processes in the model. Moreover, only
a couple of such elements need to be included, regardless
of the number of the processes that take place in the trans-
cription initiation. If the time constants significantly differ
and only the final output of the system is of interest, faster
processes can be neglected, reducing the model order. Al-
ternatively, if they are similar, introducing new elements
beyond the first couple of them does not affect the output
significantly, at least for the type of input that is possible
in the analyzed system (meaning no high frequency oscil-
lations). In practice, three to four elements are sufficient
to reproduce system responses.

4. Early stages of an interferon- β activated
pathway

Interferons (IFNs) are very important components of the
immunodefense system (Janeway, 2001). Their role and
elements of interferon induced signaling pathways are
subjects of ongoing research (see, e.g., the reviews (Levy
and Darnell, 2002; Sen, 2001; Pestka et al., 2004)) . Ho-
wever, there are very few attempts to model the processes
involved in the signaling pathways activated by IFN, and
they are mostly concerned with IFN-γ that is produced
only by activated lymphocytes (Yamada et al., 2003; Zi et
al., 2005).

In this section, the mathematical model description
of early processes activated by IFN-β, a cytokine produ-
ced by most cell types following viral infection, will be

briefly introduced. The analysis presented in this paper is
constrained only to the early processes, and therefore no
induced transcription is actually modeled. The full mo-
del is based on experimental results, which have not been
published yet.

The following notation is used:

• Variables names correspond to proteins, complexes
and transcripts they represent; for greater clarity, they
are put in brackets.

• Variables denote cytoplasmic molar concentrations if
no subscripts are present, while the nuclear concen-
tration is represented by the subscript n.

• The phosphorylated form of proteins is indicated by
the subscript p.

• Finally, kv is the ratio of cytoplasmic and nuclear vo-
lumes.

The other symbols not mentioned above are model
parameters.

The following description of an IFN activated path-
way is based on the reviews (Kalvakolanu, 2003; Shuai
and Liu, 2003). The graphical representation is shown in
Fig. 3.

Fig. 3. Early processes in the interferon-β activated pathway.

The most important molecules mediating cell respon-
ses after IFN (both of type I and II) stimulation are STAT
(Signal Transducer and Activator of Transcription) prote-
ins. In particular, two members of this family of prote-
ins, STAT1 and STAT2, mediate the responses taken into
account in the analyzed pathway. Binding IFN-β to a
cell receptor results in phosphorylation of STAT prote-
ins. The intermediate stages of this process are not di-
rectly modeled. Instead, the process is assumed to fol-
low simple first-order dynamics. Subsequently, phospho-
rylated STATs form hetero- and homodimers. In cyto-
plasm, STAT1|STAT2 heterodimers form a complex with
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an IRF9 protein, called ISGF3. Both STAT1 dimers and
the ISGF3 complex are rapidly transported into the nuc-
leus, where they serve as active transcription factors. In
the presented model, the STAT2 protein exists in cells
in dimmer with IRF9, and therefore directly after pho-
sphorylation the ISGF3 complex can be formed. STATs
are dephosphorylated by phosphatases both in the nuc-
leus and in cytoplasm. Dephosphorylation results in dis-
sociation of complexes leading to nuclear export of STATs
and making them available to subsequent phosphoryla-
tion/dephosphorylation cycles.

It is assumed that the total amount of proteins is con-
stant within the chosen time horizon. Therefore there
are neither production nor degradation terms in the mo-
del. This assumption is justified, since the STAT proteins
are stable, with half-life times of approximately 15 hours
(Heinrich et al., 2003), and they are constitutively present
in cells. The shuttling of molecules between the nucleus
and cytoplasm is not modeled by any kind of diffusion
equations. Since it is not diffusion driven, for the sake
of simplicity it was assumed that the rate of nuclear im-
port and export is proportional to cytoplasmic and nuclear
concentration of molecules, correspondingly. This stems
directly from treating the nucleus and cytoplasm as two
different compartments and the transport as the flow in
the compartmental model (Godfrey, 1983).

Summarizing all that was discussed above, the dyna-
mics of free STAT proteins in phosphorylated and unpho-
sphorylated forms in cytoplasm and in the nucleus are de-
scribed by the following ODEs:

d(STAT1)
dt

= −is1 · (STAT1) + es1 · (STAT1)n

− ks1_phos · (STAT1) + ks1_deph · (STAT1p)
+ 2kinv_s1s1 · (STAT1p|STAT1p)
+ kinv_ISGF3 · (ISGF3),

(6)
d(STAT2)

dt
= −is2 · (STAT2) + es2 · (STAT2)n

− ks2_phos · (STAT2) + ks2_deph · (STAT2p)
+ kinv_ISGF3 · (ISGF3),

(7)
d(STAT1)n

dt
= kvis1 · (STAT1) − kves1 · (STAT1)n

+ 2kinv_s1s1_n · (STAT1p|STAT1p)n

+ kinv_ISGF3_n · (ISGF3)n,

(8)

d(STAT2)n

dt
= kvis2 · (STAT2) − kves2 · (STAT2)n

+ kinv_ISGF3 · (ISGF3),

(9)

d(STAT1p)
dt

= ks1_phos · (STAT1) − ks1_deph · (STAT1p)
− 2ks1s1 · (STAT1p) · (STAT1p)
− kISGF3 · (STAT1p) · (STAT2p),

(10)

d(STAT2p)
dt

= ks2_phos · (STAT2) − ks2_deph · (STAT2p)
− kISGF3 · (STAT1p) · (STAT2p).

(11)

There are no free phosphorylated forms of STATs in
the nucleus, since these enter it only in the form of com-
plexes and the dissociation of complexes in the nucleus is
caused by dephosphorylation. STAT1 homodimers dyna-
mics are given by

d(STAT1p|STAT1p)
dt

= −is1s1 · (STAT1p|STAT1p)
+ 2ks1s1 · (STAT1p) · (STAT1p)
− kinv_s1s1 · (STAT1p|STAT1p),

(12)

d(STAT1p|STAT1p)n

dt
= −kinv_s1s1 · (STAT1p|STAT1p)n

+ kvis1s1 · (STAT1p|STAT1p),

(13)

Since a large amount of phosphorylated STAT1 is
carried by SGF3 complexes, their dynamics also must be
included in the model:

d(ISGF3)
dt

= ks1s2 · (STAT1p) · (STAT2p)
− kinv_ISGF3 · (ISGF3)
− iISGF3 · (ISGF3),

(14)

d(ISGF3)n

dt
= −kinv_ISGF3 · (ISGF3)n

+ kviISGF3 · (ISGF3).

(15)

It should be noted that the nuclear import of comple-
xes is mediated by other molecules, present in cytoplasm
only. Therefore, once in the nucleus, these complexes can-
not be transported back into cytoplasm. Hence, in (12)–
(15) the transport is only one-way.

The initial conditions for all phosphorylated forms
of molecules, including their complexes, are zero, and for
nuclear and cytoplasmic STAT1 and STAT2 they are assu-
med to be known values.

Once in the nucleus, STAT1 homodimers and ISGF3
activate transcriptions of the so-called early genes. Even-
tually, this leads to production of new STAT1 proteins,
thus creating positive feedback. However, since it requ-
ires several intermediate steps, its effects start to influence
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the pathway after several hours. This paper concentrates
on the first three to four hours, and therefore such feed-
back is neglected to simplify the analysis.

There is a known mechanism of negative feedback in
this pathway, based on the activity of the Suppressors of
Cytokine Signaling (SOCS) family of proteins (Wormald
and Hilton, 2004; Alexander and Hilton, 2004). However,
in the analyzed HeLa cell line, this feedback is not present
and therefore is omitted in the model.

5. Need for a model based analysis

The most important contribution of mathematical mode-
ling to investigation of transduction pathways seems to be
in the ability to test various hypotheses about unknown
processes allowing us to choose the most promising ones
for experimental testing. The model introduced in the pre-
ceding section is based on a widely accepted description
of the signaling pathway. However, it fails to explain the
mechanism behind the negative feedback whose effects
are apparent in the time course of the STAT1 homodimer
(see Fig. 4). Despite the availability of the phosphory-
lated STAT1 proteins, the homodimer level decays after
reaching its peak value.

Fig. 4. Time evolution of homodimers of phosphorylated
STAT1. Experimental data were normalized to the area
under the plot.

On the basis of the experimental results (not publi-
shed yet), three possible explanations have been rejected:
(i) a SOCS based mechanism of phosphorylation inhibi-
tion; (ii) there is no reason to assume that in less than one
hour phosphorylated STAT1 proteins loose their ability to
form homodimers, while still forming heterodimers; and
(iii) the control mechanism cannot work by blocking the
nuclear import of the homodimers. Therefore, some other
mechanism must be involved in controlling the level of
homodimers. The type of dynamics they exhibit can be
explained basically by one of the following: either the ho-
modimer is rapidly degraded, or dephosphorylation and

subsequent dissociation of the homodimer are the only
mechanisms involved.

If the induced degradation is postulated to be behind
the decrease in molecule levels, then the only modification
needed in the system description given by (6)–(15) is the
introduction of the degradation term to (13):

d(STAT1p|STAT1p)n

dt
= −kinv_s1s1 · (STAT1p|STAT1p)n

+ kvis1s1 · (STAT1p|STAT1p)
− kdeg_s1s1_n · (STAT1p|STAT1p)n.

(16)

It is clear that homodimer degradation would result
in a decrease in the total STAT1 level in cells, as illustra-
ted in Fig. 5. However, measurements of the total STAT1
level (results not shown here) did not confirm that. There-
fore, simulation results combined with experimental data
disprove this hypothesis, and there is no reason for an
experimental search for the molecule responsible for the
induced degradation of homodimers.

Testing the other hypothesis is more challenging,
since, in addition to indicating the cause of dissociation,
another question must be answered, namely, if this effect
can be caused by molecules that are constitutively active
or requires, activation within the signaling pathway. It
should be stressed that there are at least several known
phosphatases that are responsible for STAT dephosphory-
lation (Hoeve et al., 2002), and several others are postu-
lated (Yamada et al., 2003). It would be extremely dif-
ficult, if possible at all, to conduct experiments in which
specific phosphatases would be blocked. Therefore, the
computational analysis is a convenient tool to check this
hypothesis.

Fig. 6. STAT1 homodimers for various dephosphorylation
rates (constitutively active phosphatases).

First, the behavior of a model with constitutively pre-
sent and active phosphatases, described by (6)–(15), was
analyzed numerically. Different rates of dephosphoryla-
tion yield results shown in Fig. 6. If dephosphorylation is
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Fig. 5. Degradation (lower line) and dephosphorylation (upper line): (a) STAT1 homodimers, (b) total
cytoplasmic STAT1.

very fast, then homodimer levels reach their steady state
without any overshot, while for a slower rate of the pro-
cess only the initial system behavior reflects experimental
data, since after some time the homodimer level starts in-
creasing again. Such dynamics would be characteristic
also for processes other than dephosphorylation, if they
were mediated only by constitutively active molecules.
Therefore, based on simulation results one must assume
that there is a nuclear phosphatase, denoted by PHX, that
is activated in the pathway. It seems reasonable to assume
that the rate of this activation is proportional to the nuc-
lear concentration of ISGF3, which is the main signaling
molecule for this pathway. Therefore we obtain

d(PHXinactive)n

dt
= −kactiv · (PHXinactive)n · (ISGF3)n (17)

d(PHXactive)n

dt
= kactiv · (PHXinactive)n · (ISGF3)n, (18)

with initial conditions for the active form of PHX assu-
med to be zero. In place of (8) and (13) we now have,
respectively,

d(STAT1)n

dt
= kvis1 · (STAT1) − kves1 · (STAT1)n

+ 2kinv_s1s1_n · (STAT1p|STAT1p)n

+ kinv_ISGF3_n · (ISGF3)n

+ 2kinv_xs1s1_n

· (PHXactive)n · (STAT1p|STAT1p)n,

(19)

d(STAT1p|STAT1p)n

dt
= −kinv_s1s1 · (STAT1p|STAT1p)n

+ kvis1s1 · (STAT1p|STAT1p)

− 2kinv_xs1s1_n · (PHX active)n

· (STAT1p|STAT1p)n. (20)

A comparison of simulation results and experimental data
is made in Fig. 7.

Fig. 7. Comparison of simulation and experimental data for the
STAT1 homodimer level.

6. Conclusions

The paper shows how mathematical modeling can be ap-
plied to advance knowledge about regulatory mechanisms
in signaling pathways. Though the model is simplified
and only a numerical analysis was made, it helped us to
reject two hypotheses about regulatory mechanisms. As
a result, the number of experiments necessary to explain
the phenomena obseved so far, and thus build a structural
view of the pathway, was cut. It also suggested the process
that controls the level of STAT1 homodimers in the nuc-
leus, indicating the direction for new experimental work.
Moreover, the framework for including unknown proces-
ses in the system description, by means of first-order time
lag elements, was presented.
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