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Shortcomings of automatic speech recognition (ASR) applications are becoming more evident as they are more widely used
in real life. The inherent non-stationarity associated with the timing of speech signals as well as the dynamical changes in
the environment make the ensuing analysis and recognition extremely difficult. Researchers often turn to biology seeking
clues to make better engineered systems, and ASR is no exception with the usage of feature sets such as Mel frequency
cepstral coefficients, which employ filter banks similar to cochlear filter banks in frequency distribution and bandwidth.
In this paper, we delve deeper into the mechanics of the human auditory system to take this biological inspiration to the
next level. The main goal of this research is to investigate the computation potential of spike trains produced at the early
stages of the auditory system for a simple acoustic classification task. First, various spike coding schemes from temporal
to rate coding are explored, together with various spike-based encoders with various simplicity levels such as rank order
coding and liquid state machine. Based on these findings, a biologically plausible system architecture is proposed for the
recognition of phonetically simple acoustic signals which makes exclusive use of spikes for computation. The performance
tests show superior performance on a noisy vowel data set when compared with a conventional ASR system.
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1. Introduction

The research discussed in this paper has two mutually in-
clusive goals. While exploring the spike coding mecha-
nisms employed by the auditory system at different sound
pressure levels (SPLs) and signal-to-noise ratios (SNRs),
we aim to introduce a novel way of information process-
ing for speech signals trying to imitate the auditory neural
computation. The biggest motivation behind this research
is the fact that human engineered automatic speech recog-
nition (ASR) systems perform poorly as the variability
associated with the speech signal increases, especially in
noisy environments. On the other hand, the human brain is
capable of processing the ever-continuous stream of input
with an unparalleled accuracy. Even though much is still
unknown about how brain exactly works, it is well known
that neurons in the brain use action potentials to commu-
nicate the timing information from the sensory to more
complex levels of processing in the cortex. We strongly
believe that computation with spike trains is not a mere
artifact of biology, but instead it holds the key to the ro-
bustness and performance of the auditory system.

The idea of using bio-inspired techniques for ma-
chine recognition tasks is certainly not a new concept. In
ASR, the most commonly used feature set, Mel frequency
cepstral coefficients (MFCC), imitates the distribution of
cochlear filter banks by employing logarithmically dis-
tributed filters along the frequency axis (Davis and Mer-
melstein, 1980). More elaborated approaches include hu-
man factor cepstral coefficients, which use known facts
from human psychoacoustics such as the relationship be-
tween center frequency and critical bandwidth to decou-
ple filter bandwidth from filter spacing (Skowronski and
Harris, 2004). The performance and robustness of those
techniques compared with previous commonly used fea-
ture extractors, such as linear predictive coding, clearly
shows the advantage of using inspiration from biology and
psychoacoustics in particular (Atal and Hanauer, 1971).

The objective of this research is to take this inspi-
ration one step further to include the neural computa-
tion used in the human auditory system for both the fea-
ture extraction and recognition stages of a simple acous-
tic classification problem. In order to accomplish this
goal, we have followed a systematic approach where dif-
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Fig. 1. Speech-to-spike conversion block which shows the
transduction of sound waves into trains of action poten-
tials at nerve fibers connected to inner hair cells.

ferent spike-based operators are evaluated along with dif-
ferent spike coding techniques for different types and
intensities of noise and input acoustic stimuli (Uysal
et al., 2006; Uysal et al., 2007a; Uysal et al., 2007b).

Section 2 briefly discusses the mechanism which
converts incoming acoustic signals to action potentials on
nerve fibers. Various coding schemes applied on these
spike trains are discussed in Section 3. Sections 4 and
5 deal with spike-based operators and how they are used
in conjunction with spike coding schemes. The acoustic
classification problem and test results are provided in Sec-
tion 6.

2. Front end: Speech-to-spikes

In order to build a spike-based architecture for speech
recognition, one should use a biologically realistic con-
version from acoustic stimuli to action potentials. In the
human ear, the cochlea is the region where this electrome-
chanical conversion takes place. One of the most com-
monly used and realistic models of the cochlea is due to
Meddis (1986). According to this model, sound pressure
waves are converted into a mechanical motion at the basi-
lar membrane (BM), which has a tonotopic distribution of
inner hair cells. When the sound pressure wave vibrates
the BM, the attached hair cells deflect, which changes
the permeability of the cell membranes that make synap-
tic connections to nerve fibers. A change in permeabil-
ity also changes the amount of neurotransmitters currently
present in the synaptic cleft, which starts the mechanism
for generating the action potentials at the nerve fibers.
The model used in this paper takes into account many
improvements made over this basic concept throughout
the years such as the introduction of adaptation as seen
in the human cochlea and the non-linear temporal proper-
ties associated with spike generation (Sumner and Lopez-
Poveda, 2002; Sumner et al., 2003)

Figure 1 shows the front end of the overall spike-
based architecture. The speech is passed through a series
of equivalent rectangular bandwidth (ERB) filters span-
ning the frequency range of 200Hz to 4kHz, which in-
cludes most of the frequency content present in a typical

speech signal. The center frequencies of these filters are
distributed logarithmically and follow the frequency res-
olution observed in real cochlear filters. Hence, the res-
olution is a decreasing function of frequency with more
filters centered around lower frequencies. There are 20
frequency channels and 50 filters in each channel for more
accurate application of some of the coding schemes such
as synchrony and rate coding, while also having a rea-
sonably low computational cost. The outputs of these fil-
ters are passed onto the Meddis hair cell model and are
associated with probabilities of spike firing on respective
neuron fibers. Finally, spike trains observed on the nerve
fibers are analyzed and encoded using various spike cod-
ing schemes and spike-based operators for performance
comparisons.

3. Spike coding techniques and their
application to nerve fibers

This section explains the three different spike coding
schemes used in this paper in greater detail. The three
schemes are: rate coding, which encodes information in
the frequency of spike occurrence, direct temporal coding,
which uses the timing of each and every spike for compu-
tation, and synchrony coding, which groups neurons with
similar firing times.

At this step, it is important to note that there have
been previous attempts to use spike trains for speech clas-
sification (Hopfield and Brody, 2001; Verstraeten et al.,
2005). One of the major differences between the proposed
architecture and these approaches is the enforcement of
the spike coding schemes on top of the spike trains from
the cochlea. Spike coding is not only used as a feature ex-
tractor but also to investigate how robustness might be en-
coded within these spike trains. Without any applied cod-
ing scheme, the spike-based operator is forced to differen-
tiate between the higher order features contained within a
spike train, thus decreasing the robustness of the overall
system.

3.1. Rate coding. Rate coding, without a doubt, is still
among the most common schemes applied by scientists
to real world problems to discover possible connections
between behavior and observed spike train data (Rieke
et al., 1999). Averaging over time simply assumes that the
frequency of spike firing on a particular nerve fiber is the
feature which carries the information onward. Other rate
coding examples include averaging over a number of ex-
perimental trials to yield spike density, or averaging over
populations of neurons as population activity.

On the other hand, rate coding has some important
restrictions especially when it comes to nerve fibers right
after the cochlear region. It has been shown that, during
a regular conversation, the input SPLs fluctuate around
60dB and most nerve fibers are simply saturated, firing
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as fast as they can (Sachs, 1984). This means, given two
different inputs, that as long as their SPLs are around con-
versational levels, the rate coding at the end of nerve fibers
will not be able to differentiate between the two different
acoustic stimuli.

Hence, this paper investigates rate coding at two dif-
ferent SPLs, namely 60 dB and 10 dB, pointing towards a
duplex theory of spike coding, which might depend on the
input SPL and noise levels.

3.2. Direct temporal coding. In contrast to rate cod-
ing, temporal coding relies on the precise timing of ac-
tion potentials. Phase coding, time-to-first spike cod-
ing are all examples of temporal coding commonly used
by neuroscientists (Dayan and Abbott, 2001; VanRullen
et al., 2005; Terman and Wang, 1995). In particular, direct
temporal coding uses the spike firing times as-is, and all
the timing information is supplied to the spike-based op-
erator. For the architecture in the system, this corresponds
to 1000 individual spike trains being fed into the spike-
based operator. Depending on the classifier architecture,
the process is simplified by using fewer spike trains per
frequency channel, which will be discussed in greater de-
tail in Section 5.

3.3. Synchrony coding. Synchrony coding can be
viewed as a special type of temporal coding which groups
neurons with similar firing times. It is used to explain the
group communications of neurons especially on the sen-
sory level (Terman and Wang, 1995).

We believe that the redundancy caused by the number
of nerve fibers packed densely along the basilar membrane
gives rise to such synchrony, which is one of the factors
explaining the robustness of the auditory system to noise.

In the literature one can find many different defi-
nitions for synchrony amongst spike trains (Moissl and
Meyer-Base, 2000). The concept of synchrony coding as
applied in this paper’s architecture is best explained with a
simple example. Consider the vowel /iy/ as in “beet”. For
simplicity, let us assume there are 20 nerve fibers placed at
a particular frequency channel. When the acoustic signal,
/iy/, is given as input to the frequency channel centered
at 300Hz, the spike trains that are observed along these
nerve fibers are shown in Fig. 2.

The input signal is corrupted with white noise at a
very low level of the SNR around 5 dB and is barely audi-
ble at such a noise intensity. When the spike trains on the
10 nerve fibers are observed, it is difficult to see a trivial
pattern regarding action potential timings.

The next step is to look at the inter-spike time inter-
val distribution which is shown in Fig. 3. As is clearly ob-
served from the figure, these nerve fibers are phase locked
to integer multiples of T = 3.26 ms. Hence, the phase
locked frequency is Fpl ≈ 305 Hz. Figure 4 shows the
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Fig. 2. Spike train outputs for a set of 10 hair cells all with a
central frequency of 300Hz.
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Fig. 3. Inter-spike time intervals for a set of hair cells centered
at 300Hz.

spectral magnitude of the inter-spike time interval distri-
bution compared to the log-magnitude spectral envelope
of the input vowel. Vowels are predominantly defined by
their first three formant frequencies, which are the peaks
shown in the top plot. In particular, the vowel /iy/ has its
first formant frequency at F1 = 305 Hz.

Figure 4 shows that the spectral magnitude plot has a
peak at Fp = 305 Hz, indicating that the nerve fibers cen-
tered at Fc = 300 Hz were able to phase lock to the first
formant frequency even for such a noisy signal. However,
the noise robust feature which will carry this information
forward is not the frequency they are phase locked to, but
the degree of phase locking, which is simply the magni-
tude of the peak at that particular frequency. The reason-
ing behind this will become more apparent in Fig. 5.

Figure 5 shows the spectral magnitude of the inter-
spike interval distribution corresponding to two different
sets of hair cells centered at Fc1 = 300 Hz and Fc2 = 200
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Fig. 4. Log-magnitude spectral envelope for /iy/ and the corre-
sponding degree of synchrony for a set of hair cells cen-
tered at Fc = 300 Hz (computed for a noisy utterance
with a 5 dB SNR).
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Fig. 5. Degree of synchrony within 2 sets of hair cells centered
at Fc = 300 Hz and Fc = 250 Hz in response to a noisy
vowel signal with F1 = 300 Hz.

Hz. We have already explained why the first plot has a
peak at 300 Hz. Interestingly, when we look at the second
plot, even though the other set of nerve fibers are centered
100 Hz off the vowels first formant, they are still able to
phase lock to that particular frequency. This is because of
the fact that they have a finite bandwidth associated with
their reception of acoustic stimuli.

However, the most crucial difference lies within the
magnitudes of the peaks observed in the phase locked fre-
quency for the two sets of nerve fibers. As the figure
clearly shows, the peak magnitude for the second plot is
less than the first plot indicating a weaker degree of syn-
chrony or phase locking for nerve fibers centered further
apart from the dominant frequency in the input stimuli.
This result immediately leads to a new set of features de-
fined as follows: “highest spectral magnitude peak value

of the inter-spike time interval histogram at a non-zero fre-
quency for each channel”, which we will call the degrees
of synchrony (DoS). Our experiments showed that, inde-
pendent of the spike-based classifier operator, this novel
feature set is extremely robust to noise, and for a partic-
ular vowel it remains unaffected by the change in noise
type or intensity.

4. Spike-based operators

After the introduction of neural networks, the research on
bio-inspired algorithms led to several spike-based opera-
tors that proved to be competitive in real world applica-
tions. Two most striking examples are rank order cod-
ing (ROC) and the liquid state machine (LSM) (Thorpe
and Gautrais, 1998; Delorme and Thorpe, 2001; Maass
et al., 2002).

4.1. Rank order coding. ROC can be considered a
special type of temporal coding where the information is
carried in the order of spike arrival to the post-synaptic
neuron. This is a great simplification which gets rid of all
the precise timing information yet can still encode com-
plicated information depending on the number of presy-
naptic neurons. Recent experimental studies on the au-
ditory system of cats and somatosensory system of hu-
mans show that ROC might be responsible for coding sen-
sory information with only one spike per neuron (Rullen
et al., 2005).

As is evident from the algorithm description, the re-
sponse times are much shorter when compared with other
alternatives such as rate coding and are not affected by the
input intensity considering the presynaptic neurons will
simply fire faster without changing the order of firing.
These properties render the algorithm very useful for im-
age processing applications (Rullen et al., 1998; Delorme
and Thorpe, 2001).

Training a system using this type of coding is ex-
tremely simple and fast, and slightly resembles that of a
multi-layer perceptron. Figure 6 shows a simple block di-
agram for a classification example where there are L num-
ber of classes and L corresponding decoder neurons. The
activation level of a decoding (post-synaptic) neuron i at
time t is given as follows:

Activation(i, t) =
m∑

j=1

korder (j) × wj,i.

Order(j ) is the firing order of the presynaptic neuron
j and k is chosen to be any number between 0 and 1. wj,i

is the synaptic weight between the decoding neuron i and
the presynaptic neuron j. The decoding neuron will simply
fire when its activation energy reaches a certain threshold:

Activation(i, t) > Threshold(i).
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Fig. 6. Basic structure of a rank order decoder for L different
number of classes and N different number of presynap-
tic neurons.

During training, the only updated variable is the
synaptic weight between the pre- and postsynaptic neu-
rons:

Δwj,i =
korder(j)

N
,

where N is simply the number of training samples. Hence,
at the end of training, for a particular decoder neuron, the
neurons that fire faster will have stronger synaptic connec-
tions which will enable the activation energy to reach its
threshold when the right test sample order arrives at the
postsynaptic neuron. Thus, in a setup as in Fig. 6, when
Class 1 is presented, since the order of firing will corre-
spond best to the presynaptic weights for the first decoder
neuron, it will reach its threshold and fire a spike signaling
the detection of Class 1.

The synaptic weight value at the end of the training
phase will be proportional to the mean modulation of the
synapse. Hence, in case one knows the mean modulation
for the training data samples belonging to a specific class,
just one sample which is closer to the mean modulation
can be used for training, which results in an exceptionally
fast training phase, very much unlike in the case of the
conventional machine learning engines.

For speech, without some type of pre-coding en-
forcement, it is not possible to classify signals with just
the order of firing among afferent auditory neurons. The
reason is that the neurons centered at higher frequencies
will always fire later than those centered at lower frequen-
cies, no matter what the input stimuli is.

4.2. Liquid state machine. Both Maass and Jaeger in-
dependently introduced the concept of using transients in-
herent in high dimensional dynamic structures to perform
machine learning computations in the form of liquid state
machines and echo state networks, respectively (Maass
et al., 2002; Jaeger, 2001). The overall structure for both
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Fig. 7. Basic structure of a liquid state machine with M read-
outs trained using supervised learning.

of these approaches is quite similar to a multi-layer per-
ceptron except the fact that there are recurrent connections
within the reservoir/neural microcircuit and the weights
corresponding to these connections are not trained. Only
the output weights that are used to extract readouts from
the state of the reservoir/neural microcircuit are trained
using supervised learning techniques. A major difference
between the two architectures is the fact that the LSM uses
spikes for computation and thus is more suitable for the
algorithm discussed in the paper.

Figure 7 shows the basic structure of a typical LSM.
The neural microcircuit is a network of spiking neurons
randomly connected to each other with a desired ratio
of inhibitory and excitatory synapses. The input is sup-
plied to this network via analog or spiking synapses and
the state of the neural circuit is recorded over time. One
can define this state to be an internal variable and for a
spike-based classification problem it can be chosen as the
low-pass filtered spike trains generated by the individual
elements of the neural microcircuit,

�X(t) = NMC(�u(t)).

Here the state vector is defined by the liquid filter NMC,
operating on the input vector u(t). For a particular classi-
fication task, the last step is to map the state vector to the
desired output via memoryless readout functions:

�ydesired (t) = F1:L( �X(t)),

assuming M different classes in this example. We have
chosen to use a feed-forward multi-layer neural network
to train the readout functions. The next section will
discuss the different system architectures combining the
coding schemes and the spike-based operators in greater
detail.
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5. Hybrid system architectures
and parameters

With the possibility of using two different spike-based op-
erators and three spike coding schemes, there are six dif-
ferent possible architectural combinations. This section
will discuss four of the more competitive combinations
under different types and intensities of noise and different
SPLs.

Both spike-based operators have different advan-
tages. While ROC is a very simple and efficient technique
which requires very few training data, an LSM with su-
pervised learning is more complex and suitable for better
generalization of the proposed algorithm to different clas-
sification tasks.

5.1. ROC-Synchrony Coding Architecture (ROC–
DoS). This architecture uses ROC as its spike-based op-
erator and encodes the spike information using synchrony
coding. The degree of synchrony is detected for each of
the 20 channels using all 50 nerve fibers per channel and
a corresponding order of firing is assumed amongst the 20
presynaptic neurons (one for each channel) with channels
having higher degrees of synchrony firing their first spike
faster. Hence, the overall architecture can be thought of
as 20 presynaptic connections per decoding neuron with
the first spike firing times depending on the degree of syn-
chrony at each channel.

5.2. LSM-Rate, Direct Temporal and Synchrony
Coding Architecture (LSM-RC, LSM-DoS, LSM-
DTC). These architectures use an LSM as the common
spike-based operator and encode the spike information us-
ing all the three coding schemes possible: rate, synchrony
and direct temporal coding. The way the LSM is appli-
cable to all coding schemes makes it possible to see the
degree of correlation between the performances of cod-
ing schemes and the type/intensity of noise and acoustic
stimuli.

As an example, the architecture which uses an LSM
and the degree of synchrony as its feature set is shown in
Fig. 8.

Since the DoS feature set is an analog vector, it is
supplied to the neural microcircuit using analog synapses
modeling membrane potentials. The rate coding structure
is similar in the sense that, instead of the degree of syn-
chrony, the frequency of spike firing per channel is fed
into the neural microcircuit with similar analog synapses.
On the other hand, the direct temporal code uses spiking
input synapses as it consists of spike trains at each chan-
nel, rather than feature vectors as in the case of synchrony
and rate coding. Since there are a total of 50× 20 = 1000
spike trains, only 10 nerve fibers per channel will be used
for direct temporal coding to simplify computation.
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Fig. 8. Block diagram for an LSM-synchrony coding
architecture.

The LSM structure and parameters used for all com-
binations are the same. The neural microcircuit is cho-
sen to have 300 leaky integrate-and-fire neurons, 20% of
which are chosen to be inhibitory. The local recurrent
connections are modeled using a Gaussian distribution re-
sulting in denser connections amongst neighboring neu-
rons. All connections used in the microcircuit are dynamic
spiking synapses with spike timing-dependent plasticity
(Markram et al., 1997).

During the training phase, the first state vector is ob-
tained via low-pass filtering the spike outputs of the 300
neurons in the microcircuit with a 300 Hz cut-off fre-
quency. The state vector is then sampled at every 20 ms
and associated with a class label corresponding to the in-
put signal. This generates input-desired output pairs to
be used to train a single hidden layer feed-forward neu-
ral network with the well known back-propagation algo-
rithm. The neural network uses a tangential sigmoid out-
put which is quantized by the number of available input
classes and is used to approximate the memoryless read-
out function mapping the state of the microcircuit to the
desired class label.

6. Classification problem and test results

As an initial step to gauge the possibility of using spike-
based architectures for speech recognition, we have cho-
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sen a 5-class vowel classification problem as a perfor-
mance measure. Table 1 shows five most commonly used
vowels in the English language, which are the vowels that
the systems will try to classify.

Table 1. Mean formant frequencies for common
English vowels.

Vowel F1 (Hz) F2 (Hz) F3 (Hz)

/iy/ “beet” 270 2290 3010

/ae/ “bat” 660 1720 2410

/aa/ “hot” 730 1090 2240

/ao/ “bought” 570 840 2410

/uh/ “foot” 440 1020 2240

The tests will be done for all the four architectural
combinations discussed in Section 5 using two different
types of noise: white and pink; and three different SNR
levels: 25 dB, 15 dB, 5 dB. Also, in order to see the viabil-
ity of the three spike-coding schemes for different SPLs,
LSM-rate, direct temporal and synchrony coding struc-
tures will also be tested at two levels of sound pressure
as well: 60 dB and 10 dB.

6.1. Test settings and results. It is important to note
that the proposed system architectures do not yet tar-
get the state-of-the-art ASR systems built with years of
knowledge, operating on words/sentences with the help of
elaborate language models. However, the final algorithm
will still be compared to the conventional ASR duo of an
MFCC-Hidden Markov Model (HMM).

200 training and 200 testing utterances are chosen for
each of the vowels from the multi-speaker, multi-gender
TIMIT database. White and pink noise signals are added
with different SNR values and at different SPLs.

Table 2 shows the performance of the architecture us-
ing a degree of synchrony and rank order coding at a 60
dB SPL. As can be observed from the table, for both noise
types, even at a 5 dB SNR, the performance is roughly the
same as a 25 dB SNR, which shows the robustness of the
degree of synchrony feature set to noise.

Rate coding being unreliable at high SPL levels, the
same experiment is performed at a 10 dB SPL using the
LSM as the spike-based operator. Table 3 shows the re-
sults for pink noise (white noise being very similar) for
RC, DoS and DTC. At the lowest SNR value, RC manages
to outperform the other coding schemes. This is mainly
due to the fact that there are just not enough spike occur-
rences on nerve fibers to yield reliable timing information
necessary for DoS and DTC. Thus, the results in Table 3
indicate that rate coding might be preferred over temporal
coding at low SPLs.

The third test compares all algorithms for a 60dB
SPL using the LSM as the spike-based operator again. Ta-

Table 2. Percentage of vowels correctly classified for ROC-
synchrony coding.

�����������Noise
SNR [dB]

25 10 5

Pink Noise 80.6% 80.2% 79.9%

White Noise 79.8% 78.9% 77.5%

Table 3. Percentage of vowels correctly classified at a 10 dB
SPL for LSM-rate, direct temporal and synchrony cod-
ing.

�����������Code
SNR [dB]

25 10 5

RC 77.9% 74.2% 63.0%

DTC 77.8% 72.0% 59.8%

DoS 76.2% 71.6% 58.4%

ble 4 shows the results for pink noise, and DoS is superior
especially at very low SNR levels due to its robustness to
noise explained in the previous chapters.

These tests support the theory of duplex spike cod-
ing in the auditory system depending on the intensity and
noise level of the input acoustic stimuli. At low SPLs, rate
coding is preferred due to the linear change in spike firing
rates with the input intensity, and the number of spikes
needed for reliable DoS and DTC coding is non-existent.
However, at high SPLs, due to nerve fibers saturating, RC
can no longer be used and DoS and DTC take over. How-
ever, since DoS is extracted from a population of neurons,
it proves to be more noise robust and its performance un-
affected by the significant drops in SNR values.

Taking into account all the three tests, the first thing
to note is the superiority and robustness of DoS regardless
of the spike-based operator. With DoS as the choice of
spike coding, for typical conversational SPLs, the LSM
outperforms ROC, which makes up for it having faster
training and processing times. Nevertheless, due to in-
creased classification performance and the ability to gen-
eralize to different classification tasks, this paper chooses
the DoS-LSM as the proposed architecture.

The final step is to compare the proposed feature set
along with its operator with a conventional ASR system
from an engineering point of view. Table 5 shows the
comparison of the LSM-synchrony coding architecture
and the MFCC-HMM (64 Gaussians, 1 state) engine with
13 MFCC coefficients and their first and second deriva-
tives as the feature set (a common practice in ASR).

At high SNR levels, both algorithms perform com-
parably well, with the MFCC-HMM having slightly better
classification. However, as the SNR gets lower, LSM-DoS
starts to outperform the MFCC-HMM with differences as
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Table 4. Percentage of vowels correctly classified at a 60 dB
SPL for LSM-rate, direct temporal and synchrony cod-
ing.

�����������Code
SNR [dB]

25 10 5

RC 36.2% 35.4% 35.2%

DTC 80.2% 72.5% 64.9%

DoS 93.0% 92.5% 91.0%

Table 5. Percentage of vowels correctly classified for LSM-
synchrony coding and the MFCC-HMM engine.

�����������Code
SNR [dB]

25 10 5

MFCC - White N. 92.5% 84.0% 76.0%

DoS - White N. 91.0% 90.0% 87.5%

MFCC - Pink N. 94.0% 88.0% 78.5%

DoS - Pink N. 93.0% 92.5% 91.0%

much as 12.5% and 11.5% for pink and white noise, re-
spectively. These results not only support the claim of the
degree of synchrony being a noise-robust feature, but also
indicate the possibility of using a fully spike-based archi-
tecture for common speech recognition tasks in the future.

7. Conclusions and discussion

Two major goals of this research are to have a competitive
and fully spike-based speech processing algorithm with
heavy inspiration from psychoacoustics and neuroscience
and to develop a possible process description to account
for simple acoustic classification mechanisms in the au-
ditory system. As a first step towards this goal, various
spike coding schemes, including a novel degree of syn-
chrony metric as a feature set, were evaluated with differ-
ent spike-based operators.

The findings not only support the duplex theory of
spike coding in the auditory system, but also suggest a
possible reason for its unparalleled robustness. From an
engineering point of view, the algorithm using the pro-
posed feature set with a liquid state machine operator
manages to outperform the typical MFCC-HMM ASR
engine on a noisy vowel dataset proving the robustness
and information potential of synchrony coding along with
spike-based computation.

Future work includes the design of a spike-based
extractor for measuring the degree of synchrony among
nerve fibers. The next important step towards a fully fea-
tured ASR engine is the integration of a top-down hierar-
chical network to account for multi-syllable words. The
authors believe that the results presented in this paper will
pave the way to an alternative way of information process-
ing for speech signals.
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