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This paper has developed a generalised sampling strategy for the rapid location of objects in digital images. In this strategy
a priori information on the possible locations of objects is used to guide the sampling process, and earlier body-based and
edge-based approaches emerge automatically on applying the right a priori probability maps. In addition, the limitations
of the earlier regular sampling technique have been clarified and eased—with the result that sampling patterns are better
matched to the positions of the image boundaries. These methods lead to improved speeds of operation both in the cases
where all the objects in an image have to be located and also where the positions of individual objects have to be updated.
Finally, the method is interesting in being intrinsically able to perform full binary search tree edge location without the need
for explicit programming.
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1. Introduction

It is well over forty years since computers were first used
to process images and to analyse the information in them.
Subsequently, image analysis, computer vision and ma-
chine vision, to name a few closely linked areas, have de-
veloped into a wide discipline. In general, computer vi-
sion encompasses the underlying scientific concepts and
existence theorems, while machine vision is more con-
cerned with applying vision to real tasks such as auto-
mated inspection and assembly; in particular, it is very
involved with practical issues such as reliability, robust-
ness, accuracy, the speed of operation and system imple-
mentation (Davies, 2005). However, it would be a mistake
to separate these subjects very far: they are actually inex-
tricably linked and it is as well to remember that in an
applied area what is achievable is always limited by what
is scientifically possible.

In one paper it is impossible to cover all industrial
applications and it will be useful to focus on automated
inspection. In particular, all the practical issues men-
tioned above arise with some force in the food industry,
though in the latter area, rapid processing and the cost of
hardware implementation are of exceptional importance
(Davies, 2000b; Davies, 2003). In fact, real-time process-

ing has in the past necessitated the use of special elec-
tronic hardware to boost the speed of the host computer
system so that incoming streams of quite large images can
be managed. In earlier times, special electronic hardware
was expensive, and this was problematic for the food in-
dustry because its cost often made sophisticated inspec-
tion systems unaffordable. In such cases, instead of be-
ing able to rely on the guaranteed quality resulting from
the use of machines, factories had to continue to resort
to whatever could be managed by human operators. This
led to two problems: first, human operators easily become
bored, tired and unreliable; second, they offer far from
the desired 100% scrutiny of products. Thus the gradu-
ally reducing costs of fast electronic hardware were wel-
come. Nevertheless, it is still necessary to improve speeds
of processing, so that: (a) more complex and sophisticated
algorithms can be applied to industrial problems, and (b)
more computation intensive tasks such as high volume ce-
real grain inspection can be carried out and 100% scrutiny
achieved in practice.

This paper is particularly concerned with the speed
of processing, and aims to see what can be done without
the need for special hardware systems to boost process-
ing speeds. Section 2 considers the image search aspect

e.r.davies@rhul.ac.uk


8 E. R. Davies

of automated inspection. Section 3 goes on to analyse
the types of algorithms that are commonly used for ob-
ject location in inspection and other applications. Sec-
tion 4 introduces the use of sampling techniques for dras-
tically limiting the processing required for object location.
Section 5 re-examines the sampling methodology and fur-
ther develops and generalises it, while Section 6 provides
more detailed theoretical analysis. Section 7 discusses 2D
aspects of guided sampling and presents practical results
obtained using it, while Section 8 presents general conclu-
sions on the work.

2. Inspection process: Image search

As indicated in Section 1, the raison d’être of machine
vision is to perform purposeful image functions: in differ-
ent applications these might permit vehicles to be guided,
blood cells to be located, fruit to be picked, or brake as-
semblies to be inspected. In this paper we concentrate
on inspection, which has many aspects: checking on the
sizes of components and the elimination of oversized or
undersized items; the scrutiny of components to elimi-
nate those with defects (e.g. bolts without threads); the
location of contaminants such as glass shards or insects
in raw foodstuffs; the detection of missing or misplaced
parts in assemblies. In inspection, it is usual to initiate
outright rejection of unacceptable products: while in some
cases there is an opportunity for recycling, it is always a
delicate decision whether it is financially worthwhile to
do so. (However, latterly, both recycling in factories and
recycling of rubbish—itself a matter of detailed scrutiny,
though not of newly manufactured products—is becoming
contentious and even a legal obligation.) Another function
of inspection is that of providing information on the run-
ning of the plant, both to provide short-term feedback for
control (as when the spread of cake mixture is measured
and used to control its temperature) and to log measurable
parameters such as the numbers of reject items.

While the aim of inspection is the scrutiny of prod-
ucts, it implies the need to locate all products in the in-
put images. It turns out that locating products can be
a quite computation-intensive task: in particular, it may
be more computation-intensive than product scrutiny it-
self. This applies particularly when products appear spo-
radically in the input images and there is no short cut to
searching everywhere for them; whereas once a product
has been found, a region of interest can be set up around
it and scrutiny only applied over this restricted area. Thus
scrutiny may be quick and straightforward: e.g. a shape
template may be applied or an intensity profile checked,
and a simple accept/reject decision made. However, when
surfaces have to be examined carefully for blemishes, or
textures with their complex patterns have to be analysed
statistically, scrutiny can be an exacting task and it may
well be that it will be computationally demanding in its

own right. Much will depend on the specific applica-
tion. Overall, object location is liable to be the more
computation-intensive task because of the need for uncon-
strained search over the whole image area, and is all the
more tedious because objects will have random orienta-
tion as well as random position.

Finally, it should not be thought that the computation
problem applies only to inspection: it is a very general
factor, and applies in any application where many images
have to be searched for events: one need only consider
vehicle guidance and radar in air traffic control for other
relevant examples. Hence, the purpose of this paper is to
examine in some depth the methodology for rapid object
location.

3. Object location

While the most obvious way of locating known types of
objects in digital images is that of template matching, it
usually involves excessive amounts of computation.1 This
is because objects appearing in 2D images have at least
three degrees of freedom—in particular, two of position
and one of orientation. However, instead of searching for
objects using large whole-object templates, we can search
for any small features they may have, and this will be
much more efficient. For example, we may search for cor-
ners or edge points using sets of 3× 3 masks and this will
normally reduce the amount of computation by factors of
the order of 10,000, since not only will the mask areas
be reduced by about 1000 but also the number of masks
needed to cope with varying orientation will be reduced by
a factor of at least 10. However, this approach will often
achieve far larger savings, because of any other degrees
of freedom that may arise—especially those due to vari-
ations in size and shape. In fact, object variations of any
sort play an important role in ruling out the use of whole-
object templates. Nevertheless, any approach that does
not use whole-object templates implies the need to infer
rather than deduce the presence of objects (Davies, 2005):
this necessitates some further computation and the devel-
opment of appropriate methods for performing the pro-
cess.

In fact, there are two classes of small features that are
commonly used to initiate object location: one of these
is point features such as corners and small holes, which
are characterised by their (x, y) coordinates; the other is
edge points, which are characterised by their (x, y) coor-
dinates and by their orientation—though curiously edge
points effectively involve only two parameters, because of
the lack of constraint along the edge direction. Classically,
the presence of objects may be inferred from edge features
using methods such as the Hough transform, or from point

1For early discussions of template matching and how to reduce the
computational load associated with it, see (Nagel and Rosenfeld, 1972;
Rosenfeld and VanderBrug, 1977a; VanderBrug and Rosenfeld, 1977b).
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features using graph matching techniques (Davies, 2005).
Here we concentrate on the use of edge features for rea-
sons of space, and because this fits in better with the sam-
pling formalism to be developed.

To further back up the general approach, we mention
the Sobel edge enhancement operator, which uses two 3×
3 correlation masks:

Sx =

⎡
⎢⎣

−1 0 1
−2 0 2
−1 0 1

⎤
⎥⎦ , Sy =

⎡
⎢⎣

1 2 1
0 0 0

−1 −2 −1

⎤
⎥⎦

(here unnormalised), which lead to estimates of the x
and y components (gx, gy) of the local intensity gradient.
From these components, we can deduce the intensity gra-
dient magnitude g and orientation θ using the equations

g = (g2
x + g2

y)1/2, (1)

θ = arctan
(gy

gx

)
. (2)

It should be noted that the process of edge ‘detection’ in-
volves making a decision about whether the magnitude
component g is significant, e.g. greater than some set
threshold (though this decision can be made more sophis-
ticated by hysteresis thresholding, non-maximum sup-
pression, or other means). Many alternative edge detec-
tors exist, but there is little gain from exploring them fur-
ther here.

3.1. Inference from edges. As remarked above, the
Hough transform provides a standard means of inferring
the presence of objects from edge location information
(Davies, 2005). We illustrate the methodology by consid-
ering the case of circle detection. First, if an edge point is
located at a position (x, y) and is on the boundary of a cir-
cle C of radius R, then the centre of C must be located on
a circle of radius R and centre (x, y). Similarly, if further
edge points on C are found, the centre must lie on a set
of such circles. Hence, by accumulating all such circles
in a special image space called a ‘parameter space’, we
can readily locate the most likely centre location for C—
or for any other circles that might be present. The method
is robust, because if any edge points are lacking through
low edge contrast, noise, occlusion, or distortions, many
‘votes’ will have been accumulated and a lot of evidence
built up supporting the hypothesis that a circle is present.

It will be clear that the method as outlined so far is
wasteful in giving very many votes that will be far from
circle centres, but this number can be vastly decreased by
taking account of edge orientation information, and accu-
mulating votes only along edge normal directions. The
operation of this version of the Hough transform is indi-
cated in Fig. 1. Note that now votes are mainly situated at
peaks in the parameter space and that these are relatively

 

Fig. 1. Circle detection by the Hough transform: candidate cir-
cle centre locations are accumulated in the parameter
space, as indicated by the arrows directed along the local
edge normal directions. c©IET 2000

easy to locate, both by virtue of being local maxima and
by their absolute height.

It is important to note that while peaks are most likely
to represent the centres of circles, they could also repre-
sent chance placements of edges, and in this sense they
amount to the hypotheses of the presence of objects, and
the overall process of finding objects from the edge points
is one of inference rather than absolute deduction. Nev-
ertheless, in many applications (especially inspection ap-
plications) there may be a great deal of certainty that the
specific objects are present, as in the case of biscuits on a
biscuit line or round holes in an engine block.

To locate objects of other shapes in digital images,
the Hough transform can be modified to detect ellipses,
parabolas, straight lines, polygons and other analytically
defined shapes. In addition, a powerful approach called
the generalised Hough transform (GHT) may be used to
detect objects of arbitrary shape, if suitable look-up ta-
bles are used (Ballard, 1981). We illustrate this method
in Fig. 2 for the case where the objects have known or
fixed orientation. Here, the local edge orientation ψ will
indicate via a look-up table (the ‘R-table’) through what
vector distance R(ψ) to move in order to get from the
edge point to a reference point L within the object, thus
enabling a vote to be cast in the parameter space. The
computation is not great in such a case, but when object
orientation φ is unknown, computation increases signifi-
cantly, and increases even more if variable object size s
or scale also has to be taken into account: in that case
the R-table takes the form of a list of voting points with
components (R, θ, φ, s) for each value of the indexing pa-
rameter ψ. For 3D work, especially when perspective pro-
jection has to be taken into account, the situation is even
more complex and more specialised approaches tend to be
adopted (Davies, 2005), but we do not consider this aspect
here.
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Fig. 2. Operation of the generalised Hough transform. To de-
tect the shape, a vote is accumulated at the position of
the reference point L that is estimated for each boundary
point: L is assumed to lie at a vector location R relative
to the boundary point, where R = (R, θ) is a function
R(ψ) of the local edge orientation ψ.

Most importantly, all the Hough transform-based
techniques exhibit a high degree of robustness, and ob-
jects will have a high probability of being recognised and
accurately located even if they are subject to low contrast,
noise, serious damage, breakage, partial occlusion or con-
tact with other objects—all of which confuse most bound-
ary tracking algorithms, for example (Davies, 2005).

Although one of the aims of the Hough transform
was that it would minimise computational load by virtue
of using small templates in place of whole object tem-
plates, the GHT involves progressively higher computa-
tion as the number of free parameters increases. In fact,
even the varying orientation version requires considerable
processing. On the other hand, it is difficult to see how
any other thoroughgoing approach could involve signif-
icantly less computation, as this is a direct result of the
need for search in higher dimensional parameter spaces.
Nevertheless, there are approaches that can reduce load,
such as sequential analysis in carefully chosen subspaces.
A simple case of this is searching for variable size circles
by making multiple votes in a single 2D (x, y) parameter
space, and following this up with a 1D search for appro-
priate radius values (Davies, 1988).

Another general approach to fast object location is
that of multiresolution processing. Here an image is pro-
gressively smoothed to give a hierarchy of images, each
image being typically twice as small in its linear dimen-
sions as the preceding one. The areas of these smaller im-
ages will successively be 1/4, 1/16, 1/64, . . . of the orig-
inal area A, totalling 1/3 of A, so analysing them instead
of or as well as the original image need not be too burden-
some. Then, by searching for larger objects in a smaller
scale image, much processing can in principle be saved,
even if further processing at the original resolution is re-
quired to bring accuracy back to ideal levels. Neverthe-
less, there is an increased possibility of error (either false

positives or false negatives). In addition, the computation
of the original reduced images does impose some addi-
tional load.

Finally, a projection method, which involves sum-
ming the image intensities along the x and y directions
and forming two histograms, allows the possibility of 1D
search operations to be carried out (Davies, 1987b). This
can save immense amounts of processing, albeit at the
expense of numerous false alarms if the image is at all
complex. If nothing else, this does indicate that the min-
imum amount of processing for the whole image search
can in principle be reduced toO(M2) for anM×M pixel
image—essentially the processing needed to access each
pixel twice.

Bearing these results in mind, there is some scope
for searches that perform well, while accessing each pixel
only a small number of times. In fact, we aim below to
achieve similar results by sparsely sampling the image
matrix, and performing significantly fewer than M ×M
pixel accesses.

4. Sparse sampling of the image space

4.1. Basic technique. In an initial approach to sam-
pling, the author had the problem of finding the centres
of circular objects such as coins and biscuits significantly
more rapidly than for a conventional Hough transform,
while retaining as far as possible the robustness of that
approach (Davies, 1987a). The best solution appeared to
be to scan along a limited number of horizontal lines in the
image, recording and averaging the x-coordinates of mid-
points of chords of any objects, and repeating the process
in the vertical direction to complete the process of centre
location (Fig. 3). The method was successful and led to
speedup factors as high as 25 in practical situations.

 

Fig. 3. Result of line-scanning for a circular object. Here the
mid-points of chords are determined in the x and y di-
rections after sampling every eighth row and column in
the image. c©Elsevier 1987
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In later work, which involved the inspection of huge
numbers of wheat grains (Davies, 1998), extreme robust-
ness was not necessary, and it seemed worth finding how
much faster the scanning concept could be taken. It was
envisaged that significant improvement might be achieved
by taking a number of individual sampling points in the
image rather than by scanning along whole lines: thus
a ‘body-based’ approach rather than an ‘edge-based’ ap-
proach was adopted.

Suppose that we are looking for an object such as that
shown in Fig. 4(a), whose shape is defined relative to a ref-
erence point R as the set of pixels A = {ri : i = 1 to n},
n being the number of pixels within the object. If the po-
sition of R is xR, pixel i will appear at xi = xR + ri.
This means that when a sampling point xs gives a posi-
tive indication of an object, the location of its reference
point R will be xR = xs − ri. Thus the reference point
of the object is known to lie at one of the set of points
UR = ∪i(xs − ri), so the knowledge of its location is
naturally incomplete. Indeed, the map of possible refer-
ence point locations has the same shape as the original ob-
ject, but rotated through 180◦—because of the minus sign
in front of ri. Furthermore, the fact that reference point
positions are only determined within n pixels means that
many sampling points will be needed, the minimum num-
ber required to cover the whole image clearly being N/n,
if there are N pixels in the image. This means that the
optimum speedup factor is N/(N/n) = n, as the num-
ber of pixels visited in the image is N/n rather than N
(Davies, 1997).

Unfortunately, it is not possible to find a set of sam-
pling point locations such that the ‘tiling’ produced by the
resulting maps of possible reference point positions cov-
ers the whole image without overlap. Thus there will nor-
mally be some overlap (and thus loss of efficiency in locat-
ing objects) or some gaps (and thus loss of effectiveness in
locating objects). Clearly, the set of tiling squares shown
in Fig. 4(b) will only be fully effective if square objects
are to be located.

However, a more serious problem arises because ob-
jects may appear in any orientation. This prevents an ideal
tiling from being found. It appears that the best that can
be achieved is to search the image for a maximal rotation-
ally invariant subset of the shape, which must be a circle,
as indicated in Fig. 5(a). Furthermore, as no perfect tiling
for circles exists, the tiling that must be chosen is either a
set of hexagons or, more practically, a set of squares. This
means that the speedup factor for object location will be
significantly less than n, though it will still be substantial.

4.2. Application to grain inspection. When applying
this technique to the location of wheat grains, it was noted
that these grains are quite well approximated by ellipses in
which the ratio of semi-major (a) to semi-minor (b) axes

R

r

(a )

(b )

Fig. 4. Object shape and method of sampling: (a) object shape,
showing reference point R and vector r pointing to a
general location xR + r, (b) image and sampling points,
with associated tiling squares. c©EURASIP 1998

(a )

(b )

Fig. 5. Geometry for the location of ellipses by sampling: (a)
ellipse in two orientations and a maximal rotationally in-
variant subset (shaded), (b) horizontal ellipse and geom-
etry showing size relative to the largest permitted spac-
ing of sampling points. c©EURASIP 1998

is almost exactly 2 (the shape deviation is normally less
than 20%). According to the above theory, this means
that the (non-ideal) b× b square tiles have to fit inside the
circular maximal rotationally invariant subset (MRIS) of
the ellipse, so that

√
2L = 2b, i.e. L =

√
2b.

To understand the efficiency of the process, it is nec-
essary to determine how many sample points could give
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positive indications for any one object. Now the maxi-
mum distance between one sampling point and another on
an ellipse is 2a, and for the given eccentricity this is equal
to 4b which in turn is equal to 2

√
2L. Thus an ellipse of

this eccentricity could overlap three sample points along
the x-axis direction if it were aligned along this direction;
alternatively, it could overlap just two sample points along
the 45◦ direction if it were aligned along this direction,
though in that case it could also overlap just one laterally
placed sample point. In an intermediate direction (e.g. at
an angle arctan 0.5 to the image x-axis), the ellipse could
overlap four points. Similarly, it is easy to see that the
minimum number of positive sample points per ellipse is
2. The possible arrangements of positive sample points
are presented in Fig. 6(a).

In fact, the MRIS rule is over-rigorous. What is ac-
tually required is that the sampling tile must be of such
a size that all possible orientations of the shape are al-
lowed for. In the present example the limiting case that
must be allowed for occurs when the ellipse is orientated
parallel to the x-axis, and it must be arranged that it can
just pass through four sampling points at the corners of a
square, so that on any infinitesimal displacement at least
one sampling point is contained within it. For this to be
possible it can be shown that L = (4/

√
5)b, as depicted in

Fig. 5(b). This leads to the possible arrangements of pos-
itive sampling points shown in Fig. 6(b)—representing a
significant saving in computation.

• 
• • • • • • • •

• • • •
• • • • • • •

• • • •
• • • • • • 

(a) 

• • • • • •

• • 
• • •  

(b) 

Fig. 6. Possible arrangements of positive sampling points for
the ellipse, (a) with L =

√
2b, and (b) with b = (4

√
5)b.

c©EURASIP 1998

Object location normally takes considerable compu-
tation because it involves an unconstrained search over the
whole image space, and in addition there is normally (as
in the ellipse location task) the problem that the orien-
tation is unknown. This contrasts with the other crucial
aspect of inspection, that of object scrutiny and measure-
ment, in that relatively few pixels have to be examined
in detail, requiring relatively little computation. Clearly,
the sampling approach outlined above largely eliminates

the search aspect of object location, since it quickly elim-
inates any large tracts of blank background. Nevertheless,
there is still the problem of refining the object location
phase. One way of approaching this problem is to expand
the positive samples into fuller regions of interest and then
to perform a restricted search over these regions. For this
purpose we could use the same search tools (e.g. Hough
transforms) that we might use over the whole image if
sampling were not being performed. However, the pre-
liminary sampling technique is so fast that this approach
would not take full advantage of its speed. Instead, in the
wheat grain inspection problem the following triple bisec-
tion algorithm (Davies, 1998) was used.

Draw horizontal (or vertical) chords through adja-
cent vertically (or horizontally) separated pairs of positive
samples, bisect them, join and extend the bisector lines,
and finally find the mid-points of these bisectors (Fig. 7).
(In cases where there is a single positive sampling point,
another positive sampling point has to be found, say L/2
away from the first.) The triple bisection algorithm has the
additional advantage of not requiring estimates of tangent
directions to be made at the ends of chords (as for some
Hough transform implementations (Davies, 2005)), which
can prove inaccurate when objects are somewhat fuzzy, as
in many grain images. The result of applying this tech-
nique to an image containing mostly well-separated grains
is shown in Fig. 8: this illustrates that the whole proce-
dure for locating grains by modelling them as ellipses and
searching for them by sampling and chord bisection ap-
proaches is a viable one. In addition, the procedure is very
fast, as the number of pixels that are visited is a small pro-
portion of the total number in each image.

 Fig. 7. Illustration of the triple bisection algorithm. The round
spots are the sampling points, and the short bars are the
midpoints of the three chords, the short horizontal bar
being at the centre of the ellipse. c©EURASIP 1998

To see why the triple bisection algorithm presented
above is valid, note that because of symmetry it is correct
for a circle: this means that it also applies for ellipses, be-
cause the circle case can be projected into any elliptic case
using orthographic projection—which has the property of
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preserving parallelism and midpoints. (For a rigorous al-
gebraic proof, see (Davies, 1999).)

Clearly, the aims of the above work are to reduce,
or to see how to reduce, computational loads down to the
minimum possible, and above all to identify what the lat-
ter really is. Naturally, sparse sampling reduces robust-
ness because redundancy is reduced to a minimum. How-
ever, as scanning can be restored to achieve any level of
robustness that is required, this should not be regarded as
a failure of the method: there will be applications where
it can be useful and effective, and equally there will be
those where it should not be applied. Failure modes were
considered in (Davies, 2001), just as failure modes in the
original edge-based sampling method were fully investi-
gated in (Davies, 1987a).

5. Further development of the methodology

Having seen how the basic sampling approach works both
in theory and in practice, we are now in a good position
to develop it further. First, we note an important aspect
of the procedures followed in the earlier work—that the
image was always scanned fully at a uniform spatial rate.
While the early work tested hexagonal scanning and tiling
patterns, rectangular or square scanning patterns emerged
as the optimum if no objects were to be missed. Natu-
rally, on an inspection line, 100% untiring inspection is re-
quired, thereby dictating that there should be no chance of
missing a defective product. However, other situations can
arise in industrial applications. For example, brake assem-
blies or other complex manufactured parts might normally
be placed near the centre of the image, and then need to
be located exactly. Similarly, if a number of objects are
being tracked, their positions might be fairly predictable
and again it will be necessary to pinpoint their positions.
And when guiding a robot vehicle, the position of the road
may need to be confirmed from time to time to be sure that
the vehicle is not drifting sideways: this also applies for a
fruit-picking vehicle, which will have to be kept on track
between rows of trees or bushes. Similar situations apply
for many control applications, both in industry and agri-
culture and transport.

Clearly, when inspection per se is replaced by guid-
ance, surveillance and a host of other more complex, less
repetitive tasks, the nature of the vision task can change
quite significantly. Overall, this means that some in-
formation will often be available about a priori object
placement, and this will need to be taken into account
by a visual object location system. This means that we
need to generalise the sampling methodology appropri-
ately. Specifically, we need to allow the object probability
distribution to vary over the image, rather than simply tak-
ing it to be constant, as assumed earlier.

To proceed, we take the a priori probability of a sam-
pling point actually hitting an object as P (x, y) for a 2D

image. Thus we can cover practical situations—such as
objects being more likely to be nearer the centre of the
viewing area. We can also cover cases where a previous
image has been interpreted and objects within the scene
may have moved a small distance by the time the cur-
rent image has been obtained. In that case, P (x, y) can
reasonably be modelled as the convolution of the solution
space for the earlier image (viz. a binary probability im-
age where 1s correspond to object blobs and 0s correspond
to background) with a Gaussian distribution representing
the likely amount of object migration over the intervening
time interval.

Next, it is important to note that if P (x, y) is any-
where equal to unity, the outcome is certain, and there is
no value in sampling at that position, because nothing is
learnt by doing so. Similarly, if P (x, y) is close to unity,
very little will be learnt. Contrariwise, there will be little
point in searching where P (x, y) is close to zero, as the
greatest likelihood is that nothing will be found. Overall,
we can see that the greatest gain in certainty (amount that
can be learned) is obtained by looking where the follow-
ing function is a maximum:

F = P (1 − P ). (3)

The justification is that the amount learned will be propor-
tional to 1−P , while the probability of learning it will be
proportional to P , so F represents the best estimate of the
amount that can be learned. In fact, this argument forgets
the amount learned (P ) when a sample finds nothing, this
being learnt with the probability 1−P . Thus we could cor-
rect (3) by doubling the result. However, as we are seeking
the maxima of F , this does not substantively change the
situation. Similarly, if entropy were used instead of the
form of F given above, the overall effect would again be
insubstantive.

At this point we have essentially unified the body-
based and edge-based approaches to object location.
Specifically, if P is everywhere much less than 0.5, F
will have the same form as P , and its maximum will be
at nearly the same position as for P (Fig. 9). i.e. for small
P :

F ≈ P. (4)

This leads to the body-based solution being optimal.
However, when there are objects whose positions are
fairly well known, so that P > 0.5 in their locality, we
have the situation shown in Fig. 10, which has peaks
around the object edge locations. In this case the edge-
based solution is optimal.

The sampling strategy is now to sample at a succes-
sion of locations giving the highest priority to those with
the highest values of F . However, we need to take account
of the fact that as each sample is taken, the probability P
changes and thus F changes: this is what we study next.

For each sample, if no object point is found, we can
set P to zero. If an object point is found, this means that



14 E. R. Davies

(reverting again to the 1D case) an object of width W is
known to be within a distance ±W of the particular sam-
pling point, and we can set P to a linearly reducing value
1 − |δx|/W , where δx is the distance from the sampling
point (Fig. 9). (This is reasonable as P must be zero at a
distance ±W : see Section 6 for a detailed proof.) Outside
the range −W to +W , the sampling point will give no in-
formation on how to update P , so we leave it unchanged at
the previous a priori value. Note that, to eliminate the dis-
continuities (see the lowest trace in Fig. 9) resulting from
this way of updating P , the probabilistic analysis must be
changed to take account of interactions between objects:
this point is discussed in greater detail in Section 6.

 
(a) 

 

 
(b) 

Fig. 8. Image showing grain location using the sampling ap-
proach: (a) sampling points, (b) final centre locations.
c©IET 1999

Subsequent samples may relate either to new objects
or to those that have already been located. Here we start
by considering the latter case. First, note that the linearly
reducing probability value 1 − |δx|/W will lead to maxi-
mum values of F where P = 0.5, i.e. where |δx| = W/2.
Testing at each of these points will result in a new zero
of P (in the case of no object) or a new position where
P = 1 (new point on the object). In the former case,
the linearly reducing value of P becomes steeper as it has
to go from 0 to 1 in a shorter distance (Fig. 11). Also,
the flat tops in the third and fifth traces in Fig. 11 arise
because if a single object of width W is known to pass
through two sampling points a distance D < W apart, the
probability of hitting the object must be unity everywhere
between the two sampling points. Likewise, if no object
is detected at two sampling points a distance D < W
apart, there is no chance of the object lying on or between
the two sampling points and the probability of hitting it
must be zero at all intervening points. The overall result
is that after a series of iterations, the samples get closer
and closer to the true edge positions of the object, so, in
effect, a binary search tree has been implemented using
the guided sampling technique. Notice, however, that this
capability did not have to be explicitly programmed into
the technique: rather, it arose spontaneously as a special
case of the general principle of selecting sampling points
with maximum F .

Ultimately, the technique finds all 2n edge locations
for n objects, and iterations need to be continued until the
accuracy of location is sufficient or the limits of image
resolution are reached.

Next, we consider what happens when subsequent
samples refer to new objects rather than those that have
already been located. In particular, we consider the com-
bining rules. If two sampling points are a distanceD < W
apart, and both register a ‘hit’, there will now be reduced
the probability of hitting an object point between these lo-
cations because of the reduced probability P that either
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0.5
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P

0

0

0.5
P

0

1

x

x

x  

Fig. 9. Case where object locations are not well known. In this
1D model, the top trace represents the a priori probabil-
ity of hitting an object pixel, and F is the likely amount
learnt by sampling. The lowest trace shows the result
of sampling at the position of maximum F . Note that
F ≈ P for the top trace, as per Eqn. (4). c©IET 2007
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Fig. 10. Case of an object whose location is quite well known.

Notice the two positions near the edges of the object
where F has the maximum value of 0.25. c©IET 2007

P

F

0

1

0.25

P

F

0

1

0.25

P

0

1

x

x

x

x

x

0

0

 

Fig. 11. Case where an object has been found and its exact po-
sition needs to be determined. The top trace shows the
initial uncertainty in position; this is refined twice by
the third and fifth traces; between each pair of traces,
the maxima of F are used to determine the optimum
sampling positions. In this example, at each test, object
location is negative on the left and positive on the right.
c©IET 2007

object will pass through any intervening point—as indi-
cated by the linearly reducing probability function. (A rig-
orous proof requires first calculating the probability 1−P
of not hitting either object at the point in question, so we
have P = 1 − (1 − P1)(1 − P2), where P1 and P2 are
the individual linearly reducing probabilities.) However,
the probability of hitting an object between two sampling
points a distanceD < W apart at each of which no hits are
recorded remains at zero, as no object of width W can lie
completely between these locations. The combining rule
for two sampling points a distance D < W apart when
one records a hit and the other does not must be a proba-
bility function that changes linearly from 1 to 0 between
the two respective locations. This is because the number
of possible object positions that give rise to the probability
function steadily increases from zero at the P = 0 posi-
tion. (For a more rigorous procedure for performing this
type of calculation, see Section 6.)

6. Detailed analysis

At this point we return to some of the ideas outlined above
with a view to placing them on a more secure theoretical
footing.

6.1. Proof of the formula for the linearly reduc-
ing probability. First, we consider the linearly reducing
probability 1−|δx|/W quoted in Section 5. Here we need
to examine the possible ‘microstates’ of the system—
specifically, all possible positions of the object of width
W pixels. By placing the profiles in all possible positions
and averaging at each pixel, we can assess the probabil-
ity of occupation of all relevant pixels. The result is the
convolution of the object profile with the identical shape
representing the possible positions of its centre. Thus we
convolve two identical rectangular profiles of length W
and obtain a triangular profile of length 2W . This imme-
diately proves that the probability function has the stated
form. Note that this is not a probability distribution in the
normally accepted sense, as it does not integrate to unity:
it gives the ‘spot’ probability that any pixel is within the
boundary of an object.

6.2. Variation of F for the linearly reducing probabil-
ity. Next, we examine the shape of the F profile result-
ing from the triangular P profile. Substituting for P in (3)
gives

F =
|δx|
W

(
1 − |δx|

W

)
=

|δx|
W

− |δx|2
W 2

. (5)

This gives an inverted parabolic shape whose value is zero
when |δx| = W and when |δx| = 0, corresponding to P
being 0 and 1 respectively—as indicated in various levels
of Fig. 11. The parabolic shape has a maximum when
|δx| = W/2, at which point its value is 0.25.

6.3. Eliminating discontinuities in probability estima-
tion. Case when occlusion is possible. We now return
to the discontinuity in the bottom trace of Fig. 9. First,
suppose that objects in the field of view can occlude each
other. In this case, each microstate in our calculation con-
sists of the steady background probability, interrupted by
a region of (near) certainty. Averaging all the microstates
gives exactly the background level B plus the convolution
of two regions of width W and respective heights 1 − B
and 1; hence we get a triangle of height 1 − B on top
of the background level B. The result is that the overall
probability ranges from 1 down to B, with no disconti-
nuity between the two regions, as indicated in the middle
trace of Fig. 12—and unlike the situation shown in the
bottom trace of Fig. 9. (A formal proof of this result is
obtained by taking the probability (1−B)(1−P ) that no
object is present and deducing the probability that at least
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one object is present.) Finally, note that there will still be
a discontinuity of gradient between the two regions.
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Fig. 12. Formation of the combined probability function. (top)
Two functions to be combined. (middle) Combined
function for the case of occlusion. Notice the reduced
gradients of the central two lines. (bottom) Combined
function for the case when occlusion cannot occur.
Here the central two lines have almost the same gra-
dients as for the original triangle function.

Case when occlusion cannot occur. Another scenario is
when objects are never allowed to overlap or occlude—as
for a monolayer of pennies on a counting board—though
they may touch. This is a more complicated problem to
handle. To solve it we take one central object microstate
and average the microstates for all other objects. Then
we average all the resulting microstates to give the over-
all probability function. The result is quite similar to the
probability function for the occluded case, but the proba-
bilities are reduced near the central object, because of the
restriction that no objects can partially occlude or be oc-
cluded by it: hence there are slight dips in the function, as
sketched in the bottom trace of Fig. 12. The full theory for
this case will be presented in a future publication.

6.4. Case when object width differs from expected
width. Finally, we consider the case where objects of
width W are being sought, but the actual width of an ob-
served object is W ′. First suppose that W ′ is greater than
W . Then a new version of Fig. 11 will be spelled out with
final total width equal to at most 2W : hence ifW ′ > 2W ,
the whole of the object will not be detected, and the length
will be mis-measured. However, the very fact that the fi-
nal length is apparently equal to 2W will signal not only
that something has gone wrong but also that the length is
greater than supposed, so a further search for the ends of
the object can be instigated. Indeed, it could reasonably
be assumed that two objects are touching, so the true dis-
tance from end to end of the combined object is 2W , and
this hypothesis could be checked. In this case the execu-

tion time for convergence will be more than double that
for Fig. 11.

Next suppose that W ′ is less than W . In this case
there will be no problem in finding the exact positions of
the ends, and the method illustrated in Fig. 11 will give
the required result. In this case the speed of convergence
will be exactly the same as for Fig. 11.

To summarise, the situation is that the measured
width W ′′ is equal to the actual width W ′, unless W ′ >
2W , in which case W ′′ = 2W . (For proofs of these re-
sults, note that the maximum edge distance relative to the
positive sampling point is ±D, where D = (1 + 1/2 +
1/4 + . . . )W/2, which is equal to W , so that the maxi-
mum object width that can be estimated without error is
2W .)

Overall, ifW ′ is likely to be greater thanW , this fac-
tor could be incorporated into the methodology by mak-
ing W equal the maximum likely length. In particular,
if two objects could be touching, but three touching ob-
jects will be a rare occurrence, then it may be best to
make W = 2W ′. Once the basic situation has been clar-
ified, and the various likelihoods evaluated, it should be
straightforward to determine how the system can be opti-
mised using the methods described above.

7. Assessment of probability in 2D

The assessments of probability for optimum sample place-
ment that have been presented in the previous two sections
all represent the situation in the 1D case. It will next be
necessary to extend the ideas to 2D ready for practical ap-
plication to real images. Unfortunately, the situation is not
so tidy in the 2D case. In particular, the combining rules
for pairs of nearby samples are more complex (though
they necessarily devolve into 1D cases along lines joining
pairs of samples).

There are three cases of note: (1) the case of two
negative samples, (2) the case of two positive samples,
and (3) the case of a positive and a negative sample. In
all of these, it is easiest to consider first where the object
centre could be after obtaining each sample; then, one can
convolve the position possibilities with the object shape
relative to the centre, in order to determine the probability
of hitting a point on an object.

For the case (1) with a circular object, we get two
circular regions which overlap, and in the overlap region
there is zero probability of finding an object point. Here
we have developed an alternate approach in which the rule
for combining two negative samples ignores the fact that
in the overlap region the probability should be zero: in-
stead we compute the probability using the linearly reduc-
ing type of formula (see Section 6.1). In fact, this will not
matter in one full pass over the whole image, because the
probability only guides the sampling and is programmed
to utilise the highest available value of F : this means that
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it will not matter whether P has been reduced from B to
zero or merely to some other value less than B. The prob-
lem only emerges later, when no locations remain with
the default probability B, and only then will the exact val-
ues assigned to them dictate how ideal the guiding actu-
ally is. The result is that later in the sequence reasonable
sampling points will be provided rather than absolutely
optimal sampling points. This will never prevent an ob-
ject from being found, but in some cases may delay it.
However, the average time to find an object will be little
impaired. Here a lot depends on the aims of the search:
in some cases (as in inspection), it will be necessary to
guarantee finding all objects; in other cases (such as as-
sembly), it may only be necessary to locate a handful of
objects such as washers; and in yet other cases, it will be
possible to stop once one object of a certain type is found
(even in inspection this could occur, as when a single in-
sect might render an entire batch of grain unacceptable).
Certainly, in the last instance, what might happen late in
a sampling sequence would matter very little. However,
in the first instance, where every object has to be located,
there seems to be little to be gained from using the prob-
ability formalism: it is bound to be better to use a regular
scan that is guaranteed to locate each object in a single
pass over the whole image.

With this background, we have developed the less
intensive approach of (a) using the simplified combining
rule for the case of two negative samples, and (b) locating
an object completely using a 1D binary search tree ap-
proach as soon as a positive sample is obtained. (Recall
that the binary search tree was shown to be equivalent to
the probabilistic approach in the 1D case.)

7.1. Results. First we consider how background sam-
pling progresses in the absence of any objects. This pro-
vides an effective comparison of guided sampling with
the regular sampling used in the previous work (Davies,
2001). In the earlier work, samples were taken in a regular
square array, but the increase in efficiency for a hexagonal
array was also investigated. Clearly, packing should be
significantly better for a hexagonal array, so fewer sam-
ples would be needed to cover an image, with the result
that greater execution speeds should be attained. In fact,
when searching for moderately large objects, it was found
that the gain from using hexagonal arrays was largely lost
because of bad fit around the boundary of the image, and
so extensive work using hexagonal arrays was curtailed
(it appeared that considerable effort would be required to
achieve worthwhile gains when using them in practical sit-
uations).

What is interesting here is that the guided sampling
procedure resulting from Equation (3) led automatically
not only to an intrinsic hexagonal array (top image in
Fig. 13), but also to reasonably optimal allowance for im-
age boundary effects, making this a potential practical al-

ternative to regular sampling. In fact, the guided sam-
pling locations can be computed offline and used to re-
place the regular sampling patterns characteristic of the
earlier work—necessitating no additional run-time com-
putation.

 
(a) 

 

 
(b) 

 
Fig. 13. Sampling patterns obtained during null searches: (a)

case of the uniform a priori probability: first 105 sam-
pling points, (b) case of the slowly varying a priori
probability: first 25 sampling points. In both cases
the black regions indicate where a posteriori probabili-
ties have been calculated. The white borders are purely
graphics demarcating the probability regions; they also
indicate which scanning points were performed after
which others (paradoxically, the earlier ones appear to
lie on top of the later ones). Part of the remaining orig-
inal background level, including in (b) its variation, is
also visible.

The lower image in Fig. 13 illustrates what happens
when a very slight (20%) variation in a priori probability
is instituted in order to guide the algorithm towards one
portion of the image. For example, it could be imagined
that a person is heard talking and his/her voice appears to
come from a direction slightly to the right: then attention
can be drawn to this approximate region of the image so
that his//her face can be focussed upon and watched care-
fully. Notice that the scanning pattern has now taken place
in a nearly spiral scan, and that the resulting scan pattern is
approximately hexagonal, though this time with a fair de-
gree of randomness imposed upon it. This has happened
completely autonomously, and in an optimal manner in
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the sense that an optimal criterion has been used to select
each scan point in the sequence.

Interestingly, the slight apparent randomness of the
scanning behaviour observed here is reminiscent of the
saccadic scanning patterns of the human eye when fo-
cussing on details in a visual scene (Palmer, 1999).

Next we consider an object location task, using: (a)
a plain (no preference) background probability function,
aiming to locate all the objects in the image, and (b) a
localised scan where approximate location information is
provided by an a priori probability map. The results are
shown in Fig. 14. In Fig. 14(a), notice how the pres-
ence of the object results in slight disruption of the sub-
sequent sampling pattern. In Fig. 14(b), notice that the
object is detected using just six samples, and the main se-
quence then stops, though exact location using the binary
search tree technique (in this case employing two linear
1D scans) takes another 12 samples.

8. Conclusion

This paper has investigated how a generalised sampling
strategy can be developed for rapid location of objects
in digital images. It has found how a priori information
on the possible locations of objects can be brought into
play in a probabilistic formulation which determines how
to guide the sampling process. As a result it is shown
how body-based and edge-based approaches emerge auto-
matically on applying the right a priori probability maps,
while the limitations of the regular sampling technique
used in the previous work have been clarified. Indeed,
in that case the probabilistic formalism has been found
to lead to improved sampling patterns that take better
account of the positions of the image boundaries. This
means that improved speeds of operation can be achieved
both in the cases where the whole image has to be scanned
in order to locate all the objects, and also in other cases
such as where the position of a single object has to be up-
dated. It is also interesting that the new technique is able
to carry out full binary search tree edge location without
explicit programming.

While in 1D the sampling procedures can be charac-
terised relatively easily, in 2D they become more complex:
to contend with this, it has been necessary to develop a less
intensive approach, (a) using a simplified combining rule
for the case of two negative samples, and (b) locating an
object completely using a 1D binary search tree technique
as soon as a positive sample is obtained. Overall, this ap-
proach maintains the spirit of the probability concept, re-
membering that its function is to guide object location in
such a way as to minimise computational load.

Here, we have not followed the attention-based ap-
proach of Itti et al. (1998) (amongst others) because,
in such approaches, the image is first scanned to locate
salient features, which itself consumes significant compu-

tation. In contrast, the aim of the technique developed
here is to visit relatively few pixels in any image, thus
cutting computational load by a large factor. Thus our
method is a different type of technique that should find
use in the cases where alternate methods are less suitable.
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