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The paper aims at extending the notion of regional controllability developed for linear systems to the semilinear hyperbolic
case. We begin with an asymptotically linear system and the approach is based on an extension of the Hilbert uniqueness
method and Schauder’s fixed point theorem. The analytical case is then tackled using generalized inverse techniques and
converted to a fixed point problem leading to an algorithm which is successfully implemented numerically and illustrated
with examples.
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1. Introduction

Distributed parameter systems are dynamical systems
whose states depend not only on time but also on spatial
coordinates. They are frequently encountered in practical
engineering problems. Examples of a thermal nature are
furnaces for heating metal slabs or heat exchangers, exam-
ples of a mechanical nature are large flexible aircrafts and
robot arms, examples of an electrical nature are energy
transmission lines.

Appropriate mathematical modeling of distributed
parameter systems yields most often nonlinear partial dif-
ferential equations. Clearly, such models involve using
very sophisticated mathematical methods, but this enables
us to describe the process more accurately and to imple-
ment more effective control strategies. Early lumping,
which means the approximation of a nonlinear systems by
linear ordinary differential equations of possibly high or-
der with excessive simplifications, may completely mask
the distributed nature of the system and therefore it is not
always satisfactory.

For the last decade, semilinear distributed parameter
systems have occupied an important place in control and
systems theories. The study of this kind of systems has
become fairly common, and is now an established area of
research with an extensive and long list of publications
and conference communications. For an extensive list
of publications, see, e.g., (Klamka, 1991; Klamka, 2001;

Klamka, 2002) and the references therein, where sufficient
conditions for constrained exact controllability in a pre-
scribed time interval for semilinear dynamical systems in
which the nonlinear term is continuously Frechet differen-
tiable are formulated and proved assuming that the con-
trols take values in a convex and closed cone with vertex
at zero. The method used covers a wide class of semili-
near abstract dynamical systems and is specially useful for
semilinear ones with delays. For a controllability problem
when one is faced with the question of steering a system
from an initial state to a prescribed one, it is important to
take into account the effects of nonlinearity. For example,
Fabre et al. (1995) prove approximate controllability in
Lp(Ω) for 1 ≤ p < +∞ by means of a control which can
be internal or on the boundary and when the nonlinearity
is globally Lipschitz. That is achieved for some σ > 0
and β > 0 such that

||N (s)|| ≤ σ|s| + β.

Moreover, in the case of the interior control, they prove
approximate controllability in C0(Ω). The technique ap-
plied combines a variational approach to the controllabi-
lity problem for a linear equation and fixed point methods.

Null-controllability was also proved in (Fernández–
Cara, 1997) for semilinear distributed parabolic systems
when the nonlinear term N (s) grows slower than s log |s|



438 E. Zerrik et. al.

as |s| → 0, or

||N (s)|| ≤ ε|s| log |s| for large |s|,

where ε depends on the system domain, the final time and
the geometric support of the control. Fixed point theorems
and Gronwall’s inequality remain important tools used by
mathematicians to solve the various questions, particu-
larly the controllability problem for semilinear systems,
see (Zuazua et al, 1990; Kassara et al, 1983) and the re-
ferences therein. Such a notion has been treated for situ-
ations where the subregion ω of interest is the interior to
Ω. These questions are particularly natural in a setting of
the wave equation where a finite propagation speed exclu-
des exact controllability of such a system.

The notion of regional controllability for distributed
linear systems was introduced by El Jai et al. (1995) and
consists in steering such a system to a desired state only
in a subregion of the system evolution domain. Important
developments and several works concerning linear para-
bolic systems were published (El Jai et al, 1995; Zerrik
et al, 2004; Zerrik et al., 2000). Next, Zerrik and Larh-
rissi extended these results to linear hyperbolic systems
and proposed approaches to the computation of the opti-
mal control which allows us to reach a desired target in
such a subregion (Zerrik et al, 2001; Zerrik et al, 2002).
A natural direction is to extend theses results to semilinear
distributed hyperbolic systems which constitute an origi-
nal framework in regional analysis.

The objective of the present work is to study regional
controllability for distributed semilinear hyperbolic sys-
tems using fixed point techniques combined with those
established in ( Zerrik et al, 2004) in the observation of
semilinear parabolic systems in which interesting results
were established and numerically performed. This is the
aim of the paper, which is organized as follows:

We begin with some preliminaries. In the third
section, we concentrate on the determination of a con-
trol achieving regional controllability when the system is
asymptotically linear, i.e., for some α > 0 the nonlinear
term N (s) satisfies

lim
|s|→+∞

N (s)
s

= α and N ′ ∈ L∞(R). (1)

The analytical case is then considered using generalized
inverse techniques. In all cases the control achieving a re-
gional target is characterized via fixed point theorems and
depends on the final time T , the subregion in question and
the actuator location. In the last section, we provide a nu-
merical approach which leads to an explicit formula for
such a control with illustrations through numerical exam-
ples and simulations.

2. Problem Statement

Let Ω be a bounded open domain in R
n (n = 1, 2, 3),

with a regular boundary ∂Ω. For T > 0 we write
Q = Ω×]0, T [, Σ = ∂Ω×]0, T [ and consider the follo-
wing semilinear hyperbolic system:
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂2y

∂t2
+Ay+Ny = χ

D
fu in Q,

y(x, 0) = y0(x),
∂y

∂t
(x, 0) = y1(x) in Ω,

y(ξ, t) = 0 on Σ,
(2)

where A is a second-order elliptic linear operator given by

A = −
n∑

i,j=1

∂

∂xi

(
aij

∂

∂xj

)

with aij(x) = aji(x) ∈ C1(Ω), and there exists α1 > 0
such that

n∑

i,j=1

aijξiξj ≥ α1

n∑

j=1

|ξj |2,

∀ξ = (ξ1, ξ2, . . . , ξn) ∈ R
n.

N is a nonlinear operator, D ⊂ Ω, f ∈ L2(D),
u ∈ U = L2(0, T ) and (y0, y1) ∈ H1

0 (Ω) × L2(Ω).

Let

zu =
(
yu,

∂yu
∂t

)

denote the solution to (2) and assume that zu(T ) ∈
E = (L2(Ω))2. For ω being an open regular subset of
Ω which has positive Lebesgue measure, consider the re-
striction operator

χω :

⎧
⎪⎨

⎪⎩

L2(Ω) × L2(Ω) → L2(ω) × L2(ω),

(z1, z2) 	→ (
z1|ω, z2|ω

)
,

where χ∗
ω denotes its adjoint defined from L2(ω)×L2(ω)

to L2(Ω) × L2(Ω) and given by

χ∗
ω(z1, z2)(x) =

⎧
⎪⎨

⎪⎩

(z1(x), z2(x)), x ∈ ω,

(0, 0), x ∈ Ω\ω.
Definition 1. The system (2) is said to be ω-exactly

(resp. ω–approximately) regionally controllable if for all
(zd1 , zd2) ∈ L2(ω) × L2(ω) (resp. for all ε > 0) there exi-
sts u ∈ U such that

yu(T ) = zd1 ,
∂yu
∂t

(T ) = zd2 in ω
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(
resp. ‖yu(T ) − zd1‖L2(ω) + ‖∂yu

∂t
(T ) − zd2‖L2(ω) ≤ ε

)
.

This definition generalizes the standard ones of exact
and approximate controllabilities on the whole domain Ω.

In the sequel, we consider the regional controllabi-
lity problem for the system (2) excited by an internal zone
actuator (f,D) formulated as follows:

Problem 1. For zd = (zd1 , zd2) ∈ L2(ω) × L2(ω), find a
control u ∈ L2(0, T ) such that

yu(T ) = zd1 ,
∂yu
∂t

(T ) = zd2 in ω. (3)

Write z = (y, ∂y/∂t), A(z1, z2) = (z2,Az1) for all
(z1, z2) ∈ D(A) = (H1

0 (Ω) ∩ H2(Ω)) × L2(Ω), Nz =
(0,−N z1), z0 = (y0, y1) and Bu = (0, χ

D
fu). The

system (2) may be written as
⎧
⎪⎪⎨

⎪⎪⎩

∂z

∂t
+Az = Nz +Bu in Q,

z(0) = z0 in Ω,

(4)

and its associated linear system is
⎧
⎪⎪⎨

⎪⎪⎩

∂z

∂t
+Az = Bu in Q,

z(0) = z0 in Ω.

(5)

Assume that (−A) generates a strongly continuous
semigroup S(t)(t≥0) on the state space E . Let L(·) and
Gω be the operators defined by

L(t)z(·) =
∫ t

0

S(t− s)z(s) ds

and

Gωu = χωL(T )Bu.

Consider now the function

Φ(z)(·)
= S(·)z0 + L(·)Nz(·)

+ L(·)BG†
ω

[
zd − χωS(T )z0 − χωL(T )Nz(·)], (6)

where G†
ω = (G∗

ωGω)−1
G∗
ω is the generalized inverse of

Gω.
Since z∗(·) is a fixed point of (6) such that [zd −

χωS(T )z0−χωL(T )Nz∗(·)] ∈ ImGω, it is easy to show
that if (5) is ω-approximately regionally controllable, then
the control

u∗ = G†
ω

[
zd − χωS(T )z0 − χωL(T )Nz∗(·)

]
(7)

drives the system (2) to zd at time T .

3. Proposed Approaches

Here we shall study two important situations i.e., the case
of asymptotically linear systems and the analytical one.

3.1. Asymptotically Linear Case. Here we deal with
the problem (3) when the system (2) is assumed to satisfy
(1). The approach we shall use is an extension of the Hil-
bert uniqueness method used to establish controllability
in the linear case (Lions, 1988) and the semilinear case
(Zuazua et al, 1990), and is developed in two steps.

Step 1. We consider the system (2) with N s = αs,

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

∂2y

∂t2
+ Ay + αy = χ

D
fu in Q,

y(x, 0) = y0(x),
∂y

∂t
(x, 0) = y1(x) in Ω,

y(ξ, t) = 0 on Σ,

(8)

and let G be the set

G = {(φ1,−φ0) ∈ C∞(Ω) × C∞(Ω)
such that φ0 = φ1 = 0 on Ω\ω}.

For (φ1,−φ0) ∈ G, the system

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

∂2φ

∂t2
+ Aφ+ αφ = 0 in Q,

φ(x, T ) = φ0(x),
∂φ

∂t
(x, T ) = φ1(x) in Ω

φ(ξ, t) = 0 on Σ

(9)

has a unique solution

φ ∈ C(0, T,H1
0 (Ω)) ∩ C1(0, T, L2(Ω)),

see (Lions, 1988).
In G we define the following seminorm:

‖(φ1,−φ0)‖G =

(∫ T

0

〈φ(t), f〉2L2(D) dt

) 1
2

(10)

and consider the system

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

∂2ψ

∂t2
+ Aψ + αψ = −〈φ, f〉L2(D)χD

f in Q,

ψ(x, 0) = y0(x),
∂ψ

∂t
(x, 0) = y1(x) in Ω,

ψ(ξ, t) = 0 on Σ.
(11)

Here (11) has only one solution such that

(ψ(T ),
∂ψ

∂t
(T )) ∈ H1

0 (Ω) × L2(Ω),

see (Lions, 1988).
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Let M be the affine operator defined by

M(φ1,−φ0) = P(ψ(T ),
∂ψ

∂t
(T ))

with P = χ∗
ωχω.

But

(
ψ(T ),

∂ψ

∂t
(T )
)
=
(
ψ0(T ),

∂ψ0

∂t
(T )
)
+
(
ψ1(T ),

∂ψ1

∂t
(T )
)
,

where ψ0 and ψ1 are solutions of the systems

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

∂2ψ0

∂t2
+ Aψ0 + αψ0 = 0 in Q,

ψ0(x, 0) = y0(x),
∂ψ0

∂t
(x, 0) = y1(x) in Ω,

ψ0(ξ, t) = 0 on Σ,
(12)

and
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

∂2ψ1

∂t2
+ Aψ1 + αψ1 = −〈φ, f〉L2(D)χD

f in Q,

ψ1(x, 0) = 0,
∂ψ1

∂t
(x, 0) = 0 in Ω,

ψ1(ξ, t) = 0 on Σ.
(13)

We consider the operator

Λ(φ1,−φ0) = P(ψ1(T ),
∂ψ1

∂t
(T )
)
. (14)

Λ is a symmetric and bounded operator (Zuazua et al,
1990), then the regional controllability problem for the
system (8) reduces to solving the equation

Λ(φ1,−φ0) = −P(ψ0(T ),
∂ψ0

∂t
(T )
)

+ χ∗
ω(zd1 , z

d
2).

(15)

Theorem 1. If (8) is ω-approximately regionally con-
trollable, then (15) has a unique solution (φ1,−φ0) and
u∗(t) = −〈φ(t), f〉L2(D) drives the linear system (8) to
zd in ω at time T , where φ is a solution of the system (9).

Proof. Since (8) is approximately controllable, (10) is a
norm and Λ is an isomorphism from Ĝ into Ĝ∗, where Ĝ
is the completion of G with respect to the norm (10) and
Ĝ∗ is its dual. (The details of the proof are given in (El
Jai et al, 1995).) �

Step 2. Let N satisfy (1). Then the solution of the system
(2) can be written as

y = ψ0 + ψ1 + ψ2,

where ψ0 and ψ1 are respectively solutions of the systems
(12) and (13) which satisfy (Lions, 1988)

ψ0, ψ1 ∈ C(0, T,H1
0 (Ω)) ∩ C1(0, T, L2(Ω)).

Moreover, there exists a positive constant β1 such that

‖ψ0‖L∞(0,T,H1
0 (Ω)) + ‖∂ψ0

∂t
‖L∞(0,T,L2(Ω))

≤ β1‖(y0, y1)‖H1
0 (Ω)×L2(Ω), (16)

‖ψ1‖L∞(0,T,H1
0 (Ω)) + ‖∂ψ1

∂t
‖L∞(0,T,L2(Ω))

≤ β1‖(φ0, φ1)‖H1
0 (Ω)×L2(Ω), (17)

and ψ2 is a solution of the system
⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

∂2ψ2

∂t2
+ Aψ2 + N (ψ0 + ψ1 + ψ2)

= α(ψ0 + ψ1) in Q,

ψ2(x, 0) = 0,
∂ψ2

∂t
(x, 0) = 0 in Ω,

ψ2(ξ, t) = 0 on Σ,

(18)

and since N ′ ∈ L∞(R), the mapping ψ −→ N (ψ0(t) +
ψ1(t) + ψ(t)) is Lipschitz continuous from L2(Ω) →
L2(Ω) a.e. in [0, T ]. Then (18) has a unique solution
(Lions, 1988):

ψ2 ∈ C(0, T,H1
0 (Ω)) ∩ C1(0, T, L2(Ω)).

Let us now define the nonlinear operator

μ(φ1,−φ0)

= P(ψ1(T ),
∂ψ1

∂t
(T )
)

+ P(ψ2(T ),
∂ψ2

∂t
(T )
)
. (19)

Then the problem of regional controllability of (2) reduces
to solving the equation

μ(φ1,−φ0) = χ∗
ω(zd1 , z

d
2) − P(ψ0(T ),

∂ψ0

∂t
(T )
)
.

(20)
By (14), Eqn. (20) is equivalent to

Λ(φ1,−φ0) = χ∗
ω(zd1 , z

d
2) − P(ψ2(T ),

∂ψ2

∂t
(T )
)

−P(ψ0(T ),
∂ψ0

∂t
(T )
)
. (21)

For a large constant β2 > 0, consider the set

G =
{
(φ1,−φ0) ∈ G such that

‖(φ0, φ1)‖H1
0 (Ω)×L2(Ω) ≤ β2‖(φ1,−φ0)‖G

}
.

Then a solution of (20) is a fixed point of the nonlinear
operator

μ̃(φ1,−φ0) = Λ−1χ∗
ω(zd1 , z

d
2) − Λ−1Kω(φ1,−φ0)

−Λ−1P(ψ0(T ),
∂ψ0

∂t
(T )
)
, (22)
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where Kω is the operator defined by

Kω :

{
G → Ĝ∗,

(φ1,−φ0) 	→ P(ψ2(T ), ∂ψ2
∂t (T )

)
.

Theorem 2. If the system (8) is ω-approximately re-
gionally controllable, then (22) has a unique fixed point
(φ1,−φ0) and the control u∗(t) = −〈φ(t), f〉L2(D) dri-
ves the system (2) to zd in ω at time T , where φ is a solu-
tion of the system (9).

Proof. We have ψ2 ∈ C(0, T,H1
0 (Ω))∩C1(0, T, L2(Ω))

and there exists β3 > 0 such that for all t > 0

‖P(
∂ψ2

∂t
(t),−ψ2(t))‖Ĝ∗

≤ β3

[

‖ψ2(t)‖H1
0 (Ω) + ‖∂ψ2(t)

∂t
‖L2(Ω)

]

. (23)

Then P(
∂ψ2

∂t
,−ψ2) ∈ C(0, T, Ĝ∗).

There exist ε > 0 and β4 > 0 (Lions, 1988) such that

‖ψ2‖L∞(0,T,H1
0 (Ω)) + ‖∂ψ2

∂t
‖L∞(0,T,L2(Ω))

≤ ε
(‖(y0, y1)‖H1

0 (Ω)×L2(Ω) + ‖(φ0, φ1)‖H1
0 (Ω)×L2(Ω)

)

+β4.

Moreover, since (φ1,−φ0) ∈ G, for all t > 0 we have

‖P(∂ψ2

∂t
(t),−ψ2(t)

)‖Ĝ∗

≤ε
[
‖(y0, y1)‖H1

0 (Ω)×L2(Ω)+β2‖(φ1,−φ0)‖G+
β4

ε

]
. (24)

Applying (24) with ε = [2β2‖Λ−1‖L(G∗,G)]−1, for some
constant β5 > 0 we have

‖μ̃(φ1,−φ0)‖G
≤ ‖Λ−1Kω(φ1,−φ0)‖G

+‖Λ−1χ∗
ω(zd1 , z

d
2) − Λ−1P(ψ0(T ),

∂ψ0

∂t
(T )
)‖G

≤ 1
2
‖(φ1,−φ0)‖G + β5.

Moreover, from (23) and (24), Kω is a compact ope-
rator. Then μ̃ is also compact and there exists M ≥ 2β5

such that

‖μ̃(φ1,−φ0)‖G ≤M

for any (φ1,−φ0) ∈ G satisfying

‖(φ1,−φ0)‖G ≤M.

Hence, by applying Schauder’s fixed–point theorem,
(Zeidler, 1990) the operator (22) has at least one fixed po-
int and the proof is completed. �

Remark 1.

1. The approach used here is a natural generalization of
the one developed for the linear case. Indeed, when
N s = αs, the operator μ coincides with the isomor-
phism Λ given by (14).

2. The problem (3) can be solved by similar techniques
when the system is excited by a boundary actuator.

3.2. Analytical Case. In the following, we consider
the problem (3) for the system (4) with z0 = 0 and assume
that (−A) generates an analytic semi-group S(t)(t≥0) on
the state space E . Moreover, let A1 = A + aI, where a
is a real such that Reσ(A1) > δ > 0 while Reσ(A1)
indicates the real part of the spectrum of A1. Then for
0 ≤ α < 1, Eα = D(Aα1 ) defines a dense Banach space
on E endowed with the graph norm

‖ · ‖Eα = ‖Aα1 (·)‖E
and ‖S(t)‖L(E,Eα) = c ·t−α exp(a−δ)t = g1(t) (Zeidler,
1990).

Assume that g1 ∈ Lq(0, T ), q ≥ 1, and let r, s ≥ 1
be such that

1
q

= 1 +
1
r
− 1
s

and that N is well defined from Lr(0, T ; Eα) →
Ls(0, T ; E) satisfying
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

N(0) = 0,
‖Nx−Ny‖Ls(0,T ;E)

≤ k(‖x‖, ‖y‖)‖x− y‖Lr(0,T ;Eα),

∀x, y ∈ Lr(0, T ; Eα),
with k : R

+ × R
+ −→ R

+

such that lim
θ1,θ2→0

k(θ1, θ2) = 0.

(25)

These hypotheses are fulfilled by many important
classes of semilinear hyperbolic systems. Various exam-
ples are given and discussed in (Henry, 1981; Kassara et
al, 1983).

Consider now the functions

Φ̃(z, u) = L(·)Nz + L(·)Bu (26)

and
ψ̃ω(zd, u) = G†

ω(zd − χωL(T )Nzu). (27)

In the following, ImGω is endowed with the seminorm

‖zd‖ImGω = ‖G†
ωz

d‖L2(0,T ). (28)

Theorem 3. Assume that the system (5) is ω-
approximately regionally controllable, the hypothesis (25)
holds and

‖L(·)Bu‖Lr(0,T,Eα) ≤ β‖u‖L2(0,T ), (29)
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‖χωS(·)‖L(E,ImGω) = g2 ∈ Ld(0, T )

such that

1
d

+
1
s

= 1. (30)

Then

1. There exist m > 0 and ρ > 0 such that for any
zd ∈ B(0, ρ) ⊂ ImGω there exists u∗ ∈ B(0,m)
being the unique solution to Problem 1.

2. The mapping zd 	→ u∗(zd) from B(0, ρ) →
L2(0, T ) is Lipschitz.

Proof. 1. Since the system (5) is ω-approximately
controllable, G†

ω is injective and consequently (28) is a
norm.

2. We have
lim

θ1,θ2→0
k(θ1, θ2) = 0.

Hence there exists γ > 0 such that

C1 := ‖g2‖Lq(0,T ) sup
θ1,θ2<γ

k(θ1, θ2) < C2

and

C2 := (β‖g2‖Ld(0,T ) + ‖g1‖Lq(0,T ))
× sup
θ1,θ2<γ

k(θ1, θ2) < 1.

But it is well known (Kassara et al, 1983) that there exists

m :=
γ

β
(1 − ‖g1‖Lq(0,T ) sup

θ≤γ
k(θ, 0)) (31)

such that for all u ∈ B(0,m), Φ̃(·, u) has only one fixed
point z ∈ B(0, γ) ⊂ Lr(0, T, Eα) being a solution of
(4) and the mapping u 	→ zu is Lipschitz with constant
β/(1 − C1). Then, for zd ∈ ImGω we have

‖ψ̃ω(zd, u) − ψ̃ω(zd, v)‖L2(0,T )

= ‖G†
ωχωL(T )(Nzv −Nzu)‖L2(0,T )

= ‖χωL(T )(Nzv −Nzu)‖ImGω

≤ ‖g2‖Ld(0,T )‖Nzv −Nzu‖Ls(0,T,E)

≤ β

1 − C1
‖g2‖Ld(0,T ) sup

θ1,θ2<γ
k(θ1, θ2)‖u− v‖.

Consequently,

‖ψ̃ω(zd, u) − ψ̃ω(zd, v)‖L2(0,T ) ≤ C3‖u− v‖, (32)

where

C3 :=
β

1 − C1
‖g2‖Ld(0,T ) sup

θ1,θ2<γ
k(θ1, θ2) < 1,

which shows that ψ̃ω is a contraction.
Moreover,

‖ψ̃ω(zd, u)‖ = ‖zd − χωL(T )Nzu‖
≤ ‖zd‖ + ‖χωL(T )Nzu‖
≤ ‖zd‖ + ‖g2‖Ld(0,T )k(‖zu‖, 0)‖zu‖
≤ ‖zd‖ + ‖g2‖Ld(0,T ) sup

θ≤γ
k(θ, 0)γ.

Thus, if u ∈ B(0,m) and

‖zd‖ ≤ m− ‖g2‖Ld(0,T ) sup
θ≤γ

k(θ, 0)γ,

then ψ̃ω(zd, u) ∈ B(0,m).

From (31) we obtain

‖zd‖
≤ γ

β

(
1 − (‖g1‖Lq(0,T ) + β‖g2‖Ld(0,T )) sup

θ≤γ
k(θ, 0)

)

=: ρ. (33)

Consequently, if zd ∈ B(0, ρ) ⊂ ImGω , then ψ̃ω(zd, ·)
has a unique fixed point in B(0,m) being a solution to
the problem (3).

3. For zd, yd ∈ B(0, ρ) we have

u∗(zd) − u∗(yd)
= ψ̃ω

(
zd, u∗(zd)

)− ψ̃ω(yd, u∗(yd))

= ψ̃ω
(
zd, u∗(zd)

)− ψ̃ω(zd, u∗(yd))

+ ψ̃ω
(
zd, u∗(yd)

)− ψ̃ω
(
yd, u∗(yd)

)
.

But

‖ψ̃ω(zd, u∗(zd)) − ψ̃ω(zd, u∗(yd))‖
≤ C3‖u∗(zd) − u∗(yd)‖,

‖ψ̃ω(zd, u∗(yd)) − ψ̃ω(yd, u∗(yd))‖ = ‖zd − yd‖.
Hence

‖u∗(zd) − u∗(yd)‖ ≤ 1
1 − C3

‖zd − yd‖,

which shows that the mapping zd −→ u∗(zd) from
B(0, ρ) → L2(0, T ) is Lipshitz. �

Proposition 1. The sequence of controls
{
un+1 = G†

ω(zd − χωL(T )Nzun),
u0 = 0

(34)

converges in L2(0, T ) to u∗, a solution to Problem 1.

Proof. The proof proceeds using (32) and (28). �
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4. Numerical Approach

Here we outline a numerical approach that leads to the
computation of the control solution to Problem 1 when
the system (4) is analytic. From (34) the control satisfies

G†
ω(zd − χωzun) = un+1 − un (35)

and the problem reduces to computingG†
ω.

Since the system (5) is ω-approximately regionally
controllable, (G∗

ωGω) is invertible and the operatorG†
ω =

(G∗
ωGω)−1

G∗
ω is well defined and may be written as

G†
ωy =

∑

i≥1

z̃iwi(t),

where

wi(t) =
(

2
T

) 1
2

sin
(
iπt

T

)

,

with i ≥ 1, and the problem is to calculate the component
z̃i.

If Φn are the eigenfunctions of A, then the operator
Gω : L2(0, T ) → L2(ω) × L2(ω) may be written as

Gωu

=

⎡

⎢
⎢
⎣

∑

n≥1

1
nπ

〈χ
D
f,Φn〉〈u(·), sinnπ(T − ·)〉Φn|ω

∑

n≥1

〈χ
D
f,Φn〉〈u(·), cosnπ(T − ·)〉Φn|ω

⎤

⎥
⎥
⎦ .

Hence, for all v ∈ L2(0, T ) and z = (z1, z2) ∈ L2(ω) ×
L2(ω) we have

〈Gωv, (z1, z2)〉
= 〈
∑

n≥1

1
nπ

〈χDf,Φn〉〈Φn, z1〉ω〈sinnπ(T − ·), v(·)〉

+
∑

n≥1

〈χ
D
f,Φn〉〈Φn, z2〉ω〈cosnπ(T − ·), v(·)〉, (36)

and G∗
ω : L2(ω) × L2(ω) → L2(0, T ) is given by

G∗
ω(z1, z2)

=
∑

m≥1

1
mπ

〈χDf,Φm〉〈Φm, χ̃∗
ωz1〉Ω sinmπ(T − ·)

+
∑

m≥1

〈χ
D
f,Φm〉〈Φm, χ̃∗

ωz2〉Ω cosmπ(T − ·). (37)

Then, for j ≥ 1,

〈G∗
ω

(

zd − χω(yu(T ),
∂yu
∂t

(T ))
)

,wj〉

=
∑

m≥1

R(m)
mπ

[〈Φm,zd1〉ω−〈Φm,yu(T )〉ω
]
Θ(j,m)

+
∑

m≥1

R(m)
[

〈Φm,zd2〉ω−〈Φm,
∂yu
∂t

(T )〉ω
]

D(j,m)

=: Yj (38)

and

〈G∗
ωGωwi, wj〉

=
∑

m≥1

1
mπ

R(m)
∑

n≥1

[
Π(m,n)R(n)Θ(i,n)

nπ

]

Θ(j,m)

+
∑

m≥1

R(m)
∑

n≥1

[Π(m,n)R(n)D(i, n)]D(j,m)

=: Ãij , (39)

where
⎧
⎪⎨

⎪⎩

R(m)=〈f,Φm〉
D
, Θ(i, n) = 〈wi, sinnπ(T − ·)〉,

Π(n,m)=〈Φn,Φm〉ω ,D(i, n) = 〈wi, cosnπ(T − ·)〉,
and z̃j are solutions of the system

∑

j≥1

ÃijZj = Yi, i = 1, 2, . . . , (40)

where (Ãij) are given by (39) and Yj by (38). From (35)
the control u∗n is approximated by

u∗n+1 �
M∑

i=1

z̃iwi + u∗n, M ∈ N
∗. (41)

Let zu∗
n

be the solution of the system (4) excited by
u∗n and

Yj =
(
〈G∗

ω(zd − χωzu∗
n+1

(T )), wj〉
)
, j ≤M. (42)

Accordingly, the algorithm can be implemented as fol-
lows:

Step 1: Let (zd1 , z
d
2), the region ω and the actuator loca-

tion D. Choose the truncation order M .

Step 2: Repeat

• Solve the system (40).

• Computation of the control u∗n+1 using (41).

• Solve the system (4).

• Solve (42) to obtain Yj .
Until

(
‖zd − χωzu∗

n+1
(T )‖ < ε

)
.

Step 3: Let z∗(T )|ω = χωzu∗
n+1

(T ), which
approaches the desired state in ω.
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5. Simulations Results

In this part, we provide a numerical example and simu-
lation results related to the choice of the subregion, the
desired state and the actuator location.

Example 1. Consider the one-dimensional system excited
by a zone actuator located in D:
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂2y(x, t)
∂t2

− ∂2y(x, t)
∂x2

+
m∑

i=1

|〈y(t), wi〉|〈y(t), wi〉wi(x)
+χD(x)11(x)u(t) = 0 in ]0, 1[×]0, T [,

y(x, 0) = 0,
∂y

∂t
(x, 0) = 0 in ]0, 1[,

y(0, t) = y(1, t) = 0 on ]0, T [,
(43)

where wi(x) =
√

2 sin(iπx), i ∈ N
∗ and D =]0, 2; 0, 4[.

Let zd1 = A1 sin(πx) and zd2 = A1(1 + B1) sin(πx)
be the desired state in ω =]0.4, 0.8[. For numerical con-
siderations, A1 and B1 are chosen in order to produce a
desired state with a reasonable amplitude.

Fig. 1. Actuator location and the subregion.

By taking T = 1 and applying the previous algori-
thm, the desired state is obtained with error

‖yu�(T )−zd1‖L2(ω)+‖∂yu�

∂t
(T )−zd2‖L2(ω) = 4.2×10−4

and cost
‖u�‖L2(0,T ) = 1.38 × 10−6.

Example 2. Now consider the one-dimensional system
excited by a pointwise actuator located at b:
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂2y(x, t)
∂t2

− ∂2y(x, t)
∂x2

= −|y(x, t)|y(x, t) + δ(x− b)u(t)
in ]0, 1[×]0,T[,

y(x, 0) = 0,
∂y

∂t
(x, 0) = 0 in ]0, 1[,

y(0, t) = y(1, t) = 0 on ]0,T[.
(44)

Fig. 2. Desired (dashed line) and final (solid line) position in ω.

Fig. 3. Desired (dashed line) and final (solid line) speed in ω.

Since the initial conditions are regular enough, we have
a regular system state (Brezis, 1993), so with a pointwise
actuator we obtain a similar result as in the zone case.

Fig. 4. Evolution of the control function on the time interval
[0,T ].

Let zd1 = A1 sin(πx), zd2 = A1(1 + B1) sin(πx)
be the desired state in ω =]0.4, 0.7[ and b = 0.2. For
numerical considerations, A1 and B1 are chosen in order
to yield a desired state with a reasonable amplitude.

Taking T = 1 and applying the previous algorithm,
the desired state is obtained with error

‖yu�(T )−zd1‖L2(ω)+‖∂yu�

∂t
(T )−zd2‖L2(ω)=3.005×10−5

and cost
‖u�‖L2(0,T ) = 4.84 × 10−2.
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Fig. 5. New actuator location and the new subregion.

Fig. 6. Desired (dashed line) and final (solid line) position in ω.

Fig. 7. Desired (dashed line) and final (solid line) speed in ω.

Fig. 8. Evolution of the control function on the time interval
[0,T ].

6. Conclusion

The regional controllability problem for a class of semi-
linear distributed hyperbolic systems was discussed and
solved using linear regional controllability techniques and
by applying fixed point theorems. The obtained results
lead to an algorithm which was implemented numerically.
The method presented in the paper is quite general and
covers a wide class of semilinear abstract dynamical sys-
tems. Many questions remain open, e.g., the case where
the target ω is a part of the boundary of the system do-
main. This question is still under consideration and the
results will appear in a separate paper.
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