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This article is devoted to the discretization of source terms and boundary conditions using discontinuous Galerkin schemes
with an arbitrary high order of accuracy in space and time for the solution of hyperbolic conservation laws on unstructured
triangular meshes. The building block of the method is a particular numerical flux function at the element interfaces
based on the solution of Generalized Riemann Problems (GRPs) with piecewise polynomial initial data. The solution of the
generalized Riemann problem, originally introduced by Toro and Titarev in a finite volume context, provides simultaneously
a numerical flux function as well as a time integration method. The resulting scheme is extremely local since it integrates
the PDE from one time step to the successive one in a single step using only information from the direct side neighbors.
Since source terms are directly incorporated into the numerical flux via the solution of the GRP, our very high order accurate
method is also able to maintain very well smooth steady-state solutions of PDEs with source terms, similar to the so-called
well-balanced schemes which are usually specially designed for this purpose. Boundary conditions are imposed solving
inverse generalized Riemann problems. Furthermore, we show numerical evidence proving that by using very high order
schemes together with high order polynomial representations of curved boundaries, high quality solutions can be obtained
on very coarse meshes.
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1. Discretization of Source Terms
with Arbitrary High Order DG Schemes

We consider the non-homogeneous system of conserva-
tion laws

ut + div F (u) = S(u, �x, t), (1)

with the flux F (u) = [f(u), g(u)] in a two-dimensional
domain Ω ∈ R2. S is a source term that depends on the
state vector u and that may also explicitly depend on space
�x = (x, y) and time t. For (1), proper initial conditions at
t = 0 have to be provided. On the boundary ∂Ω of the do-
main, appropriate boundary conditions must be imposed
on u or on the fluxes.

The computational domain Ω is divided into con-
forming triangles T (m) addressed by a unique index (m).
The numerical solution uh is sought in the space V of
piecewise polynomials up to degree N. It is hence ap-
proximated inside each triangle T (m) by a linear combi-
nation of some time independent polynomial basis func-
tions Φl(�ξ) of degree N defined on T (m) and with time

dependent degrees of freedom û(m)(t):

u
(m)
h

(
�ξ, t
)

=
Nd∑
l=1

û
(m)
l (t)Φl( �ξ ). (2)

We note that the coordinates �ξ refer to a reference element
TE , see Fig. 2. The number of degrees of freedom per ele-
ment Nd in two dimensions is Nd = 1

2 (N + 1) (N + 2).
For the discretization of the inhomogeneous equa-

tion (1), we multiply it by test functions Φk from the same
space V of piecewise polynomials of order N . After in-
tegration by parts, the semi-discrete DG scheme for the
numerical solution uh is∫
T (m)

Φk
∂

∂t
uh dV +

∫
∂T (m)

ΦkFh�ndS

−
∫

T (m)

F (uh)grad (Φk) dV =
∫

T (m)

ΦkS(uh, �x, t) dV. (3)

In the nonlinear case, the first integral in (3) can
still be computed analytically, but all the other integral
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terms are approximated by Gaussian quadrature rules of
suitable order, see (Cockburn and Shu, 1989; Cockburn
and Shu, 1998), where NGP

S is the number of Gaussian
quadrature points needed for the boundary integral and
NGP

V denotes the number of Gaussian points needed for
the volume integral. The quadrature points are χn on
the boundary and �ξn in the volume, with the weights
ωS

n on the boundary and ωV
n in the volume, respectively.

For general multidimensional integration formulas, see
(Stroud, 1971). We obtain∫
∂T (m)

ΦkFh�n dS

≈
3∑

j=1

|Sj |
NGP

S∑
n=1

ωS
nΦk

(
�ξ(χn)

)
× Fh

(
u

(m)
h (�ξ(χn), t), u(kj)

h (�ξ(χn), t)
)

�nj , (4)∫
T (m)

F (uh) ∇x (Φk) dV

≈
NGP

V∑
n=1

ωV
n

∣∣∣J (�ξn

)∣∣∣F (uh(�ξn, t)
)

× J−T
(
�ξn

)
∇ξΦk

(
�ξn

)
, (5)

∫
T (m)

ΦkS(uh, �x, t) dV

≈
NGP

V∑
n=1

ωV
n

∣∣∣J (�ξn

)∣∣∣Φk

(
�ξn

)
S(uh(�ξn, t), �ξn, t). (6)

Here, |Sj | and �nj are the edge length and the normal vec-
tor of edge j, respectively. ∇x and ∇ξ denote the gra-
dient operators in the physical x-y system and in the ξ-η
reference system, respectively, and |J(�ξ)| is the determi-
nant of the Jacobian matrix J(�ξ) of the transformation be-
tween both coordinate systems. In general, it depends on
�ξ = (ξ, η), but J is a constant for classical triangles. For
curved triangles, see Section 2.2 and Eqn. (42).

In the discontinuous Galerkin framework the nu-
merical solution is represented by piecewise polynomi-
als which may be discontinuous at the element bound-
aries. This particular data representation leads natu-
rally to the so-called generalized Riemann problems, de-
noted by GRPN in the following, at the element inter-
faces. The initial condition of a generalized Riemann
problem consists of two polynomials of degree N that
are in general separated by a discontinuity at the inter-
face. So, a quite natural choice for the numerical flux
Fh over the element boundaries seems to be the appli-
cation of the ADER (arbitrary high order schemes using
derivatives) approach of (Titarev and Toro, 2002; Titarev

and Toro, 2005; Toro, 2001; Toro and Titarev, 2002),
which constructs an approximate solution to this general-
ized Riemann problem for small τ > 0, where τ = t− tn

is the time t relative to the current time level tn. This
provides simultaneously a numerical flux and an explicit
time integration procedure. For further details, especially
concerning the theory of the generalized Riemann prob-
lem, see (Ben-Artzi and Falcovitz, 1984; Le Floch and
Raviart, 1988; Bourgeade et al., 1989).

The generalized Riemann problem GRPN is given by
the polynomials u

(m)
h (x, y) in cell (m) and u

(kj)
h (x, y) in

its neighbor (kj) on the common cell interface j at time
τ = 0 at each Gaussian quadrature point χn:

PDE: ut + div F (u) = S(u, �x, t),

IC: u (�x, 0) =

⎧⎨
⎩ u

(m)
h (�x, 0) if �x ∈ T (m),

u
(kj)
h (�x, 0) if �x ∈ T (kj).

(7)

The solution of GRPN is first determined by the
solution uRP0

h (χn) of a conventional (piecewise con-
stant data) homogeneous nonlinear Riemann problem
RP0 of the boundary extrapolated values u

(m)
h (χn, 0) =

u
(m)
h

(
�ξ(χn), 0

)
and u

(kj)
h (χn, 0) = u

(kj)
h

(
�ξ(χn), 0

)
on

the left and right hand sides, respectively, at the quadra-
ture point χn,

PDE: ut + div F (u) = 0,

IC: u (�x, 0) =

⎧⎨
⎩ u

(m)
h (χn, 0) if �x ∈ T (m),

u
(kj)
h (χn, 0) if �x ∈ T (kj),

(8)

and second, it is determined by the set of solutions
u

RP(q,r)

h (χn) of a sequence of linearized conventional ho-
mogeneous Riemann problems RP(q,r) for all space deriv-
atives of uh. Linearization is performed about the solution
uRP0

h (χn),

PDE: u
(q,r)
t + A0u

(q,r)
x + B0u

(q,r)
y = 0,

IC: u(q,r) (�x, 0) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∂pu
(m)
h

∂xq∂yr
(χn, 0) if �x ∈ T (m),

∂pu
(kj)
h

∂xq∂yr
(χn, 0) if �x ∈ T (kj),

(9)

with the Jacobians A0 = ∂f/∂u and B0 = ∂g/∂u
evaluated at the solution uRP0

h (χn) of the leading order
Riemann problem. This sequence of linearized Riemann
problems RP(q,r) can be solved in a very efficient way
since the PDE and therefore also the Jacobians as well
as their left and right eigenvectors remain the same for
all space derivatives, and thus need to be calculated only
once. We emphasize that the source term does not ap-
pear in the Riemann problems (8) and (9), which have to
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be solved only in order to define the state and the deriva-
tives at the interface, see (Toro and Titarev, 2002). How-
ever, the source term has to be taken into account in the
Cauchy-Kovalewski procedure, which will yield the time
evolution of the solution at the element interface.

The solution of the generalized Riemann problem as
a function of relative time τ is finally given by a Taylor
series where time derivatives have been replaced by space
derivatives using the so-called Cauchy-Kovalewski pro-
cedure. With the Cauchy-Kovalewski procedure, in the
general case, the k-th time derivative can be expressed as
a nonlinear function Ck of all (mixed) space derivatives
up to order k, using successive differentiation of the gov-
erning equation (1). We emphasize in particular that the
function Ck also contains information on the source term.
Hence, we write

∂ku

∂tk
= Ck

(
∂pu

∂xq∂yr

)
, ∀ 0 � p = q + r � k. (10)

The solution of GRPN can thus be written as

uGRPN

h (χn, τ) = uRP0
h (χn) +

N∑
k=1

τk

k!
Ck

(
u

RP(q,r)

h (χn)
)

.

(11)
The time dependent approximate solution of GRPN as
given by Eqn. (11) can now be plugged into the physical
flux in order to obtain a numerical flux for the DG scheme
in Eqn. (4).

For the temporal approximation of the volume inte-
grals (5) and (6), the space derivatives can directly be ob-
tained by differentiating Eqn. (2) at the Gaussian points �ξn

since the polynomials are differentiable inside each trian-
gle T (m) and thus the Cauchy-Kovalewski procedure (10)
directly provides the time derivatives for the temporal
Taylor series,

uGAUSS
h

(
�ξn, τ

)
=

N∑
k=0

τk

k!
Ck

⎛
⎝∂pu

(m)
h

(
�ξn, 0

)
∂xq∂yr

⎞
⎠ , (12)

∀ 0 � p � k, ∀ q + r = p.

With these ingredients, Eqns. (4)–(6) can be the integrated
in time using a Gaussian quadrature rule of appropriate
order with NGP

T integration points τl and the associated
weights αl in the interval [0, Δt]:

Δt∫
0

∫
∂T (m)

ΦkFh�ndS dτ

≈
NGP

T∑
l=1

αl

3∑
j=1

|Sj |
NGP

S∑
n=1

ωS
nΦk (χn)

× F
(
uGRPN

h (χn, τl)
)

�nj, (13)

Δt∫
0

∫
T (m)

F (uh) ∇xΦk dV dτ

≈
NGP

T∑
l=1

αl

NGP
V∑

n=1

ωV
n

∣∣∣J (�ξn

)∣∣∣F (uGAUSS
h

(
�ξn, τl

))
× J−T (�ξn)∇ξΦk

(
�ξn

)
, (14)

Δt∫
0

∫
T (m)

ΦkS(uh, x, τ) dV dτ

≈
NGP

T∑
l=1

αl

NGP
V∑

n=1

ωV
n

∣∣∣J (�ξn

)∣∣∣Φk

(
�ξn

)
× S

(
uGAUSS

h

(
�ξn, τl

)
, �ξn, τl

)
. (15)

After introducing Eqns. (13)–(15), the semi-discrete
scheme (3) can be integrated in time and one obtains
the fully discrete ADER-DG scheme including the source
terms.

We emphasize that in Eqn. (13) the flux function F is
the physical flux which is evaluated by using the solution
of GRPN at time τl. It is therefore a high order generaliza-
tion of Godunov’s scheme if the exact Riemann solver is
used for the solution of RP0. Any other approximate Rie-
mann solver might be used as well, if it is able to deliver
the approximate solution uRP0

h (χn) of the conventional
nonlinear Riemann problem at the interface. For an ex-
haustive overview of Riemann solvers, see (Toro, 1999).

In the following, we present a special algorithm for
the Cauchy-Kovalewski procedure for the system of the
two-dimensional Euler equations with gravitational force.
For this particular inhomogeneous system, the Cauchy-
Kovalewski procedure turns out to be a particularly sim-
ple extension of the algorithm presented in (Dumbser and
Munz, 2006). The equations are⎛
⎜⎜⎝

ρ
ρu
ρv
ρE

⎞
⎟⎟⎠

t

+

⎛
⎜⎜⎝

(ρu)
(ρu2) + p

(ρuv)
u(ρE + p)

⎞
⎟⎟⎠

x

+

⎛
⎜⎜⎝

(ρv)
(ρuv)

(ρv2) + p
v(ρE + p)

⎞
⎟⎟⎠

y

=

⎛
⎜⎜⎝

0
0

−ρg
−ρgv

⎞
⎟⎟⎠

(16)
with the state equation

p = (γ − 1)
(

ρE − 1
2
(
ρu2 + ρv2

))
. (17)

Here γ = 1.4 is the ratio of specific heats and in (16) g
denotes the gravitation constant.

The resulting algorithm for the Cauchy-Kovalewski
procedure with gravitational source is given in Fig. 1
and exhibits only very few changes compared with the
algorithm presented in (Dumbser, 2005; Dumbser and
Munz, 2006) for the homogeneous Euler equations. As
in (Dumbser, 2005; Dumbser and Munz, 2006), we use
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DO c = 0, N − 1
DO b = 0, N − c; DO a = 0, N − c − b

∂a+b+c

∂xa∂yb∂tc
u = L(a,b,c)

∗∗ ((ρu), ρ, u)

∂a+b+c

∂xa∂yb∂tc
v = L(a,b,c)

∗∗ ((ρv), ρ, v)

ENDDO; ENDDO

DO b = 0, N − c; DO a = 0, N − c − b

∂a+b+c

∂xa∂yb∂tc
ρu2 = L(a,b,c) ((ρu), u)

∂a+b+c

∂xa∂yb∂tc
ρuv = L(a,b,c) ((ρu), v)

∂a+b+c

∂xa∂yb∂tc
ρv2 = L(a,b,c) ((ρv), v)

∂a+b+c

∂xa∂yb∂tc
p = (γ − 1)

[
∂a+b+c

∂xa∂yb∂tc
(ρE−

1
2
(
ρu2 + ρv2

))]
∂a+b+c

∂xa∂yb∂tc
u(ρE + p) = L(a,b,c) (u, (ρE + p))

∂a+b+c

∂xa∂yb∂tc
v(ρE + p) = L(a,b,c) (v, (ρE + p))

ENDDO; ENDDO

DO b = 0, N −1−c; DO a = 0, N −1−c−b

∂a+b+c+1

∂xa∂yb∂tc+1

⎛
⎜⎜⎜⎝

ρ

ρu

ρv

ρE

⎞
⎟⎟⎟⎠=− ∂a+1+b+c

∂xa+1∂yb∂tc

⎛
⎜⎜⎜⎝

(ρu)
(ρu2) + p

(ρuv)
u(ρE + p)

⎞
⎟⎟⎟⎠

− ∂a+b+1+c

∂xa∂yb+1∂tc

⎛
⎜⎜⎜⎝

(ρv)
(ρuv)

(ρv2) + p

v(ρE + p)

⎞
⎟⎟⎟⎠−g

∂a+b+c

∂xa∂yb∂tc

⎛
⎜⎜⎜⎝

0
0
ρ

ρv

⎞
⎟⎟⎟⎠

ENDDO; ENDDO

ENDDO

Fig. 1. Efficient algorithm for the Cauchy-Kovalewski
procedure for the two-dimensional Euler equa-
tions with gravitational source terms.

the generalized Leibniz rule in order to perform automatic
differentiation of a product of two functions f and g:

L(a,b,c) (f, g)

:=
∂a+b+c (f (x, y, t) g (x, y, t))

∂xa∂yb∂tc

=
a∑

i=0

b∑
j=0

c∑
k=0

Πbc
∂(a−i)+(b−j)+(c−k)f

∂x(a−i)∂y(b−j)∂t(c−k)

∂i+j+kg

∂xi∂yj∂tk
.

(18)

We also need the modified Leibniz rule to compute the
space-time derivatives of the primitive variables from
those of the conservative ones,

L(a,b,c)
∗∗ (fg, f, g)

:=
∂a+b+cg (x, y, t)

∂xa∂yb∂tc

=
1
f

[∂a+b+c (f (x, y, t) g (x, y, t))
∂xa∂yb∂tc

−L(a,b,c)
∗ (f, g)

]
,

(19)

with f �= 0. The operator L(a,b,c)
∗ (f, g) only contains

lower order derivatives of g and is defined as the original
Leibniz rule (18) except for the last term in the sum:

L(a,b,c)
∗ (f, g)

=
a∑

i=0

b∑
j=0

c∑
k=0︸ ︷︷ ︸

i+j+k �=a+b+c

Πbc

× ∂(a−i)+(b−j)+(c−k)f

∂x(a−i)∂y(b−j)∂t(c−k)

∂i+j+kg

∂xi∂yj∂tk
, (20a)

with
L(0,0,0)
∗ (f, g) := 0. (20b)

In the equations above, Πbc denotes the following product
of the binomial coefficients:

Πbc =

(
a

i

)(
b

j

)(
c

k

)
. (21)

2. High Order Boundary Discretization

A major advantage of the discontinuous Galerkin finite
element method is the fact that boundary conditions can
be imposed just by choosing a suitable numerical flux at
the domain boundary. This remains true even for high
order schemes since no reconstruction is necessary. Par-
ticularly, in the DG framework there are no ambiguities
in corners where different kinds of boundary conditions
meet because the edges are always well defined with re-
spect to their boundary condition. This is not the case for
high order finite difference schemes, where it may become
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cumbersome to correctly adjust the values of the ghost
points to have certain boundary conditions satisfied, es-
pecially when treating corners where different boundary
conditions are imposed on the two corner edges.

2.1. Inverse Generalized Riemann Problems. While
in the Runge-Kutta DG framework boundary conditions
are imposed by the numerical flux so that the desired
condition is fulfilled in each Runge-Kutta substage, in
the ADER-DG framework we have to think more care-
fully about boundary conditions. Because the ADER-DG
scheme is a single step scheme, we must require that the
appropriate boundary condition be satisfied at all times
during one time step and so the generalized Riemann
problem at the boundary must be posed in a suitable way.
For first order finite volume and RK-DG schemes it is suf-
ficient to solve an inverse Riemann problem so that it de-
livers the desired flux or the desired Godunov state at the
interface. For ADER-DG schemes we will now proceed in
a similar manner and will solve Inverse Generalized Rie-
mann Problems so that the flux or the state at the bound-
ary fulfils certain conditions. To simplify the notation, we
present the strategy only for the scalar case in one space-
dimension.

Definition 1. Let the PDE be a system of hyperbolic con-
servation laws equipped with an initial condition of piece-
wise polynomials of order N and the solution at the in-
terface x = 0 be given by the Taylor series uGRPN

h (0, τ),
τ > 0,

PDE: ut + f(u)x = 0, x ∈ R,

IC: u (x, 0) =

⎧⎨
⎩ uL

h (x, 0) if x < 0,

uR
h (x, 0) if x > 0,

uGRPN

h (0, τ) = uRP0
h (0, 0) +

N∑
k=1

τk

k!
∂k

∂tk
uGRPN

h (0, 0).

(22)
If the polynomial uL

h (x, 0) and the solution uGRPN

h (0, τ)
at the interface are known and the polynomial uR

h (x, 0) is
unknown, then we say that (22) defines an Inverse Gener-
alized Riemann problem (GRP−1

N ).

In Eqn. (22), uRP0
h (0) is the known solution of the

conventional nonlinear Riemann problem of the leading
order and ∂k

∂tk uGRPN

h are the known time derivatives of the
Taylor series of the solution of the GRP.

Because we do not have yet any theoretical knowl-
edge about the structure, nor even about the existence of
solutions to such a kind of problems, and because the
analysis becomes extremely cumbersome since already
the straightforward solution of a GRP involves a compli-
cated function Ck and the solution of a nonlinear conven-
tional Riemann problem, as well as the solution of a se-
quence of linearized Riemann problems, we will proceed

in the following in a numerical way to construct a solution
uR

h (x, 0) to GRP−1
N even if we do not know anything about

the existence and uniqueness.
We recall from Section 1 that the solution of the

GRP is firstly determined by the solution uRP0
h (0, 0) of

a conventional (piecewise constant data) nonlinear Rie-
mann problem RP0 of the boundary extrapolated values
uL

h (0−, 0) and uR
h (0+, 0) on the left and right hand sides,

respectively,

PDE: ut + f(u)x = 0, x ∈ R,

IC: u (x, 0) =

⎧⎨
⎩ uL

h (0−, 0) if x < 0,

uR
h (0+, 0) if x > 0,

(23)

and, secondly, it is determined by the set of solutions
u

RP(p)

h (0, 0) of a sequence of linearized conventional Rie-
mann problems for all space derivatives. Linearization is
performed about the solution uRP0

h (0, 0) with the Jacobian
A0 = ∂f/∂u,

PDE: u
(p)
t + A0u

(p)
x = 0, x ∈ R,

IC: u(p) (x, 0) =

⎧⎪⎪⎨
⎪⎪⎩

∂p

∂xp
uL

h (0−, 0) if x < 0,

∂p

∂xp
uR

h (0+, 0) if x > 0,

(24)

where all ∂p

∂xp uR
h (0+, 0) with 0 � p � N are unknowns.

The clue for solving GRP−1
N numerically consists in

exploiting the structure of the solution of the GRP and the
underlying Cauchy-Kovalewski procedure. We know that
the solution of the GRP is given by

uGRPN

h (0, τ) = uRP0
h (0, 0) +

N∑
k=1

τk

k!
Ck

(
u

RP(p)

h (0, 0)
)

,

∀ 0 � p � k. (25)

This implies that the k-th time derivative of the GRP so-
lution only depends on all unknown space derivatives of
order p less than or equal to k and not on the higher ones.
With this very important piece of information, we can
solve the problem hierarchically, starting from the zeroth
derivative and proceeding successively towards the high-
est derivative of order N . The problem now consists in
finding the roots ∂p

∂xp uR
h (0+, 0) of the system of N + 1

nonlinear equations

Ck

[
u

RP(p)

h

(
∂p

∂xp
uR

h

(
0+, 0

))]
=

∂k

∂tk
uGRPN

h ,

∀ 0 � p � k, ∀ 0 � k � N, (26)

where the right hand side is known. If we proceed with
solving the equations in (26) from k = 0 to k = N succes-
sively in order to decouple them, then for the k-th equation
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in (26) all roots of order lower than k are already known
from previous steps and one only has to find a solution for
∂k

∂xk uR
h (0+, 0). Please note that (26) implicitly includes

also the solution of Eqns. (23) and (24) to obtain the argu-
ments of the Cauchy-Kovalewski procedure. Proceeding
in such a way considerably reduces the complexity of the
problem since one does not need to solve (26) for all un-
knowns at the same time but it suffices to seek one level
of roots after the other.

The necessity to solve such inverse GRPs arises, e.g.,
at wall boundaries for the Euler equations with a gravita-
tional source term. At the boundary, the normal veloc-
ity component with respect to the wall must vanish at all
times. However, we have no information about the tem-
poral pressure evolution. This is provided by the solution
of the inverse GRP, where we search for a polynomial out-
side the computational domain such that the GRP solution
at the boundary interface yields exactly the desired condi-
tion on the normal velocity.

2.2. Curved Elements. In the previous section we dis-
cussed the high order discretization of boundary condi-
tions in time. However, we did not yet take into account
the real shape of the domain boundaries ∂Ω.

However, in real-life engineering problems, walls are
most often curved. One could imagine that the discretiza-
tion by triangles is sufficiently accurate for most of the
problems, but there are some striking examples where
this strategy fails. In (Bassi and Rebay, 1997; Cockburn
et al., 2000), it was shown that when computing the in-
viscid flowfield around a circular cylinder at a moderate
Mach number using unstructured grids and classical trian-
gles at the boundary, one gets a highly unsteady solution
which exhibits even separation and vortex-shedding al-
though this is not at all supposed to happen in the inviscid
case. In the framework of the Euler equations, i.e., with-
out viscosity, one would rather expect to obtain a steady
potential flow field around the cylinder. Bassi and Rebay
have shown that they indeed are able to obtain the correct
solution if they use curved triangles at the cylinder to take
into account the correct physical shape of the wall.

The finite element framework is a powerful tool that
also allows for this kind of discretization in a straightfor-
ward manner. The only major change is the integration
domain in Eqn. (3), which now no longer is a classical tri-
angle T (m) but a curved triangle T

(m)
c . Since integration

is always performed in the ξ-η coordinate system of the
canonical reference element TE in which also the basis
functions are defined, the only change when going from
classical to curved triangles is a different mapping, which
we will present in the following. In general, we will also
lose the nice property of the Jacobian of the transforma-
tion to be constant within each triangle. Instead, it will
now rather become a function of �ξ.

In the finite element literature, curved elements are
classified according to the polynomial order NB of the
boundary discretization relative to the order N of the ba-
sis functions. One speaks of subparametric elements if
the boundary accuracy is less than the order of the ba-
sis functions (NB < N), isoparametric elements if they
are equal (NB = N) and superparametric elements if the
boundary is discretized with polynomials of order higher
than the one of the basis functions (NB > N). We im-
plement the scheme in such a way that NB and N can
be chosen independently of each other so that any of the
above-mentioned cases can be realized.

Before we can construct the mapping formulas, we
must first give a definition of the curved triangle T

(m)
c in

physical space. Since we allow for any regular curved
shape of the three edges, we define the triangle by its
edges. The j-th edge ∂T

(m)
c,j of T

(m)
c is parameterized

with the edge parameter χ by

∂T
(m)
c,j =

{
�x ∈ R

2 | �x =

(
Xj (χ)
Yj (χ)

)}
,

0 � χ � 1, j ∈ {1, 2, 3} , (27)

where Xj and Yj are two sets of continuously differen-
tiable functions, which are either given analytically or in-
terpolated from a table using cubic spline interpolation.
The boundary of the curved triangle is then defined to be
the union of the edges:

∂T (m)
c = ∂T

(m)
c,1 ∪ ∂T

(m)
c,2 ∪ ∂T

(m)
c,3 . (28)

The set of functions Xj and Yj has to fulfil the require-

ments that ∂T
(m)
c is closed,(

Xj (0)
Yj (0)

)
=

(
Xj−1 (1)
Yj−1 (1)

)
, j ∈ {1, 2, 3} , (29)

that all edges are parameterized counter-clockwise,

Xj (0)Yj (1) − Xj (1)Yj (0) > 0,

∀ j ∈ {1, 2, 3} , (30)

and that T
(m)
c does not degenerate:∣∣∣J(�ξ)

∣∣∣ > 0 ∀ ξ ∈ TE . (31)

As a special case, we can thus parametrize the reference
element TE in the ξ-η coordinate system as follows:(

ξR
1 (χ)

ηR
1 (χ)

)
=

(
χ

0

)
,

(
ξR
2 (χ)

ηR
2 (χ)

)
=

(
1 − χ

χ

)
, (32)

(
ξR
3 (χ)

ηR
3 (χ)

)
=

(
0

1 − χ

)
.
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The mapping from the ξ-η reference system to the
physical x-y coordinate system is approximated by poly-
nomials of order NB ≥ 1 of the form

x (ξ, η) =
NB∑

m=0

NB−m∑
n=0

γmnξmηn, (33)

y (ξ, η) =
NB∑

m=0

NB−m∑
n=0

δmnξmηn. (34)

In Eqn. (34), the term δmn is not the Kronecker sym-
bol but denotes the coefficients of a polynomial. If the
boundary is sufficiently regular, we also approximate the
inverse mapping by polynomials of order NB ≥ 1, which
is, of course, a simplification:

ξ (x, y) =
NB∑

m=0

NB−m∑
n=0

αmnxmyn, (35)

η (x, y) =
NB∑

m=0

NB−m∑
n=0

βmnxmyn. (36)

We must now determine the coefficients αmn, βmn, γmn

and δmn. This can be achieved by requiring that certain
points in the x-y system be mapped to well-defined po-
sitions in the reference element, see Fig. 2. In detail, we
require that

NB∑
m=0

NB−m∑
n=0

γmn

(
ξR
j (χk)

)m (
ηR

j (χk)
)n

= Xj (χk) , (37)

NB∑
m=0

NB−m∑
n=0

δmn

(
ξR
j (χk)

)m (
ηR

j (χk)
)n

= Yj (χk) , (38)

and

NB∑
m=0

NB−m∑
n=0

αmn (Xj (χk))m (Yj (χk))n = ξR
j (χk), (39)

NB∑
m=0

NB−m∑
n=0

βmn (Xj (χk))m (Yj (χk))n = ηR
j (χk), (40)

x

y

ξ

η

T
(m)
c

TE

Fig. 2. Mapping points and transformation of a curvilinear
triangle from the physical x-y system into the ξ-η
reference system.

be fulfilled for all edge parameters

χk =
k − 1
NB

, ∀ 1 � k � NB + 1, (41)

and for all edges 1 � j � 3. Each of the four
equation systems (37)–(40) is solved by using a singu-
lar value decomposition algorithm (Press et al., 1996).
This is necessary because the total number of unknowns
1
2 (NB + 1) (NB + 2) is in general different from the
number of independent equations 3NB (note that in
Eqns. (37)–(40) we add the three vertices of the triangle
several times). For the special case of NB = 2 we have
6 independent equations and 6 unknowns. Once the co-
efficients are determined, one can map all points in the
curved triangle T

(m)
c onto the reference triangle TE and

vice-versa using (33)–(36). The Jacobian matrix of the
transformation is then given analytically as a function of
ξ and η as

J (ξ, η) =
NB∑
i=0

NB−i∑
j=0

⎛
⎜⎜⎝

∂

∂ξ

(
γijξ

iηj
) ∂

∂ξ

(
δijξ

iηj
)

∂

∂η

(
γijξ

iηj
) ∂

∂η

(
δijξ

iηj
)
⎞
⎟⎟⎠ .

(42)
This is sufficient information to compute the volume

space-time integrals in (14) and (15). In the surface space-
time integral (13), the normal vector �nj is no longer con-
stant per edge but must be replaced by a normal vector
�nj (χ) depending on the edge parameter χ as follows:

�nj (χ) = J
(
ξR
j (χ) , ηR

j (χ)
) ∂

∂χ

(
ηR

j (χ)
−ξR

j (χ)

)
. (43)

Note that according to the algorithm given in Fig. 1
the Cauchy-Kovalewski procedure is written in the physi-
cal x-y coordinate system, but all basis functions and thus
the space-derivatives of uh are a priori defined in the ref-
erence triangle. So one first has to transform the numerical
solution uh into the physical x-y coordinates. Let the i-th
polynomial of an N -th order DG basis be

φi (ξ, η) =
N∑

k=0

N−k∑
l=0

λi
klξ

kηl. (44)

Then it can be rewritten as a polynomial in the x-y system
as

φi (x, y) =
N∑

k=0

N−k∑
l=0

μklx
kyl

=
N∑

k=0

N−k∑
l=0

λi
kl

(
NB∑

m=0

NB−m∑
n=0

αmnxmyn

)k

×
(

NB∑
m=0

NB−m∑
n=0

βmnxmyn

)l

. (45)
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The unknown coefficients μkl can be found by identifying
equal powers of x and y on both sides of Eqn. (45).

3. Numerical Examples

3.1. Conservation of Steady State Solutions. For
the simulation of PDEs with source terms it is particu-
larly important that the numerical scheme be able to con-
serve steady-state solutions of the governing PDE where
flux and source terms cancel out so that no temporal
evolution is excited. In the framework of finite volume
schemes, the so-called well balanced methods have been
constructed in the literature (Botta et al., 2004; Greenberg
and Le Roux, 1996; LeVeque, 1998) to achieve this goal
since it is well known that finite volume schemes with-
out this special property are not able to conserve these
steady-state solutions when slight perturbations are intro-
duced. Usually, the numerical flux does not know about
the presence of the source terms and is discretized as in
the homogeneous case. Since in the ADER-DG scheme
the source term is explicitly integrated into the numeri-
cal flux via the Cauchy-Kovalewski procedure, we expect
the scheme to conserve steady-state solutions at least to
some extent. The two numerical examples presented in
the following are simulations of a steady atmosphere at
rest over a steep topography in a computational domain
of extent [−8000, 8000]× [0, 8000]. The governing equa-
tions are the two-dimensional Euler equations with grav-
itation (16). The bottom topography y0(x) is given by a
Gaussian-type distribution as

y0(x) = he−x2/b2 . (46)

We choose h = 2000 and b = 1000. For both examples
we use a coarse unstructured grid with 456 triangles as
depicted in Fig. 3. We use wall boundary conditions on all
boundaries to prevent arising perturbations from exiting
the computational domain.

-8000 -6000 -4000 -2000 0 2000 4000 6000 8000
0

2000

4000

6000

8000

x

y

Fig. 3. Computational domain and grid for the simulation
of a hydrostatic steady atmosphere at rest over a
steep topography.

3.1.1. Isothermal Atmosphere at Rest. Our first ex-
ample is an isothermal atmosphere at rest given by the

steady-state solution u = v = 0 and

ρ(y) = ρ0e
− ρ0

p0
gy , p(y) = p0e

− ρ0
p0

gy, (47)

with the gravitation constant g = 10. We set the density
and the pressure at the sea level (y = 0) to ρ0 = 1.21 and
p0 = 105, respectively. Several simulations are now per-
formed using second to fifth order ADER-DG schemes,
i.e., using P1 to P4 elements. The maximum error of ver-
tical velocity is depicted in Fig. 4 as a function of time. We
clearly see that the conservation of the steady-state solu-
tion is considerably improved if the order of the numerical
scheme is increased. While the second order ADER-DG
scheme still produces velocity errors of the order of mag-
nitude of 10−1, the fifth order scheme only shows pertur-
bations of the order 10−5. For comparison, with an un-
balanced second order finite volume scheme we obtained
vertical velocity errors of the order of 10+1.

0 300 600 900 1200 1500 1800
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10-5

10-4

10-3

10-2

10-1

100

101

ADER-DG P1
ADER-DG P2
ADER-DG P3
ADER-DG P4

‖v
‖ ∞

t

Fig. 4. Maximum error of vertical velocity as a function of
time for ADER-DG O2-O5 schemes. Isothermal at-
mosphere.

3.1.2. Strongly Stratified Atmosphere at Rest. The
second example is a strongly stratified atmosphere at rest,
taken from (Botta et al., 2004). This test case corresponds
to a thermical inversion situation that can occur in win-
ter in alpine valleys, where the temperature increases with
the altitude. Usually, the temperature in the Earth’s at-
mosphere is decreasing with the altitude. According to
(Botta et al., 2004), the steady-state solution is u = v = 0
and

ρ(y) = ρ0

(
p(y)
p0

1
1 + σy

) 1
γ

,

p(y) = p
−1

γ−1
0

(
p0 − g

σ
ρ0 (1 + σy)

γ−1
γ − 1

) γ
γ−1

, (48)
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with γ = 1.4 and σ = 1.2 × 10−4. We set again
ρ0 = 1.21, p0 = 105 and g = 10. The maximum error of
vertical velocity is depicted in Fig. 5 as a function of time

0 300 600 900 1200 1500 1800
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10-2

10-1

100

101

ADER-DG P1
ADER-DG P2
ADER-DG P3
ADER-DG P4

‖v
‖ ∞

t

Fig. 5. Maximum error of vertical velocity as a function of time
for ADER-DG O2-O5 schemes. Stratified atmosphere.

for second to fifth order ADER-DG schemes. For com-
parison, the second order well balanced scheme of Botta
et al. (2004) produced for this example vertical velocity
errors between 10−2 and 10−1 on a structured grid with
64× 32 elements. This is comparable to the results of our
second order ADER-DG scheme. However, the ADER
approach allows the construction of higher order schemes,
which also in this numerical example clearly perform bet-
ter than second order methods concerning the conserva-
tion of steady-state solutions of (16).

3.2. Inviscid Low Mach Number Flow over a Cylin-
der. We now show the capability of the ADER-DG
scheme to correctly compute a subsonic inviscid steady
cylinder flow on a coarse unstructured mesh when a high
order boundary discretization is employed, as presented,
e.g., in (Bassi and Rebay, 1997; Cockburn et al., 2000) for
Runge-Kutta DG schemes. We demonstrate that wrong re-
sults are obtained if the wall boundaries are only approx-
imated with first order polynomials, i.e., with classical
triangles, thus confirming the results of Bassi and Rebay
(1997). Furthermore, the behaviour of our arbitrary high
order DG approach is analyzed in the low Mach number
limit.

The problem is to compute the flow field around a
circular cylinder located at the origin with radius R = 1 in
a computational domain with extent [−10, 10]×[−10, 10],
solving (16) without gravitation. Hence, the iscosity is
neglected. The boundary condition at infinity is defined
as

ρ∞ = 1, M∞ = 0.1, p∞ = 1, γ = 1.4. (49)

On the cylinder wall, slip wall boundary conditions are
imposed, see (Dumbser, 2005). The potential solution of
this steady flow problem will serve us as a reference and
is briefly derived in the following.

The complex velocity potential w for this problem is

w (z) = V∞

(
z +

R2

z

)
, w ∈ C, z = x + Iy ∈ C,

(50)

where V∞ = M∞
√

γ p∞
ρ∞

is the velocity at infinity and

I =
√−1 is the imaginary unit. The velocity components

in polar coordinates r and θ can be computed as

vr (r, θ) =
∂Φ
∂r

, vθ (r, θ) = −∂Ψ
∂r

, z = reIθ, (51)

where the potential Φ ∈ R and the stream function Ψ ∈ R

are related to the complex potential w by

w = Φ + IΨ. (52)

One finally obtains

vr (r, θ) = V∞

(
1 − R2

r2

)
cos θ, (53)

vθ (r, θ) = −V∞

(
1 +

R2

r2

)
sin θ, (54)

and with the Bernoulli equation the pressure can be com-
puted as

p (r, θ)=p∞+
1
2
γp∞M2

∞− 1
2

[
vr (r, θ)2+vθ (r, θ)2

]
.

(55)
We emphasize that the potential solution is symmetric
with respect to the x- and y-axes and that it has two stag-
nation points where ur = uθ = 0. One is located at (1, 0)
and the other at (−1, 0). At the stagnation points, the pres-
sure coefficient cp is

cp =
p − p∞

1
2γp∞M2∞

= 1. (56)

Two numerical simulations of this problem are now
performed using fourth order ADER-DG schemes (P3 el-
ements) on the same grid, which is quite coarse. The only
difference between them is that in the first case the bound-
ary is discretized with classical triangles, NB = 1, and
in the second case we use superparametric elements with
NB = 4 on the cylinder wall.

In the case of classical triangles we get a highly
unsteady solution exhibiting flow separation and vortex-
shedding. The scheme does not converge at all to a steady
state even after thousands of iterations. A possible expla-
nation for this behavior may be that with usual triangles
the boundary is approximated by a polygon which nat-
urally exhibits corners. The potential flow, however, is
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singular in such corners where it would produce infinite
velocities. The high order DG scheme is able to resolve
this singular potential flow up to a certain extent, produc-
ing high velocities in the corners. However, the velocity
growth once becomes limited by the numerical viscosity,
which then causes separation and thus vortex shedding.
We underline the fact that this is a purely numerical arti-
fact, which must not arise in the inviscid Euler equations.
It has nothing to do with vortex-shedding commonly ob-
served in real air flows around cylinders, where it is due
to real viscous effects of the molecular viscosity. The ap-
propriate equations to describe this kind of problem would
rather be the Navier-Stokes equations than the Euler equa-
tions, which are under consideration here. Unlike in the
case of the classical triangles, superparametric ADER-DG
elements quickly converge to a steady state.

To investigate the numerical solution quantitatively,
we show the pressure coefficient cp obtained at the points
(−1, 0) and (1, 0) as a function of time. The two points
are the stagnation points, and therefore the pressure coef-
ficient should converge to a steady state value of cp = 1
at both points. Figures 6(a) and (b) show the signals of
cp(t) obtained in the simulation with classical triangles
and with superparametric elements on the cylinder wall,
respectively. We see that no convergence is obtained in
the first case. The pressure coefficient at the point (1, 0) is
highly oscillatory and far from the exact value of cp = 1.
Although at the point (−1, 0) the pressure coefficient is
quite close to the exact one, some spurious oscillations
are, however, visible. This may be due to the acoustic
waves that are caused by the vortex-shedding and which
propagate through the computational domain. In the sec-
ond case, using superparametric elements, very fast con-
vergence to the exact value is obtained at both points.

The exact potential solution for the pressure coeffi-
cient, see Eqn. (55), is depicted in Fig. 7. An instanta-
neous view of the pressure coefficient obtained in our nu-
merical experiments at t = 100 is shown in Figs. 8(a)
and (b) for the classical triangles and the superparametric
elements, respectively. In Fig. 8(a) one can see a vortex
shedding from the cylinder. The simulation carried out
with the superparametric elements clearly possesses the
symmetry properties of the potential solution as well as
the two stagnation points, see Fig. 8(b). Note that the vi-
sualization of the DG solution is based only on the cell
averages.

We now decrease the inflow Mach number to M =
10−2 and M = 10−3 to demonstrate that high order
DG schemes are still functional in the low Mach num-
ber range. It is well known that first and second order fi-
nite volume schemes have problems computing low Mach
number flows, especially in the region around stagnation
points, where the local Mach number is almost zero, be-
cause numerical errors dominate the physical behavior of
the hydrodynamic pressure which is of the order of mag-
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Fig. 6. Time signal of cp in the stagnation points (−1, 0)
and (1, 0): (a) classical triangles (N = 3, NB = 1),
(b) superparametric elements (N = 3, NB = 4).

nitude O(M2). This was shown in (Klein, 1995; Meis-
ter, 1999) using asymptotic analysis. Computations are
performed on the same grid as in the previous example and
also the parameters of the scheme (N = 3 and NB = 4)
remain unchanged. The distributions of the pressure co-
efficient at t = 100 are shown in Figs. 9(a) and (b) for
M = 10−2 and M = 10−3, respectively. The fourth
order scheme converges even in this low Mach number
range and the numerical solution still remains symmet-
ric. Note that the explicit time step for the ADER-DG
scheme is restricted by the speed of sound, which is some



On source terms and boundary conditions using arbitrary high order discontinuous Galerkin schemes 307

-10 -8 -6 -4 -2 0 2 4 6 8 10
-10

-8

-6

-4

-2

0

2

4

6

8

10
cp

1

0.6

0.2

-0.2

-0.6

-1

-1.4

-1.8

-2.2

-2.6

-3

x

y

Fig. 7. Reference solution for the pressure coefficient cp

of the potential flow around the cylinder.
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Fig. 8. Pressure coefficient cp at t = 100 using ADER-DG O4
schemes at M = 10−1: (a) classical triangles, (b) super-
parametric elements.
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Fig. 9. Pressure coefficient cp at t = 100 using superparametric
ADER-DG O4 schemes (N = 3, NB = 4): (a) M =
10−2, (b) M = 10−3.

orders of magnitude larger than the flow speed. Therefore
it is computationally very expensive and so it is only jus-
tified to use this class of schemes for unsteady low Mach
number flow problems, where one is also interested in the
acoustics generated by the problem.

If we further decrease the Mach number to M =
10−4, we do not get convergence any more on this grid
and with this numerical scheme. There, one would either
have to use a preconditioner (Meister, 2003) or directly
switch to an appropriate low Mach number solver, as de-
veloped by Roller and Munz (2000).

3.3. Subsonic Flow around an NACA0012 Airfoil.
Previous works on arbitrary high order DG schemes
(Dumbser, 2005; Dumbser and Munz, 2005; Qiu et al.,
2005) demonstrated that very high order discontinuous
Galerkin schemes may be much more efficient in terms
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of the total number of degrees of freedom and CPU time
than low order schemes when the same precision is re-
quired. However, with our numerical studies on the invis-
cid cylinder flow we confirmed the results of Bassi and
Rebay (1997) that the use of very high order methods
also necessitates a very careful treatment of the bound-
aries, since otherwise a globally high order of accuracy
cannot be attained and wrong numerical results may arise
if the boundaries are not discretized appropriately. Yet one
may benefit from the very coarse grids which high order
schemes allow us to use if also the boundaries are high or-
der accurate. To demonstrate the power of curved discon-
tinuous Galerkin finite elements on a practical example,
we compute the flow around an NACA0012 airfoil on an
extremely coarse grid containing only 120 triangles in the
whole computational domain with extent [−5, 6]×[−5, 5],
see Fig. 10. The governing equations are (16) without
gravitation. The upper part of the symmetric NACA0012
profile is defined by the following analytical function:

y (x) =
3
5
(
a0

√
x + a1x + a2x

2 + a3x
3 + a4x

4
)
,

(57)
in the range 0 � x � 1. We assume that the coordinates y
and x are normalized by the chord length. The coefficients
are a0 = 0.2969, a1 = −0.1260, a2 = −0.3516, a3 =
0.2843 and a4 = −0.1036. The lower part is symmetric
to the upper part with respect to the x-axis. The profile
is defined by Eqn. (57) and the given inflow parameters
at infinity are the Mach number M∞ = 0.3, the pressure
p∞ = 1 and the angle of attack α = 4◦.
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Fig. 10. Very coarse grid (120 triangles) for the computation
of the subsonic flow around an NACA0012 profile
(M∞ = 0.3, α = 4◦).

We use only three elements to discretize each side
of the airfoil and now perform two computations on this
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Fig. 11. Comparison of standard P5 elements and curved P5
elements on the NACA0012 airfoil flow (M∞ =
0.3, α = 4◦) using the grid shown in Fig 10.

grid using P5 elements on classical and curved triangles
(NB = 5). The reference solution was taken from the
literature (Milholen, 2000). Looking at the pressure co-
efficient depicted in Fig. 11 one clearly sees that P5 el-
ements with standard triangles produce a wrong solution
in parts where the airfoil exhibits high curvature. This
is especially the case in the region of the leading edge.
In moderately curved parts of the airfoil the solution is
quite acceptable. The peaks in the numerical solution at
x = 0.22 and x = 0.54 indicate the presence of corner
singularities that arise with standard triangles, leading to
a considerable increase in the velocity in the corner and
to an associated decrease in the pressure. Switching from
standard to curved triangles we get a very significant im-
provement of the solution quality, see Fig. 11. The corner



On source terms and boundary conditions using arbitrary high order discontinuous Galerkin schemes 309

singularities almost disappear and we globally get a very
good agreement with the reference solution. This example
is to encourage the reader to use coarse grids if he or she
employs very high order discontinuous Galerkin finite el-
ement schemes together with a very high order boundary
discretization.

4. Conclusions

In this paper we have discussed the discretization of non-
linear hyperbolic systems with source terms on unstruc-
tured meshes, underlining the importance of a careful and
consistent discretization of the computational boundary.
In the first section of the article, we derived semidiscrete
and fully discrete versions of the scheme. Furthermore,
we proposed an efficient algorithm to perform the Cauchy-
Kovalewski procedure for the nonlinear Euler equations
with gravitational source terms. The second section was
devoted to a discussion of the correct implementation of
the boundary conditions. To satisfy the boundary con-
dition at all times, the so-called inverse generalized Rie-
mann problems must be solved at the boundary interfaces.
This becomes necessary because usually not all values of
the state or of the flux are known at the boundary. For wall
boundaries in the Euler equations, we have, e.g., only a
condition on the velocity that has to be satisfied, whereas
the pressure at the boundary is unknown a priori.

Our approach of numerically solving inverse general-
ized Riemann problems for the state vector at the bound-
ary provides a solution at the boundary interfaces which
fulfills the velocity condition on the wall for all times
and simultaneously yields a time-dependent pressure at
the boundary interface. In the third section, we provided
several applications of our method. The example of the
stratified steady atmosphere at rest was taken from the
literature on well-balanced schemes (Botta et al., 2004).
We note that well-balanced schemes must be explicitly
constructed for maintaining particular steady-state solu-
tions of hyperbolic conservation laws with source terms,
whereas our high order accurate method is not constructed
explicitly for this purpose.

Our numerical experiments with the steady at-
mosphere at rest have shown that very high order ADER-
DG schemes automatically maintain this particular steady
state solution and that increasing the order dramatically
improves the solution quality. Inviscid low Mach number
flows around a cylinder were computed successfully with
our method using the high order boundary discretization
described in Section 2. Our method produces very good
results even down to quite low Mach numbers. The last
numerical example with the NACA0012 airfoil demon-
strated that high order boundary discretization together
with a very high order scheme in space and time allows
the use of very coarse grids.
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