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The paper presents selected multicriteria (multiobjective) approaches to shortest path problems. A classification of multi-
objective shortest path (MOSP) problems is given. Different models of MOSP problems are discussed in detail. Methods
of solving the formulated optimization problems are presented. An analysis of the complexity of the presented methods
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1. Introduction
The problem of finding a shortest path from a specified
origin node to another node has been considered, tradi-
tionally, in the framework of single objective optimiza-
tion. More specifically, it is assumed that some value
is associated to each arc (for example, the length or the
travel time), and the goal is to determine a feasible path
for which either the total distance or the total travel time is
minimized. In many real applications it is often found that
a single objective function is not sufficient to adequately
characterize the problem. In such cases, multiobjective
(multicriteria) shortest path (MOSP) problems are used.

There are many publications which deal with these
problems in two frequently used domains: computer net-
works (Cidon et al., 1997; 1999; Kerbache and Smith,
2000; Silva and Craveirinha, 2004) and transportation
(Dial, 1979; Halder and Majumber, 1981; Rana and Vick-
son, 1988; Fujimura, 1996; Modesti and Sciomachen,
1998). For instance, in transportation networks, a typi-
cal situation that can be adequately represented only by
considering multiple objectives is related to military route
planning, where time, distance, or ability to camouflage
on the path must be taken into account at the same time
(Tarapata, 2003).

Another application in which it is important to deal
with several factors is represented by path planning, where
the goal is to find a navigation path for a mobile robot
(Fujimura, 1996). In this case, the navigation path can
be considered acceptable only if it satisfies multiple ob-
jectives, such as safety, time and energy consumption. In
computer networks (as special cases of transportation net-
works), routing problems are most essential applications
of MOSP problems.

The most often used criteria of route selection de-
pend on the quality of service (QoS) (Silva and Craveir-
inha, 2004). These criteria are, for example, as follows:
minimization of the number of lost packages, minimiza-
tion of the maximal delay time of packages, minimization
of the number of disjoint routes or minimization of the
maximal transmission time for disjoint routes (in the case
of disjoint routes), minimization of the overload, mea-
sured, e.g., by the mean value of traffic crossing by a link,
minimization of the transmission time from a source to a
destination, minimization of a route length, minimization
of the probability of route unreliability or maximization
of the probability of route reliability. Single-criterion for-
mulations of routing problems use previously defined cri-
teria. The choice of the appropriate method for solving
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defined problems depends on the answers to the following
questions: Do we want to determine routes statically (al-
gorithms such as: Dijkstra’s, Ford-Bellmann’s, PDM, A∗)
or dynamically (by adapting to the current load) (Djidjev
et al., 1995)? Are there stochastic dependencies in the
network (Sigal et al., 1980; Korzan, 1982; 1983a; 1983b;
Loui, 1983; Tarapata, 1999; 2000)? Do we find a path
for a single task or simultaneously for many tasks (e.g.,
through disjoint paths transmitting voice and picture or
allocating channels in optical networks) (Li et al., 1992;
Schrijver and Seymour, 1992; Sherali et al., 1998; Tara-
pata, 1999)? Do we plan to determine alternative paths
(Golden and Skiscim, 1989)?

In many cases of routing problems, a single-criterion
approach is not sufficient. There are many papers which
deal with a description of practical examples of using
many criteria in routing problems (Kerbache and Smith,
2000; Silva and Craveirinha, 2004). For example, Cli-
maco et al. (2002) consider a bicriterion approach for
routing problems in multimedia networks. In practical
considerations, we often use contradicted criteria, e.g.,
fast and reliable access to the services (risk-profit) (Ko-
rzan, 1982; 1983a; 1983b; Loui, 1983; Tarapata, 1999;
2000). In such cases we can formulate and solve multi-
criteria optimization problems to support decisions of net-
work designers (in computer or transportation networks)
or administrators (traffic managers in transportation).

The aim of this paper is to analyse the complexity
of MOSP problems and show how we can use modifica-
tions and advantages of fast implementations of Dijkstra’s
algorithm (using effective data structures, e.g., Fibonacci
heaps, d-ary heaps) in order to effectively and optimally
solve selected MOSP problems. As an additional result of
this paper, a review of references and a categorization of
MOSP problems are given.

2. State of the Art in Multiobjective Shortest
Path (MOSP) Problems

MOSP problems are among the most tractable of NP-hard
discrete optimization problems (Garey and Johson, 1979).
In the work (Hansen, 1979a), the existence of a family
of problems with an exponential number of optimal solu-
tions was proved. This implies that any algorithm solving
a multiobjective shortest path problem is, at least, expo-
nential in the worst case analysis. On the other hand, some
papers (Warburton, 1987; Vassilvitskii and Yannakakis,
2004; Tsaggouris and Zaroliagis, 2005) show that practi-
cal ε-approximate algorithms are generally limited either
to problems having 2 or 3 criteria, or to problems requir-
ing the ε-approximation of only certain restricted sets of
efficient paths. One of the most popular methods of solv-
ing MOSP problems is the construction of approximate
Pareto curves (Papadimitriou and Yannakakis, 2000; Vas-
silvitskii and Yannakakis, 2004). Informally, a (1 + ε)-

Pareto curve Pε is a subset of feasible solutions such that
for any Pareto optimal solution there exists a solution in
Pε that is no more than (1 + ε) away in all objectives.

Papadimitriou and Yannakakis (2000) show that for
any multiobjective optimization problem there exists a
(1 + ε)-Pareto curve Pε of (polynomial) size |Pε| =
O((4B/ε)N−1), where B is the number of bits required
to represent the values in the objective functions (bounded
by some polynomial in the size of the input), which can
be constructed by O((4B/ε)d) calls to a “gap” routine
that solves (in time polynomial in the size of the input
and 1/ε) the following problem: Given a vector of values
a, either compute a solution that dominates a, or report
that there is no solution better than a by at least a factor
of 1 + ε in all objectives. Extensions to this method to
produce a constant approximation to the smallest possible
(1+ε)-Pareto curve for the cases of 2 and 3 objectives are
presented in (Vassilvitskii and Yannakakis, 2004), while
for N > 3 objectives inapproximability results are shown
for such a constant approximation. For the case of the
MOSP (and some other problems with linear objectives),
Papadimitriou and Yannakakis (2000) show how a “gap”
routine can be constructed (based on a pseudopolynomial
algorithm for computing exact paths) and, consequently,
provide an FPTAS (Fully Polynomial Time Approxima-
tion Scheme) for this problem. Note that FPTASs for
the MOSP were already known in the case of two objec-
tives (Hansen, 1979a), as well as in the case of multiple
objectives in directed acyclic graphs (DAGs) (Warburton,
1987). In particular, the biobjective case was extensively
studied (Ehrgott and Gandibleux, 2002), while for N > 2
very little has been achieved; actually the results in (War-
burton, 1987; Papadimitriou and Yannakakis, 2000; Tsag-
gouris and Zaroliagis, 2005) are the only and currently
best FPTASs known.

Let Cmax denote the ratio of the maximum to the
minimum edge weights (in any dimension), V denote the
number of nodes in a digraph, A denote the number of
arcs (edges) and N be the number of criteria. For the case
of DAGs and N > 2, the algorithm of (Warburton, 1987)

runs in O
(
V A

(
1
εV (log(V Cmax))

)N−1 (log V
ε

)N−2
)

time, while for N = 2 this improves to
O(V A1

ε log V log(nCmax)). For N = 2, an FPTAS
can be created by repeated applications of a stronger vari-
ant of the “gap” routine—like an FPTAS for the restricted
shortest path (RSPP) problem (Hassin, 1992; Lorenz
and Raz, 2001; Ergun et al., 2002). In (Vassilvitskii and
Yannakakis, 2004), it is shown that this achieves a time
of O(V A|P ∗

ε |(log log V + 1
ε )) for general digraphs and

O(V A|P ∗
ε |/ε) for DAGs, where |P ∗

ε | is the size of the
smallest possible (1 + ε)-Pareto curve (and which can be
as large as log1+ε V Cmax ≈ 1

ε ln(V Cmax)).
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All these approaches deal typically with a single-
pair version of the problem. Tsaggouris and Zaroliagis
(2005) show a new and remarkably simple FPTAS for
constructing a set of approximate Pareto curves for the
single-source version of the MOSP problem in any di-
graph. For any N > 1, their algorithm runs in time

O
(
V A

(
1
εV log(V Cmax)

)N−1
)

for general digraphs,

and in O
(
A
(

1
εV log(V Cmax)

)N−1
)

for DAGs. These

results improve significantly upon previous approaches
for general digraphs (Golden and Skiscim, 1989; Has-
sin, 1992) and DAGs (Henig, 1985; Hassin, 1992), for all
N > 2. For N = 2, their running times depend on ε−1,
while those based on repeated-RSPP applications (like
in (Vassilvitskii and Yannakakis, 2004)) depend on ε−2.
Their approach to the MOSP, unlike previous methods
based on converting pseudopolynomial time algorithms to
an FPTAS using rounding and scaling techniques, builds
upon a natural iterative process that extends and merges
sets of node labels representing partial solutions, while
keeping them small by discarding some solutions in an
error controllable way.

One of the first papers to deal with MOSP problems
was (Loui, 1983). The paper explores computationally
tractable formulations of stochastic and multidimensional
optimal path problems. A single formulation encompass-
ing both problems is considered, in which a utility func-
tion defines preferences among candidate paths. The re-
sult is the ability to state explicit conditions for exact so-
lutions using standard methods, and the applicability of
well-understood approximation techniques.

Korzan wrote three papers (Korzan, 1982; 1983a;
1983b) which deal with the shortest path problem in unre-
liable networks. In the first one he presents methods of de-
termining an optimal path in unreliable directed networks
under various assumptions concerning the randomness of
network elements. He assumes a vector objective func-
tion with two components: the path length (e.g., time) and
some measure of unreliability (e.g., the probability of path
“surviving”). An appriopriate multioptimization problem
and a method for determining a compromise path for this
problem are described. Some extensions of these prob-
lems and their solving methods included therein were dis-
cussed in two further papers (Korzan, 1983a; 1983b).

In the papers (Tarapata, 1999; 2000), an optimization
problem of a few tasks in a parallel or distributed comput-
ing system in conditions of unreliability of computers and
lines is considered. As a model of the system, a network is
used with functions defined on its nodes (the time of task
service at a node and the probability of node reliability)
and arcs (time distances between nodes and the probabil-
ity of arc (line) reliability during transmission). A dam-
aging process of a network element (a node or an arc) is
initiated: when a task starts its service in it (for a node) or
its movement (for an arc) and it does not depend on the

time which elapsed from the start time of the task send-
ing (Tarapata, 1999), or when a task starts its service (or
movement) in source nodes (Tarapata, 2000). In the sec-
ond case, the “time-life” distribution of network elements
depends on the time which elapsed from the start time of
the task sending. This may be explained by the fact that,
for example, the probability of damaging an element of a
computer network is growing in time. In communication
systems the probability of destroying system elements de-
pends on the corresponding working time (the longer the
system working time, the greater the possibility of system
locating and, in consequence, the probability of annihila-
tion of any system elements).

The problem of determining the best set of K dis-
joint paths in an unreliable network is formulated as a
bicriteria optimization problem, in which the first crite-
rion is the time of sending the slowest task (or the sum of
sending times of all tasks) being minimized and the sec-
ond is the probability of the reliability of all (K) paths
being maximized. An approximate algorithm to solve the
optimization problem is shown. The algorithm general-
izes Dijkstra’s shortest path algorithm when we look for
K (K > 1) disjoint paths in the network with two func-
tions (probabilities and distances) defined on the network
nodes and arcs. Moreover, some conclusions concern-
ing particular conditions which the paths should satisfy
are given.

Generally, the multiobjective shortest path problem
can be considered from the point of view of the follow-
ing categories: number of criteria, type of problem (com-
promise solutions, lexicographic solutions, max-ordering
problem, etc.), solution method (label setting or correct-
ing, tabu search, simulated annealing and others). In Ta-
ble 1 we classify MOSP problems (as a modification of the
classification proposed in (Ehrgott and Gandibleux, 2000;
2002)) using the notation X/Y/Z , where X is the number
and type of objective functions (X = Q stands for an ar-
bitrary number of objectives, e.g., 1-SumQ-max denotes
a problem with the sum and Q bottleneck objectives), Y
denotes the problem type, Z denotes the type of solution
method. The entries of Y are as follows: E – finding the
efficient set, e – finding a subset of the efficient set, SE –
finding supported efficient solutions, Appr(x) – finding an
approximation of x, lex – solving the lexicographic prob-
lem (preemptive priorities), MO – max-ordering problem,
U – optimizing a utility function, C/S – finding a com-
promise/satisfying solution, D – disjoint-path problem,
SCH – stochastic problem. The entries of Z are as follows:
SP – exact algorithm specifically designed for the prob-
lem, LS/LC – label setting or label correcting method, DP
– algorithm based on dynamic programming, BB – algo-
rithm based on branch and bound, IA – interactive method,
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Table 1. Classification of Multiobjective Shortest Path (MOSP) problems.

Code of the problem References

2-SUM/E/LC (Tung and Chew, 1988; Brumbaugh-Smith and Shier, 1989; Skriver and Andersen, 2000)

2-SUM/E/LS (Hansen, 1979a; 1979b)

2-SUM/E/2P,LC (Mote et al., 1991)

2-SUM/E/SP (Martins and Climaco, 1981; Climaco and Martins, 1982; Huarng et al., 1996)

2-SUM/E/DP (Henig, 1985)

2-SUM/ Appr(E)/Appr (Hansen, 1979a; 1979b)

1-SUM 1-max/E/SP (Hansen, 1979a; 1979b; Pelegrin and Fernandez, 1998)

2-SUM/C/IA (Current et al., 1990)

2-SUM/U/SP (Henig, 1985)

2-SUM/U/IA (Murthy and Olsen, 1994)

2-SUM/e/IA (Coutinho-Rodrigues et al., 1999)

2-SUM/C,SCH/LS (Korzan, 1982; 1983b)

2-SUM/lex,SCH/LS (Korzan, 1983a; 1983b)

3-SUM/E/LC (Gabrel and Vanderpooten, 1996)

3-SUM/C/IA (Gabrel and Vanderpooten, 1996)

Q-SUM/SE/SP (Henig, 1985; White, 1987)

Q-SUM/E/LS (Martins, 1984)

Q-SUM/E/LC (Tung and Chew, 1992; Corley and Moon, 1985; Cox, 1984)

Q-SUM/E/DP (Hartley, 1985; Kostreva and Wiecek, 1993)

Q-SUM/Appr(E),Appr(MO)/Appr (Warburton, 1987)

Q-SUM/C/IA (Henig, 1994)

Q-SUM/U/DP (Carraway et al., 1990)

Q-SUM/U/SP (Modesti and Sciomachen, 1998)

Q-SUM/MO/DP,BB (Rana and Vickson, 1988)

Q-SUM/MO/LC (Murthy and Her, 1992)

Q-SUM/U,SCH/Appr (Loui, 1983)

Q-SUM/MO,D,C,lex,SCH/Appr,LS (Tarapata, 1999; 2000)

2P – two-phase method, Appr – approximation algorithm
with worst case performance bound.

Other particular multiobjective path problems are
presented in (Dial, 1979; Engberg et al., 1983; Halder and
Majumber, 1981; Sancho, 1988; Wijeratne et al., 1993).

3. Model of the MOSP Problem

Let a directed graph G = 〈VG, AG〉 be given, where VG

is the set of graph nodes, VG = {1, 2, . . . , V }, AG stands
for the set of graph arcs, AG ⊂ {〈v, v′〉 : v, v′ ∈ VG},
|AG| = A. For example, in computer networks,
we have routers as nodes of G and physical links
between the routers as arcs of G. Generally, for

each arc of G, we may define arc functions fn(v, v′),
n = 1, . . . , N , which describe characteristics of the
arc 〈v, v′〉 ∈ AG such as the transmission time, dis-
tance, load, reliability, capacity, acceptable flows, etc.
We assume that there are K tasks which we need to
transport from the source nodes is to the destination
ones id, is = (is(1), is(2), . . . , is(k), . . . , is(K)), id =(
id(1), id(2), . . . , id(k), . . . , id(K)

)
. For K = 1, we

have the classical case of routing for a single task. In some
examples used in the paper we use a computer network
model as G with a predefined matrix t = [tv,v′ ]V ×V ,
where tv,v′ =

〈
t1v,v′ , t2v,v′ , . . . , tkv,v′ , . . . , tKv,v′

〉
and tkv,v′

signifies a nonnegative value describing the transaction
(transmission) time of the k-th task on the arc 〈v, v′〉 ∈
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AG (when v �= v′). Moreover, let Ik(is(k), id(k)) de-
scribe a simple path and Tk(is(k), id(k)) describe achiev-
ing times of nodes belonging to the path for the k-th task
as follows:

Ik

(
is(k), id(k)

)

=
(
i0(k)= is(k), i1(k), . . . , ir(k), . . . , iRk(k)= id(k)

)
,

Tk

(
is(k), id(k)

)

=
(
τ0(k), τ1(k), . . . , τr(k), . . . , τRk (k)

)
,

where ir(k) is the r-th node on the path for the k-th task
and τr(k) stands for the achieving time of the r-th node
on the path for the k-th task,

τr(k) =
r∑

m=1

tkim−1(k),im(k), r = 1, Rk, k = 1, K.

(1)
We adopt the convention that if K = 1, then we omit the
index k (i.e., ir(1) ≡ ir, τr(1)) ≡ τr , etc.).

3.1. Formulation of the MOSP Problem.

3.1.1. General Formulation of the Optimization
Problem with a Vector Objective Function. We de-
note by M(is, id) the set of acceptable K-dimensional
vectors of paths in G from is to id, and by I(is, id) – an
element of M(is, id). It can be observed that I(is, id)
is a vector whose components are simple paths for each
k-th task. We also write I ≡ I(is, id) (we omit is and
id). We assume that we have an N -component vector
F (I) = 〈F1(I), F2(I), . . . , FN (I)〉 of criteria functions
estimating the vector of paths I ∈ M(is, id). We have
an arc function fn(v, v′), 〈v, v′〉 ∈ AG, n ∈ {1, . . . , N},
which will be used to compute Fn(I) (e.g., as a sum of
values of fn(v, v′) for arcs belonging to the path I). Thus
we can say that on the set M(is, id) we defined a vector
objective function as follows:

F (I) = 〈F1(I), F2(I), . . . , FN (I)〉 , I ∈ M(is, id).
(2)

The routing problem can be formulated as the multi-
criteria optimization problem:

〈
M(is, id), F (I), RD

〉
, (3)

where RD ⊂ Y D(is, id) × Y D(is, id) is a domination
relation in the criteria space

Y D(is, id)

=
{
F (I)=〈F1(I), F2(I), . . . , FN (I)〉 : I∈M(is, id)

}
,

where

RD =
{
〈F (Im), F (Iz)〉 ∈ Y D(·, ·) × Y D(·, ·) :

Ψ (F (Im), F (Iz))
}
, (4)

Ψ
(
F (Im), F (Iz)

)
=

⎧⎨
⎩

1 when Im“is better” than Iz ,

0 otherwise.
(5)

We can solve (3) using various methods of finding so-
called nondominated solutions. The set of nondominated
results equals

Y ND(is, id)

=

⎧
⎪⎨
⎪⎩

y(I) ∈ Y D(·, ·) :∼ ∃
z(I)∈Y D(·,·)

z(I) �=y(I)

〈z(I), y(I)〉∈RD

⎫
⎪⎬
⎪⎭

.

(6)

The set of nondominated solutions (paths) is deter-
mined as the inverse image of Y ND(is, id) as follows:

MND(is, id) =
{
I ∈ M(is, id) : y(I) ∈ Y ND(·, ·)

}
.

(7)
In order to solve MOSP problems, other approaches are
also used, e.g., vector ε-domination (Warburton, 1987;
Tsaggouris and Zaroliagis, 2005). The method of vector
ε-domination uses the following definition:

Definition 1. (Warburton, 1987): We say that a vec-
tor a = 〈a1, a2, . . . , aN 〉 ε-dominates a vector b =

〈b1, b2, . . . , bN〉 for fixed ε ≥ 0 (we write a
ε≤ b) if

an ≤ (1 + ε)bn, n = 1, N. (8)

In some approaches it is additionally assumed that,
for at least one n ∈ {1, . . . , N}, e.g., n′, we have an′ <
(1 + ε)bn′ . It can be observed that for ε = 0 this con-
cept reduces to the usual notion of vector dominance. To
use this approach, we have to replace the domination rela-
tion (4) by the ε-domination relation

RD
ε =

{
〈F (Im), F (Iz)〉 ∈ Y D(·, ·) × Y D(·, ·) :

F (Im)
ε≤F (Iz)

}
,

and we can solve the problem of finding an ε-shortest path
which, according to (8), has a cost by no more than (1+ε)
away from the optimal values for all objectives. Warbur-
ton (1987) studies methods for approximating the set of
Pareto optimal paths in multiple-objective, shortest path
problems. He gives approximation methods that can es-
timate Pareto optima to any required degree (ε) of accu-
racy. The basis of his results is that the proposed methods
are “fully polynomial”: they operate in time and space
bounded by a polynomial in problem size and accuracy of
approximation—the greater the accuracy, the longer the
time required to reach a solution.
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3.1.2. Exemplary Routing Problem Formulation as
a Bicriteria Optimization Problem. In the example of
the routing problem formulation as an MOSP problem, we
assume that on each arc 〈v, v′〉 of the graph G we addi-
tionally define a function qv,v′(t) (identical for each task
k = 1, K, so we omit k in the description of qv,v′(t)),
which describes the probability of arc reliability at least in
time t:

qv,v′(t) = Pr{γv,v′ ≥ t} ,

where γv,v′ is a nonnegative random variable representing
the “time-life” of the arc 〈v, v′〉. We assume that the ran-
dom variables γv,v′ are nonnegative and independent for
each pair 〈v, v′〉 of arcs. Then for each vector of the paths
I in G we can define the following probability that all K
paths will “survive”:

P
(
I(is, id)

)
=

K∏
k=1

Rk∏
r=1

qir−1(k),ir(k)

(
tkir−1(k),ir(k)

)
.

(9)
Next we also define the time of achieving destination

nodes by all K tasks as the time of achieving the desti-
nation node by the most delayed task (10) or as a sum of
achieving times of destination nodes (11):

T
(
I(is, id)

)
= max

k∈{1,...,K}
τRk(k) (10)

or
T
(
I(is, id)

)
=

∑
k∈{1,...,K}

τRk(k) (11)

Then the vector objective function (2) has the form

F (I) = 〈T (I), P (I)〉 , I ∈ M(is, id),

i.e., F1(I) = T (I), F2(I) = P (I). The criteria space
Y D(is, id) has the form

Y D(is, id) =
{
F (I) = 〈T (I), P (I)〉 : I ∈ M(is, id)

}
,

and the function (5) (which makes the relation (4) a Pareto
one):

Ψ
(
F (Im), F (Iz)

)

=

⎧⎪⎪⎨
⎪⎪⎩

1 if (T (Im) < T (Iz) ∧ P (Im) ≥ P (Iz))
∨ (T (Im) ≤ T (Iz) ∧ P (Im) > P (Iz)) ,

0 otherwise.

We can equivalently define the problem formulated
above as follows: Determine I∗(is, id) ∈ M

(
is, id

)
for

which

T ∗ = T
(
I∗(is, id)

)
= min

I(is,id)∈M(is,id)
T
(
I(is, id)

)
,

P ∗ = P
(
I∗(is, id)

)
= max

I(is,id)∈M(is,id)
P
(
I(is, id)

)
,

(12)

or

P̂ ∗ = min
I(is,id)∈M(is,id)

P̂
(
I(is, id)

)

= min
I(is,id)∈M(is,id)

1 − P
(
I(is, id)

)
. (13)

Generally, if the objective is to maximize one or more
components of F (I) from (2), MOSP algorithms can be
applied to compute efficient paths only if G is acyclic
(DAG). If G contains cycles and N = 1, we solve the
NP-hard longest path problem (for N > 1 the problem
is at least as difficult as for N = 1) (Garey and Johson,
1979). Therefore, we assume that all components of F (I)
are minimized and all have nonnegative values.

4. Methods of Solving MOSP Problems

4.1. Methods of Solving Single-Criterion Subprob-
lems of the MOSP Problem. A method of determining
T ∗ and P ∗ from (12) and (13) depends on the number K
of tasks for which we determine paths. If K = 1, then
we have a classical shortest paths problem in the graph G
for fixed pairs of nodes (is, id) with an arc function tv,v′ .
This problem could be solved for the criterion function
T (I(is, id)) using, e.g., the following algorithms: Dijk-
stra’s (based on effective data structures as Fibonacci’s
heaps (complexity O(V log V + A)), d-ary heaps (com-
plexity O(A logd V ), d = max {2, �A/V �})) (Schrijver,
2004), Ford-Bellman’s, A∗ (Djidjev et al., 1995). When
an arc function is nonadditive or nonlinear, we can use the
approach described, e.g., by Bernstein and Kelly (1997),
or we can formulate a nonlinear optimization problem and
solve it using Kuhn-Tucker optimality conditions. For
the function P̂ (I(is, id)), the approach presented, e.g., in
(Korzan, 1983b) could be used. Even though the func-
tion P̂ (I(is, id)) from (13) is multiplicative (a product of
probabilities), then it is possible to obtain its additive form
as follows:

˜̂
P
(
I(is, id)

)
=

K∑
k=1

Rk∑
r=1

∣∣∣ln qir−1(k),ir(k)

(
tkir−1(k),ir(k)

)∣∣∣.

Defining the arc function as f1(v, v′) = |ln qv,v′(tv,v′ )|,
we can solve the problem (12)–(13) optimally using Dijk-
stra’s algorithm (because the function f1(v, v′) is additive
and nonnegative). The obtained solutions (i.e., I∗(is, id))

both for P̂ (I(is, id)) and ˜̂
P (I(is, id)) are identical. Other

approaches to find the best path in stochastic graphs are
considered in (Sigal et al., 1980; Korzan, 1982; 1983a;
Loui, 1983; Tarapata, 1999; 2000).

The situation is more complicated when K > 1. If
we want to find disjoint routes for K tasks, then even for
K = 2 and the function T (I(is, id)) the problem is NP-
hard (Schrijver and Seymour, 1992; Schrijver, 2004). Li
et al. (1992) gave a pseudopolynomial algorithm for an
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optimization version of the disjoint two-path problem in
which the length of the longer path must be minimized.
Eppstein (1999) considered the problem of finding pairs of
node-disjoint paths in DAGs, either connecting two given
nodes to a common ancestor, or connecting two given
pairs of terminals. He demonstrated how to find K pairs
with the shortest combined length in O(AV + K) time.
The papers (Suurballe and Tarjan, 1984; Li et al., 1992;
Sherali et al., 1998) deal with problems and algorithms of
disjoint paths for K = 2, but the papers (Schrijver and
Seymour, 1992; Tarapata, 1999; 2000) deal with general
problems of disjoint paths. In the papers (Tarapata, 1999;
2000), an optimization problem of several tasks (through
disjoint paths) in a parallel or distributed computing sys-
tem in the conditions of unreliability of computers and
lines is considered. An approximation algorithm to solve
the optimization problem is shown. The algorithm gener-
alizes Dijkstra’s shortest path algorithm to the case when
we look for K (K > 1) disjoint paths in a network.

In further deliberations we assume that K = 1.
Let us note that for K = 1 the objective functions (10)
and (11) are equivalent. We also assume that is1 = s,
id1 = t.

4.2. Method of Compromise Solutions. To find a
compromise solution with the parameter p ≥ 1 we use
the following metric εp, in the space Y D(·, ·):

εp

(
h∗, h(I)

)
= ‖h∗, h(I)‖p = p

√√√√ N∑
n=1

|h∗
n − hn(I)|p.

(14)
For a compromise result h0 the following condition is sat-
isfied:

εp

(
h∗, h0(I)

)
= min

I∈M(is,id)
εp

(
h∗, h(I)

)
. (15)

The compromise solution Ic ∈ M(is, id) is such that (15)
is satisfied. Note that the metric (14) defines different dis-
tances from an “ideal” solution, h∗:

• for p = 1 we obtain the sum of the absolute devia-
tions from the ideal point (taxi distance);

• for p = 2 we obtain the Euclidean norm (in a two-
dimensional space it amounts to the geometric dis-
tance between points)—it is the “best” compromise
(Korzan, 1982; 1983b; Current et al., 1990; Henig,
1994; Gabrel and Vanderpooten, 1996);

• for p = ∞ we obtain the Tchebycheff norm (mini-
mization of maximal differences between “ideal” and
actual values of criteria); this problem is also known
as a max-ordering problem (Rana and Vickson, 1988;
Warburton, 1987; Mote et al., 1991).

To find a compromise solution with the parameter
p ≥ 1, we use the metric ε1 while replacing T (I) by T (I)
and P (I) by P (I). In order to find a compromise solu-
tion of the problem (3) with a vector objective function
F (I) = 〈T (I), P (I)〉, we have to determine T ∗ and P ∗

described in the previous section. Having T ∗ and P ∗, we
can define

P (I) =
P (I)
P ∗ , T (I) =

T (I)
T ∗ ,

thus obtaining the normalized vector objective function

h(I) =
〈

T (I)
T ∗ ,

P (I)
P ∗

〉
(16)

under the assumption that T ∗ �= 0 and P ∗ �= 0. It can be
observed that T (I) ≥ 1 and P (I) ≤ 1, I ∈ M(·, ·), so we
obtain a normalized ideal point h∗ = (1, 1).

For example, for p = 1 we obtain

ε1

(
h∗, h(I)

)
=
∣∣∣∣1 − T (I)

T ∗

∣∣∣∣+
∣∣∣∣1 − P (I)

P ∗

∣∣∣∣ .

From the conditions

1 − T (I)
T ∗ ≤ 0, 1 − P (I)

P ∗ ≥ 0

we get

ε1

(
h∗, h(I)

)
=

T (I)
T ∗ − 1 + 1 − P (I)

P ∗

=
T (I)
T ∗ − P (I)

P ∗ .

For a compromise result h0 the following condition
is satisfied:

ε1

(
h∗, h0(I)

)
= min

I∈M(is,id)
ε1

(
h∗, h(I)

)

= min
I∈M(is,id)

[
T (I)
T ∗ − P (I)

P ∗

]
.

For a compromise solution Ic ∈ M(is, id) (with p = 1)
the above formula is satisfied.

However, since the function

T (I)
T ∗ − P (I)

P ∗

has positive values, it is difficult to build an additive non-
negative arc function to compute it. This is very incon-
venient because Dijkstra’s algorithm (as a classical al-
gorithm solving the shortest path problem) requires the
values of the arc function to be nonnegative and addi-
tive (the function ε1(h∗, h(I)) is nonadditive because of
multiplications during the calculation of P (I)/P ∗). Ko-
rzan (1982) shows that (for one task, i.e., K = 1), if the
arc function qv,v′(t) is in the form qv,v′(t) = e−λ(v,v′)·t,
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λ(v, v′) > 0, that is, the probability function P from (9)
equals

P
(
I(is, id)

)
=

R1∏
r=1

qir−1,ir

(
t1ir−1,ir

)

=
R1∏
r=1

exp(−λ(ir−1, ir)t1ir−1,ir )

= exp
( R1∑

r=1

−λ(ir−1, ir)t1ir−1,ir

)
,

then the maximization of P (I(is, id)) is equivalent to the
minimization of

β
(
I(is, id)

)
=

R1∑
r=1

λ(ir−1, ir)t1ir−1,ir .

In this case we can define a new normalized vector objec-
tive function

ĥ(I) =
〈

T (I)
T ∗ ,

β(I)
β∗

〉
,

where

ĥ(I) =
〈
T (I), β(I)

〉
, T (I) =

T (I)
T ∗ , β(I) =

β(I)
β∗ ,

and the ideal point is h∗ = (1, 1). Determining a new
measure ε̂1, we obtain

ε̂1

(
h∗, ĥ(I)

)
=
∣∣1 − T (I)

∣∣+ ∣∣1 − β(I)
∣∣ .

But 1 − T (I) ≤ 0 and 1 − β(I) ≤ 0, so we obtain

ε̂1

(
h∗, ĥ(I)

)
= T (I) − 1 + β(I) − 1

= T (I) + β(I) − 2.

It can be observed that the function T (I) + β(I) − 2 has
a minimum value for the same I as the function T (I) +
β(I), so the component (−2) may be omitted and we have

ε̂1

(
h∗, ĥ0(I)

)
= min

I∈M(is,id)
ε̂1

(
h∗, ĥ(I)

)

= min
I∈M(is,id)

[
T (I) + β(I)

]
. (17)

The objective function from (17) is nonnegative and ad-
ditive. Define a temporary function H(I) as H(I) =
T (I) + β(I), so that

H(I) =
T (I)
T ∗ +

β(I)
β∗

=
1

T ∗

R1∑
r=1

t1ir−1,ir +
1
β∗

R1∑
r=1

λ(ir−1, ir)t1ir−1,ir

=
R1∑
r=1

(
1

T ∗ +
1
β∗λ(ir−1, ir)

)
t1ir−1,ir .

In connection with the above, we can define the problem
of finding a compromise path Ic ∈ M(is, id) with p = 1
as follows: Determine Ic ∈ M(is, id) such that

H(Ic) = min
I∈M(is,id)

H(I). (18)

To optimally solve the problem (18) using Dijkstra’s
standard algorithm, we can use the following arc meta-
function mf (v, v′):

mf (v, v′) =
(

1
T ∗ +

1
β∗ λ(v, v′)

)
t1v,v′ , 〈v, v′〉 ∈ AG.

The definition presented above has one more inter-
esting property: If for each arc 〈v, v′〉 ∈ AG we have
λ(v, v′) = λ > 0, then

β
(
I(is, id)

)
= λ

R1∑
r=1

t1ir−1,ir

and

ĥ(I) =
〈

T (I)
T ∗ ,

λT (I)
λT ∗

〉
,

so we solve a single-criterion problem with the criterion
T .

Generally, if the arc functions f1, f2, . . . , fN are
nonnegative, additive, i.e.,

Fn(I) =
R1(I)−1∑

r=0

fn

(
ir(1), ir+1(1)

)
,

and all of them are minimized, then the measure ε1

from (14) (for p = 1) has the form

ε1

(
h∗, h(I)

)
=

N∑
n=1

∣∣∣1 − Fn(I)
F ∗

n

∣∣∣

=
N∑

n=1

∣∣∣1 − 1
F ∗

n

R1−1∑
r=0

fn(vr, vr+1)
∣∣∣,

where

F ∗
n = min

I∈M(is,id)
Fn(I),

h(I) =
〈

F1(I)
F ∗

1

, . . . ,
FN (I)
F ∗

N

〉
,

and
h∗ = (1, 1, . . . , 1︸ ︷︷ ︸

N times

).

Because

1 − Fn(I)
F ∗

n

≤ 0

for all n = 1, N , we can write

ε1

(
h∗, h(I)

)
=

N∑
n=1

Fn(I)
F ∗

n

− N.
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It can be observed that the function

N∑
n=1

Fn(I)
F ∗

n

− N

has a minimum value for the same I as the function

N∑
n=1

Fn(I)
F ∗

n

,

so the component (−N) may be omitted. In this case, for
a compromise result h0 the following condition is satisfied
(Problem CSp=1):

ε1

(
h∗, h0(I)

)
= min

I∈M(is,id)
ε1

(
h∗, h(I)

)

= min
I∈M(is,id)

N∑
n=1

Fn(I)
F ∗

n

. (19)

Thus we can solve Problem CSp=1 optimally using Dijk-
stra’s standard algorithm with the following arc metafunc-
tion (v, v′):

mf (v, v′) =
N∑

n=1

fn(v, v′)
F ∗

n

, 〈v, v′〉 ∈ AG. (20)

The proof of the optimality of the resulting solution is
presented in the next section (cf. Theorem 1). For p > 1 it
is impossible to obtain a nonnegative, additive, linear form
of the arc function, so it is rather impossible to solve the
problem of finding a compromise solution optimally using
Dijkstra’s algorithm. In such cases, the problem can be
formulated as a quadratic programming problem (p = 2)
or a max-ordering problem (p = ∞) (Rana and Vickson,
1988; Warburton, 1987; Mote et al., 1991). The method
of compromise solutions with the parameter 1 ≤ p < ∞
guarantees obtaining nondominated solutions, i.e., Ic ∈
MND(is, id) (Ehrgott, 1997; Martins and Santos, 1999).

In Section 4.6 we define Problem CSp=1 as lin-
ear programming problems MOSP_LP1 and MOSP_LP2,
Problem CSp=2 as MOSP_NP1, and Problem CSp=∞ as
MOSP_NP2.

4.3. Method with a Metacriterion Function. In this
method we construct a function called the metacriterion
function which “merges” all criteria. There are two main
approaches to define this metacriterion function: in the
first one the metacriterion function is in the form of a
weighted average of criteria, and in the second one we
minimize maximal deviations of criteria from their “ideal”
values (some analogy to a compromise solution with the
parameter p = ∞).

The metacriterion function (Type I) in the form of
a weighted average of criteria with the weights αn, n =

1, N is defined as follows (under the assumptions that all
criteria are minimized):

MF(I) =
N∑

n=1

αnF ∗
n(I), (21)

F ∗
n(I) =

Fn(I)
F ∗

n

=
Fn(I)

min
I∈M(is,id)

Fn(I)

=

R1−1∑
r=0

fn(vr , vr+1)

min
I∈M(is,id)

Fn(I)
, n = 1, N, (22)

where fn(·, ·) describes the n-th arc function of G, fn :
AG → R

+, n = 1, N , R1 stands for the number of nodes
belonging to the path I . It is frequently assumed that the
weights must satisfy

αn ∈ [0, 1], n = 1, N,
N∑

n=1

αn = 1.

This guarantees obtaining nondominated solutions, i.e.,
IMF ∈ MND(is, id) (Ehrgott, 1997; Martins and Santos,
1999).

The problem of finding an optimal solution (Problem
MF_1) can be formulated as follows: Determine IMF ∈
M(is, id) such

MF(IMF) = min
I∈M(is,id)

MF(I). (23)

We can solve this problem using, e.g., Dijkstra’s algorithm
with the single arc metafunction

mf (v, v′) =
N∑

n=1

αn
fn(v, v′)

F ∗
n

, 〈v, v′〉 ∈ AG, (24)

and with the metacriterion function

MF(I) =
R1−1∑
r=0

mf (vr, vr+1). (25)

Theorem 1. If the arc functions f1, f2, . . . , fN , fi :
AG → R

+, i = 1, N are additive, then we solve the prob-
lem (23) optimally using Dijkstra’s algorithm with the arc
meta-function (24). In this case, the metafunction (21) is
equal to the metafunction (25).

Proof. When the functions f1, f2, . . . , fN are nonnega-
tive, then the function (24) is nonnegative, and when the
functions f1, f2, . . . , fN are additive, then the cost of the
path I is calculated as the sum of metacosts of arcs be-
longing to the path I . In this case, the assumptions of
Dijkstra’s algorithm regarding the arc function (nonnega-
tivity and additivity) are satisfied, so we can use this func-
tion as the arc function in the algorithm. Now, using (25),
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we prove that MF(I) = LF from (21) is equal to

R1−1∑
r=0

mf (vr, vr+1) = RG.

From (21) and (22) we obtain

LF = MF(I) =
N∑

i=1

αiF
∗
i (I)

=
N∑

n=1

αn

R1−1∑
r=0

fn(vr, vr+1)

F ∗
n

=
N∑

n=1

R1−1∑
r=0

αn

F ∗
n

fn(vr , vr+1),

and from (24) and (25) we obtain

RG =
R1(I)−1∑

r=0

mf (vr, vr+1)

=
R1−1∑
r=0

N∑
n=1

αn
fn(vr , vr+1)

F ∗
n

=
N∑

n=1

R1−1∑
r=0

αn

F ∗
n

fn(vr , vr+1).

Thus LF = RG.

Note that the arc function (20) is a special case of the
arc function (24) (all αi = 1), and thus the problem (19)
is a special case of the problem (23).

The complexity of the algorithm is the subject of
Theorem 2.

Theorem 2. The complexity of Dijkstra’s modified al-
gorithm (with Fibonacci’s heaps) for solving the prob-
lem (23) using the arc metacriterion function (24) is equal
to O (N(V log V + A) + NA).

Proof. To evaluate the arc metafunction (24) for each
arc, we must first solve the shortest path problem N
times for each criterion: it takes time proportional to
O (N(V log V + A)) using Dijkstra’s algorithm imple-
mented with Fibonacci’s heaps. Next, separately for each
arc, we compute the value of the metafunction (24). For
all arcs it takes time proportional to Θ (NA). Using Dijk-
stra’s algorithm with arc metafunction (24), we compute
the shortest path in time O (V log V + A), and thus the
total time of the algorithm for solving the problem (23) is
equal to O (N(V log V + A) + NA).

The metacriterion function (Type II) with the min-
imization of maximal deviations of criteria values from

their “ideal” values can be defined using the following
temporary function:

Fn(I) =
F ∗

n

Fn(I)
=

min
I∈M(is,id)

Fn(I)

Fn(I)

=
min

I∈M(is,id)
Fn(I)

R1−1∑
r=0

fn(vr, vr+1)
, n = 1, N. (26)

Note that Fn(I) ∈ (0, 1], n = 1, N , so the ideal point is
equal to 1. Now, we can define the metacriterion function
with the minimization of maximal deviations of criteria
values from their “ideal” values (Problem MF_2) as fol-
lows:

u → min,

subject to

1 − Fn(I) ≤ u, I ∈ M(is, id).

The additional variable u describes the maximal deviation
of the values of the criteria functions Fn(I) from their
“ideal” values (i.e., 1). From the condition Fn(I) ∈ (0, 1]
it follows that u ∈ [0, 1). In Section 4.6 we define this
problem in detail as a mathematical programming prob-
lem (MOSP_NP3).

We shall show that Problem MF_2 can be considered
as that of finding a (1 + ε)-shortest path, ε ≥ 0. The
constraint 1 − Fn(I) ≤ u can be written as

Fn(I) ≤ 1
1 − u

F ∗
n .

Taking into account the definition of the vector (1 + ε)-
dominance (see (8)), we obtain

Fn(I) ≤ (1 + ε)F ∗
n ,

that is,
ε =

u

1 − u
.

Hence u → min is equivalent to ε → min, because ε
is an increasing function of u. Therefore, Problem MF_2
can be solved by finding an (1 + ε∗)-shortest path, where
ε∗ is the smallest value of ε such that a (1 + ε)-shortest
path exists (we use the following property of the (1 + ε)-
shortest path: if any path I is a (1 + ε)-shortest path, then
I is a (1 + ε′)-shortest path for each ε′ ≥ ε). If we set
the precision for u to m decimal places (m is a positive
integer), then the algorithm MF_2_half is as follows:

Algorithm MF_2_half
L:=0; R:=10m; u∗:=infinity;
while |L-R|>1 do

u’:= L + ceil ((R-L)/2);
u:=u’/10m;
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ε :=u/(1-u);
Determine (1+ε)-shortest path

from s to t;
if (1+ε)-shortest path

from s to t exists then
R:=u’; u∗:=u;

else
L:=u’;

return u∗;

If we denote by T (ε) the complexity of an algorithm
for finding a (1 + ε)-shortest path between s and t (War-
burton, 1987; Papadimitriou and Yannakakis, 2000), then
Algorithm MF_2_half has complexity O (log2 10mT (ε))
(because the idea is similar to a binary-search for some
value x in a sorted table with 10m elements, where L and
R denote the left and right indices of subtable ranges),
respectively. For example, consider the weighted graph
given in Fig. 1 with s = 1, t = 5. The “ideal” vector of
criteria values is c∗ = (c∗1, c∗2, c∗3) = (6, 5, 2). In the last
column of Table 4, for each path I from s = 1 to t = 5
the smallest value of (1 + ε) such that

F (I)
ε≤ c∗

is calculated. Set m = 1 (we want to calculate u with a
precision of one decimal place) for Algorithm MF_2_half.
In the first iteration, we get L = 0, R = 10, u′ = 5,
u = 0.5, ε = 1. From Table 4 we see that a path (e.g.,
pA) for which (1 + ε) ≤ 2 exists. Hence this path is
a (1 + (ε = 1))-shortest path from s to t and R := 5,
u: = 0.5. In the second iteration, we get L = 0, R = 5,
u′ = 2, u = 0.2, ε = 0.25. Because a path (e.g., pA)
for which (1 + ε) ≤ 1.25 exists, it is a (1 + (ε = 0.25))-
shortest path from s to t and R := 2, u∗ := 0.2. In the
third iteration, we get L = 0, R = 2, u′ = 1, u = 0.1,
ε = 1/9. But no (1+ (ε = 1/9))-shortest path exists, and
hence L = 1, R = 2 and we exit with u∗ = 0.2.

In Section 4.6 we define Problem MF_1 as a linear
programming problem (MOSP_LP3) and Problem MF_2
as MOSP_NP3.

4.4. Method with the Hierarchization of Objec-
tive Functions. In this approach we order criteria func-
tions according to their importance (in the set of criteria
functions we set a lexicographic order), so that F1 de-
scribes the most important criterion, F2 – the second cri-
terion with respect to importance, etc. A solution Ih ∈
Mj≤N (is, id) ⊂ M(is, id) is found by solving a sequence
of single-criteria optimization problems starting from the
most important criterion (with the index j = 1, generat-
ing the set M1(is, id)), and then taking into account the
second criterion with respect to importance (the generat-
ing set M2(is, id)), etc. The calculations are continued
as long as we achieve MN or at a previous stage s ≤ N

we get MS = 1. Each of the sets Mj tightens the pre-
viously obtained set Mj−1 of acceptable solutions and is
recurrently defined as

Mj(is, id)

=

⎧
⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

{
Ij ∈Mj−1(is, id) :Fj(Ij)= min

I∈Mj−1(is,id)
Fj(I)

}
,

j = 1, N,

M(is, id), j = 0.

The method of hierarchization of objective func-
tions guarantees obtaining nondominated solutions, i.e.,
Ih ∈ MND(is, id) (Ehrgott, 1997; Martins and Santos,
1999). For example, we consider a lexicographic solution
(path) of the problem (3) with a vector objective function
F (I) = 〈T (I), P (I)〉, where P is defined as follows:

P
(
I(is, id)

)
=

R1∏
r=1

e
−λ(ir−1,ir)

r�

k=1
t1
ik−1,ik

=
R1∏
r=1

qir−1,ir

(
r∑

k=1

t1ik−1,ik

)
,

qir−1,ir (t) = e−λ(ir−1,ir)t.

There is one interesting question: How to find a so-
lution following the order of the importance of the crite-
ria (12) T , P? Korzan (1983a) proved (for K = 1) that if
inside the set MND(is, id) there exist many shortest paths
according to the criterion T with the same length T ∗, then
all of them have the same value of the P criterion. Acord-
ingly, any node x with the same value of T on the part of
the path from s can be considered at the next step of Dijk-
stra’s algorithm. Hence, we can use Dijkstra’s algorithm
with the modifications presented in Table 2, where d(x)
describes the value of the function T for the path from s to
x, c(x,y) is equivalent to cx,y , p(x) signifies the value
of the function P for the path from s to x and q(x,y,z)
is equivalent to qx,y(z).

A modification of Dijkstra’s algorithm (Dijk-
stra_Lex2) has the same complexity as the original algo-
rithm (with Fibonacci’s heaps), that is, O (V log V + A).
Generally, finding lexicographic solutions (paths) is NP-
hard (Garey and Johson, 1979).

4.5. Method with Threshold Values of Some Crite-
ria (Restricted Shortest Path Problem). Methods of
threshold values (also known as restricted shortest path
problems (RSPPs)) rely on the fact that some criteria func-
tions have fixed critical values and they lighten the set of
acceptable solutions. For example, the problem (12) could
be written as follows: Determine I∗(is, id) ∈ M

(
is, id

)
such that

P
(
I∗(is, id)

)
= max

I(is,id)∈M(is,id)
P
(
I(is, id)

)
(27)
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Table 2. Modification of Dijkstra’s algorithm for finding lexicographic solution with the objectives T and P .

Dijkstra’s standard algorithm Dijkstra_Lex2 algorithm

Dijkstra(
G = 〈VG, AG〉, [c(u,v)]V×V, s, t)

for each node v ∈ VG do
predecessor[v]:= null;
d[v]:= +infinity;

d[s]:= 0;
Q:= VG;
while Q �= null do

u:= Extract_Min(Q); /u is such node
that d[u]= min{d[v]:v∈ Q}/

Q:= Q \ u;
if u=t then
return;

for each arc(u,v)∈ AG starting from u
do

if d[v] > d[u] + c(u,v) then
d[v]:= d[u] + c(u,v);
predecessor[v]:= u;

Dijkstra_Lex2(
G=〈VG, AG〉,[c(u,v)]V×V,[q(u,v,z)]V ×V ×T,s,t)

for each node v ∈ VG do
predecessor[v]:= null;
d[v]:= +infinity;
p[v]:= 0;

p[s]:=1;
d[s]:= 0;
Q:= VG;
while Q �= null do

u:= Extract_Min(Q); /u is such node
that d[u]= min{d[v]:v∈ Q}/

Q:= Q \ u;
if u=t then

return;
for each arc (u,v)∈ AG starting from u

do
if d[v] > d[u] + c(u,v) or

(d[v] = d[u] + c(u,v) and
p[v] < p[u] * q(u,v,d[v])) then

d[v]:= d[u] + c(u,v);
p[v]:= p[u] * q(u,v,d[v]);
predecessor[v]:= u;

with the additional restriction

T
(
I(is, id)

) ≤ T0,

where T0 is a fixed threshold value of the criterion T (·).
Warburton (1987) proposed an O(V 2Z log V ) algorithm
for solving the RSPP problem for two objectives (with
positive integers), where Z is an upper bound to the value
of the second objective (the first objective is minimized).
In Section 4.6 we define the RSPP problem as a mathe-
matical programming one (MOSP_LP4).

4.6. Types of MOSP Problems Defined as Mathemat-
ical Programming Problems. For K = 1 we will use
the formulation of the MOSP problem as the following
linear programming one:

Cx → min (28)

subject to
Bx = d, x ≥ 0. (29)

Here C = [cnj ]N×A is an objective matrix, B = [bij ]V ×A

is a transition matrix for the graph G, and bij = 1 when
the j-th arc starts in the i-th node, bij = −1 when the j-th
arc ends in the i-th node and bij = 0 otherwise. Fur-
thermore, d = [di]V ×1 is a column vector which may
have three values: di = 1 when i = is, di = −1 when

i = id and di = 0 otherwise. Moreover, x = [xj ]A×1,
xj ∈ R

+ ⊂ {0}, and ‘min’ describes the minimum in a
vector sense (in the sense of the relation RD). The i-th
node has its equivalent in the set VG, i = 1, V , and the j-
th arc has its equivalent in the set AG, j = 1, A. Each cost
cnj for the j-th arc has its equivalent in the value of the arc
function fn(v, v′), 〈v, v′〉 ∈ AG. For the case N = 1 we
have the classical definition of the shortest path problem
as a linear programming one (because of the total unimod-
ularity of the matrix B and the vector d). Sometimes, we
will use the following extended, equivalent form of the
problem (28), (29):

A∑
j=1

cnjxj → min, n = 1, N (30)

subject to

A∑
j=1

bijxj = di, i = 1, V ,

xj ≥ 0, j = 1, A.

(31)

The problem of finding a compromise solution with
the parameter p = 1, however nonlinear in its nature, can
be formulated as a linear programming one. Using the
notation introduced in (30) and (31), the metric (14) can
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be written as follows:

N∑
n=1

∣∣∣1 − 1
c∗n

A∑
j=1

cnjxj

∣∣∣→ min,

where c∗n ≡ F ∗
n . We adopt the following notation:

zn = max

{
0, 1 − 1

c∗n

A∑
j=1

cnjxj

}
, n = 1, N,

zn = max

{
0,

1
c∗n

A∑
j=1

cnjxj − 1

}
, n = 1, N.

Then for each n = 1, N the following conditions are sat-
isfied:

∣∣∣1 − 1
c∗n

A∑
j=1

cnjxj

∣∣∣ = zn + zn,

1 − 1
c∗n

A∑
j=1

cnjxj = zn − zn,

zn ≥ 0, zn ≥ 0, zn · zn = 0.

For this reason we obtain the following linear program-
ming problem (MOSP_LP1):

N∑
n=1

zn + zn → min

subject to

1 − 1
c∗n

A∑
j=1

cnjxj = zn − zn, n = 1, N,

zn ≥ 0, zn ≥ 0, zn · zn = 0, n = 1, N,

and (31).
We omit the conditions zn · zn = 0, n = 1, N , but

it can be shown that they do not extend the set of optimal
solutions. The presented problem can be solved using,
e.g, the simplex algorithm. But the problem can be of a
large scale (the number of variables equals N + A, and
the number of boundaries is N +V ) and the effectiveness
of solving this problem (using a simplex or an ellipsoidal
algorithm) is rather unacceptable. According to the dis-
cussion of Section 4.2 and Eqn. (19), Problem CSp=1 can
be also defined as follows (MOSP_LP2):

N∑
n=1

1
c∗n

A∑
j=1

cnjxj → min

subject to (31).

Problem CSp=2 of finding a compromise solution
with the parameter p = 2 (MOSP_NP1) is as follows:

N∑
n=1

(
1 − 1

c∗n

A∑
j=1

cnjxj

)2

→ min

subject to (31). Unfortunately, the criterion function
makes it nonlinear.

Problem CSp=∞ of finding a compromise solution
with the parameter p = ∞ (MOSP_NP2), known as the
max-ordering problem, can be defined as follows:

max
n∈{1,...,N}

∣∣∣1 − 1
c∗n

A∑
j=1

cnjxj

∣∣∣→ min

subject to (31). The notation “max” in the criterion func-
tion makes the problem nonlinear.

The method with a metacriterion function of Type I
(MOSP_LP3) is defined as follows:

N∑
n=1

αn

c∗n

A∑
j=1

cnjxj → min

subject to

N∑
n=1

αn = 1, αn ≥ 0, n = 1, N

and (31).
To define the MOSP problem with a metacriterion

function of Type II, note that the function Fn(I) from (26)
is equivalent to c∗n/

∑A
j=1 cnjxj . Hence we obtain Prob-

lem MOSP_NP3:
u → min

subject to

1 − c∗n
A∑

j=1

cnjxj

≤ u, n = 1, N

and (31). The first type of constraints makes the problem
nonlinear.

The method with critical values of criteria
(MOSP_LP4), also known as the restricted shortest
path problem, can be formulated as follows:

A∑
j=1

cLjxj → min

subject to

A∑
j=1

cijxj ≤ gi, i = 1, N, i �= L
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Table 3. Properties of MOSP problems formulated as mathematical programming ones.

Problem
Type of mathematical

programming problem

Number of decision

variables

Number of

constraints

MOSP_LP1 Linear 2N + A V + N

MOSP_LP2 Linear A V

MOSP_LP3 Linear A V

MOSP_LP4 Linear A V + N − 1

MOSP_NP1 Nonlinear A V

MOSP_NP2 Nonlinear A V

MOSP_NP3 Nonlinear A + 1 V + N

and (31), where g = (g1, gi, . . . , gN )i�=L collects thresh-
old values of individual criteria, and L denotes the index
of the criterion to be minimized. Note that if any com-
ponent of g is not integer, then the constraint xj ≥ 0,
j = 1, A must be replaced by xj ∈ {0, 1}, j = 1, A.

In Table 3 we present the properties of MOSP prob-
lems formulated as mathematical programming ones.

5. Numerical Examples

In Fig. 1 we present a graph which will be used as a run-
ning example of defined MOSP problems with a three-
dimensional vector of costs (objectives). The values of all
functions are minimized.

Fig. 1. Exemplary graph with multidimensional costs: on
the top of each arc its label is given while on the
bottom three-component arc cost are displayed.

In Table 4 we present the set of paths from s = 1 to
t = 5 for the graph from Fig. 1 and their multidimensional
properties. In the last row of the table, optimal costs for
each of the objectives are presented (c∗ = (6, 5, 2)). In
the last column of Table 4, for each path I from s = 1 to

t = 5 the smallest value of (1 + ε) such that F (I)
ε≤ c∗ is

calculated. For example, for pA we have

1 + ε = max
{
7/6, 5/5, 2/2

}
= 7/6.

Table 4. Set of paths from s = 1 to t = 5 for the graph from
Fig. 1 and their multidimensional properties.

Path
name I

Path as sequence
of nodes

Cost vector F (I)

of path
1 + ε

pA 1-2-5 (7, 5, 2) 7/6

pB 1-2-3-5 (7, 7, 3) 3/2

pC 1-2-3-4-5 (8, 14, 4) 14/5

pD 1-3-5 (6, 6, 2) 6/5

pE 1-3-2-5 (12, 8, 3) 12/6

pF 1-3-4-5 (7, 9, 3) 9/5

pG 1-4-5 (7, 7, 2) 7/5

pH 1-4-3-5 (12, 6, 3) 12/6

pI 1-4-3-2-5 (17, 9, 4) 17/6

Vector of
optimal costs:

c∗1 = 6, c∗2 = 5, c∗3 = 2

Table 5 contains optimal multidimensional paths for the
graph from Fig. 1 (s = 1, t = 5) using different types of
MOSP problems.

In Figs. 2–4 we present weighted terrain-based grid
graphs with the dimensions of 50 × 200 nodes (squares)
representing the neighbourhood of Radom (a city in
Poland). Each of the graphs has A ≈ 3, 95V arcs, because
only north-east-south-west moves are permitted from a
node. Such graphs represent, e.g., a model of the battle-
field in computer simulation games (Tarapata, 2003). For
this example, each terrain square has a size of 200×200 m
so that the graphs represent a piece of terrain with the
dimension 10 × 40 km. Colours represent criteria val-
ues: c1 for Fig. 2—the light colour of a node (square)
describes open terrain (well passable), the dark colour de-
scribes obstacles (forests, lakes, rivers, buildings): the
darkest colour represents the least passable terrain; c2 for
Fig. 3—the colour of a node (square) describes the abil-
ity to camouflage: the darker the colour, the smaller the
ability to camouflage; c3 for Fig. 4—the values of the cri-
terion c3 equal 1 for all nodes. The white colour in all
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Table 5. Optimal multidimensional paths for the graph of Fig. 1 (s = 1, t = 5).

Problem Optimal path Cost of path

MF_1, αn = 1/3, n = 1, 3 ⇔ MOSP_LP3 pA 1.045

MF_1, α1 = 0.66, α2 = 0.17, α3 = 0.17 ⇔ MOSP_LP3 pD 1.034

CSp=1 ⇔ MOSP_LP2 pA 3.167

RSPP ⇔ MOSP_LP4, L = 1, g2 = 1.2c∗2 , g3 = 1.2c∗3 pD 6.0

RSPP ⇔ MOSP_LP4, L = 1, g2 = 1.1c∗2 , g3 = 1.1c∗3 pA 7.0

RSPP ⇔ MOSP_LP4, L = 1, g2 = c∗2, g3 = c∗3 Null +infinity

CSp=2 ⇔ MOSP_NP1 pA 0.139

CSp=∞ ⇔ MOSP_NP2 pA, pD 0.333

MOSP_NP3 pA u = 1/6

Fig. 2. Weighted terrain-based grid graph with 50 × 200
nodes (squares). Colours represent the values of the
criterion c1: the light colour of the nodes (square)
corresponds to open terrain, and the dark colour de-
scribes obstacles (forests, lakes, rivers, buildings).
The white colour describes an optimal path from the
top-left corner to the bottom-right one.

Fig. 3. Weighted terrain-based grid graph with 50 × 200
nodes (squares). The colour represents the values
of the criterion c2: the colour of the node (square)
describes the ability to camouflage: the darker the
colour, the lower the ability to camouflage. The
white colour marks the optimal path from the top-
left corner to the bottom-right one.

figures describes an optimal path from the top-left cor-
ner to the bottom-right one. Note that finding an opti-
mal path in the sense of c1 gives the fastest path, while c2

gives the best “camouflaged“ path, and c3 yelds a shortest
geometric path (with north-east-south-west moves from a
node only). Without loss of generality, we can assume
that the functions c1, c2, c3 are described on the nodes

Fig. 4. Weighted terrain-based grid graph with 50 × 200 nodes
(squares). All weights are identical (the value of the cri-
terion c3 equals 1). The white colour marks the optimal
path from the top-left corner to the bottom-right one.

(squares) instead of the arcs. If it is necessary to obtain
a graph with arc functions, we can construct a dual graph
GT = 〈VGT , AGT 〉 to the analysed graph G = 〈VG, AG〉,
where VGT = AG and each arc (a, b) ∈ AGT ⊂ AG×AG

is created when two arcs a, b in G have a common node
(i.e., they are simultaneously incident with any node), then
in GT the functions c1, c2, c3 are described on arcs.

In Table 6 we present experimental results of average
running times (in seconds) of Dijkstra’s modified algo-
rithm and CPLEX 7.0 for Problem MF_1 (αi = 1/N, i =
1, . . . , N). Graphs with the numbers of nodes equal to
1000x (x = 1, 2, . . . , 10) are cut from the graph with
50 × 200 nodes (Figs. 2–4) and have 50 × (20x) nodes.
We can see a clear advantage of Dijkstra’s modified algo-
rithm with relation to CPLEX 7.0 solving Problem MF_1
as the linear programming problem MOSP_LP3. Using
Dijkstra’s modified algorithm with its fast implementa-
tions is time effective. It is especially visible in Fig. 5,
where we present the base 10 logarithm of the average
running times (in milliseconds) of these two algorithms.

Figure 6 presents dependencies between the average
running times (in milliseconds) of the CPLEX 7.0 solver
and the beta coefficient for solving Problem MOSP_LP4
for two graphs with V = 1000(50 × 20) and V =
2000(50 × 40) nodes. In Problem MOSP_LP4 we min-
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Table 6. Average running times (in seconds) of Dijkstra’s modified algorithm and CPLEX 7.0 for
Problem MF_1 (αi = 1/N , i = 1, . . . , N).

Number of Dijkstra’s modified alg. MF_1 solved as MOSP_LP3

nodes (V ) N = 1 N = 2 N = 3 N = 1 N = 2 N = 3

1000 0.03 0.08 0.11 0.76 2.31 4.39

2000 0.10 0.29 0.38 2.82 8.81 12.40

3000 0.25 0.71 0.96 6.52 21.20 29.14

4000 0.37 1.10 1.47 16.40 52.55 72.30

5000 0.59 1.74 2.33 30.41 98.12 136.22

6000 0.86 2.55 3.42 50.79 161.94 225.67

7000 1.16 3.44 4.59 74.61 238.27 333.80

8000 1.55 4.57 6.12 109.24 348.13 483.76

9000 1.96 5.82 7.77 134.78 432.47 620.94

10000 2.43 7.24 9.66 179.61 564.42 790.97

Fig. 5. Base 10 logarithm of the average running times
(in milliseconds) of Dijkstra’s modified algorithm
(Problem MF_1 ⇔ MDijk) and CPLEX 7.0 (Prob-
lem MOSP_LP3 ⇔ LP) (αi = 1/N , i =
1, . . . , N).

imize the criterion c1 subject to upper bounds (g2 and
g3) on the values of the criteria c2 and c3 as follows:
g2 = beta · c∗2 and (g3 = infinity, g3 = beta · c∗3), where
c∗2 = 6964, c∗3 = 68 for V = 1000 and c∗2 = 6061,
c∗3 = 88 for V = 2000.

In Fig. 7 we present dependencies between the val-
ues of the objective function and the coefficient beta for
Problem MOSP_LP4. Note that, generally, the greater the
value of beta, the smaller the running time of the model in
the CPLEX solver (and the smaller the value of the ob-
jective functions, Fig. 7) but the functions from Fig. 6
are not monotonic. The values of the running times for
Problem MOSP_LP4 are several times greater than those
for Problem MOSP_LP3 solved using the CPLEX solver

Fig. 6. Base 10 logarithm of the average running times
(in milliseconds) of the CPLEX 7.0 solver solv-
ing Problem MOSP_LP4 for two graphs with V =
1000 and V = 2000 nodes, g2 = beta · c∗2 and
(g3 = infinity, g3 = beta · c∗3).

(compare Figs. 6 and 5). For example, the running time
for V = 2000 is about 105/102.8 times greater than that
for solving Problem MOSP_LP3. These results are clear:
the smaller the restrictions on the criteria c2 and c3 (this
means: the greater the value of beta), the smaller the run-
ning time. Moreover, the greater values of running time
result from the fact that gi = beta·c∗i is not integer (except
for beta = 1.25 and beta = 1.5 for c∗2 = 6964, V=1000),
and MOSP_LP4 (as a linear programming problem) be-
comes a binary programming problem which is harder to
solve. For beta ≥ 1.35 the value of the objective func-
tion (based on c1) does not change because it achieves an
optimal value (c∗1 = 605 for V = 1000, c∗1 = 713 for
V = 2000).
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Fig. 7. Values of the objective functions for Problem
MOSP_LP4 for two graphs with V = 1000 and
V = 2000 nodes, g2 = beta · c∗2 and (g3 = infinity,
g3 = beta · c∗3).

6. Summary

Any algorithm solving the multiobjective shortest path
problem is at least exponential in the worst case analysis,
but we can use specific effective approaches for special
MOSP problems. In the paper we focused on the analysis
of the complexity of selected MOSP problems and showed
how we can use modifications and advantages of fast im-
plementations of Dijkstra’s algorithm (using effective data
structures such as, e.g., Fibonacci’s heaps, d-ary heaps) in
order to optimally solve them. Experimental results of
the computational times for the presented approach (es-
pecially Dijkstra’s modified algorithm) in Section 5 con-
firm their good effectiveness when solving selected MOSP
problems. The models and methods described in the pa-
per were chosen from numerous approaches. Problems
such as determining disjoint paths (Li et al., 1992, Schri-
jver and Seymour, 1992; Tarapata, 1999; 2000), stochastic
network dependencies (Sigal et al., 1980; Korzan, 1982;
1983a; 1983b; Loui, 1983), time-dependencies in net-
works (Bernstein et al., 1997; Djidjev et al., 1995; Sher-
ali et al., 1998) in the multicriteria context were only
indicated here. These problems are often very compli-
cated (computationally, too), and we use different meth-
ods for solving them, such as exact algorithms specifi-
cally designed for the problem, label setting or label cor-
recting methods, algorithms based on dynamic program-
ming, algorithms based on branch and bound, interactive
methods, heuristics specifically designed for the problem,
simulated annealing algorithms, tabu search algorithms,
genetic or evolutionary algorithms, greedy randomized
adaptative search procedures, goal programming, approx-
imation algorithms with worst case performance bound,
methods based on linear programming, etc.
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