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The problem of continuous position availability is one of the most important issues connected with the human activity at sea.
Because the availability of satellite navigational systems can be limited in some cases, e.g. during military operations, one
has to consider additional methods of acquiring information about the ship’s position. In this paper one of these methods is
presented, which is based on exploiting landmarks located on a coastline. A navigational radar is used to obtain information
about these points. In order to estimate the ship’s position by means of a set of landmarks, it is necessary to know their
accurate locations. The paper presents a landmark identification method based on the comparison of bearing and distance
trees representing pattern points generated from a chart, as well as points extracted from a radar image.

Keywords: ship’s positioning, landmark identification, bearing and distance tree

1. Introduction

A primary positioning system can be turned off, destroyed
or malfunctioning. This is the reason why alternative
methods of position estimation should be taken into ac-
count. It is especially important for naval ships. A
military, auxiliary positioning system should be as au-
tonomous as possible. It should offer a possibility to
estimate the ship’s position without any help from out-
side. Another crucial issue concerning military position-
ing systems is robustness against external disturbances.
The more the opponent has to do in order to distort navi-
gational information, the better the system is. The possi-
bility to estimate the position on any stretch, i.e. the global
character of the navigational system, is its last important
feature. A navy ship should be capable of executing a task
wherever it is located and its navigational system should
make it possible. Summarizing, we can enumerate four
key properties of military spare positioning systems: ac-
curacy, autonomy, robustness and the global character.

In the article, solutions are presented which are au-
tonomous, robust to external disturbances, relatively ac-
curate, but not global. They make it possible to estimate
the position solely in coastal stretches. This limited ap-
plicability results from using a navigational radar as the
main source of information in the process of position es-
timation. All bigger sea going vessels are equipped with

such radars and their application in navigation is not a new
idea. A traditional method of radar positioning makes use
of landmarks located on the coast, which are present in the
sea area and visible on a radar image. Knowing the ac-
curate position of a reference point along with its bearing
and the distance to it, we are able to estimate the ship’s po-
sition. Unfortunately, the identification of a point appear-
ing in the image, i.e. assigning it a counterpart on a chart,
constitutes a frequent problem for navigators. For that
reason, other methods are used. The first of them is the
so-called comparative navigation (Stateczny, 2001). It as-
sumes that each position (near the coast) corresponds to a
characteristic radar image of the coastline. In short, com-
parative positioning consists in constructing a database of
pattern radar images (from known positions) and using all
memorized information together with simple minimal dis-
tance algorithms during the positioning process: the pat-
tern image closest to the image recorded from the naviga-
tional radar corresponds to the ship’s position.

This approach possesses three major drawbacks. The
first is related to difficulties with obtaining appropriate
training data. The most natural but, at the same time, the
most expensive solution is registering real radar images
from the coast area of interest. In addition to the huge
costs entailed, we will never have a guarantee that the data
obtained in such a way will represent everything we can
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get on the radar screen. In order for such data to become
a reliable base on which we could estimate the position,
they should be registered in various weather conditions, in
different seasons, at night, in daytime, etc. All factors that
could have influence on the radar image should be taken
into account. The resulting costs would thus be very high.

Except difficulties with acquiring reliable training
data, the solution based on real radar images has one more
disadvantage. Namely, in order to create a positioning
system which would be useful practically on any coastal
stretch, we would have to have at our disposal radar im-
ages coming from all possible coastal areas. Moreover, as
it has been mentioned before, training images should take
into consideration various factors that could influence the
radar image. Acquiring such data is practically impossi-
ble and, therefore, the application of the system prepared
based on real radar images is limited to known nearly ar-
eas of the sea.

Another possibility to obtain training data is to simu-
late them from a paper or electronic chart. It is a cheap so-
lution since it does not demand a registration in real condi-
tions. Furthermore, it makes the creation of a global posi-
tioning system possible because we can generate training
data coming from any stretch. Unfortunately, the differ-
ences between radar images and the corresponding images
generated from a chart hinder the application of the lat-
ter images in comparative navigation positioning systems.
The differences concern both the coastline and remote el-
ements of the land that are very often not visible on the
radar image.

The second drawback of traditional comparative nav-
igation is its poor accuracy. It results from the idea of po-
sitioning applied. Answers (positions) of the system are
restricted only to positions corresponding to memorized
pattern images. In order to estimate the position between
two training images we have to add the next image.

The last shortcoming of comparative navigation is its
sluggishness. In order to estimate the position, the system
has to compare a registered image with the whole set of
pattern images.

A newer approach to the problem of positioning at
sea is to use for that purpose artificial intelligence methods
such as artificial neural networks (Praczyk, 2006b). They
may constitute a reasoning element whose task is to assign
the position to the radar image registered. In this case,
except difficulties in obtaining appropriate training data,
there is a problem with their dimensionality. The most
important criterion for estimation by a positioning system
is its accuracy. If we wish to obtain a precise positioning
system, it is necessary to collect a large number of radar
images (or simulated radar images) from the coastal area
that we are interested in. This usually means hundreds and
even thousands of images, a couple of images per posi-
tion. This is a massive amount of data, which implies that
we are faced with an extremely complex task. Training a

neural network based on such massive data may become
practically impossible and at least very troublesome and
time consuming.

A way out is the application of different methods
which simplify the problem complexity. On the one hand,
a decomposition into simpler problems can be used in
which the sea area is partitioned into smaller regions, each
with its own positioning system. Another method of re-
ducing the complexity is the application of radar image
feature extraction methods (leading to image compres-
sion) (Praczyk, 2006d). The information contained in the
radar image is reduced to an amount acceptable from the
point of view of further computations.

Feature extraction methods are not used solely as a
panacea for the acceleration of computations in the infer-
ence or training phases. Very often their application is
a necessary condition for proper functioning of the posi-
tioning system. Such a situation happens when training
images are generated from an electronic or paper chart. In
such a case accurate positioning without preprocessing in-
put data and without the fusion of all those data is impos-
sible. Feature extraction methods gather from images only
information which is essential for the task, while omitting
all that is unnecessary or even detrimental.

Unfortunately, as prior investigations the exhibited
(Praczyk, 2006b), it is extremely difficult to construct
a sufficiently accurate positioning system which would
work based on a neural network and a compressed radar
image. There are two possible reasons behind this situa-
tion. The first is the fact that a position function defined on
a feature vector domain can be strongly nonlinear, mak-
ing its approximation very difficult. The nonlinearity of
the position function results, in turn, from a dispersion
of radar image equivalents, which are originally located
close to one another. In a radar image domain, images cor-
responding to close positions are similar. In turn, images
representing distant positions are usually extremely differ-
ent. Unfortunately, the feature extraction process can de-
stroy concentrations occurring in the radar image domain
scattering radar images representatives in different places
of the feature vector domain. Neighbouring vectors may
correspond to extremely distant positions. The greater the
level of dispersion, the more difficulties in estimating the
accurate position.

Another important reason for the difficulties ob-
served while creating a valuable positioning system work-
ing based on compressed radar images and neural net-
works is the fact that, apart from information essential
for the positioning process, every radar image also con-
tains noise. What is more, this noise may constitute a
large fragment of the image distorting it significantly. Of
course, there are methods which make it possible to ex-
tract from the image the least deformed element, namely,
the coastline. However, the coastline visible on the radar
image may also differ depending on weather, season, etc.



Application of bearing and distance trees to the identification of landmarks on the coast 89

Consequently, the position approximated based on an even
slightly deformed coastline could be strongly inaccurate.

Another approach also taking advantage of a neural
network as a position approximator estimates the position
based not on the entire radar image or its feature vector
descriptions, but on a vector of bearings and distances to
a specially arranged system of buoys (Praczyk, 2006c).
Distances and bearings to buoys can be obtained directly
from the radar. In such a case, the neural network learns
by means of a set of sample vectors of bearings and dis-
tances generated from a chart. In an inference phase, the
network receiving from the radar the vector of bearing
and distances to a set of properly ordered buoys (from the
north-most buoy to the south-most buoy) is able to ap-
proximate the vessel’s position.

This method has two major disadvantages. First, it is
not global. Positioning is possible solely in areas equipped
with a system of distinguishable buoys located in fixed po-
sitions. Thus, in order to estimate the position, the pres-
ence of buoys is not sufficient. Buoys should be char-
acteristic or produce characteristic radar echoes and they
should not change locations over time. Consequently, we
may use the system in a specific coastal area and nowhere
else.

The second disadvantage of the concept using bear-
ings and distances to buoys in order to estimate the po-
sition is its large sensitivity to navigational information
disturbances. For example, serious problems appear if we
add an additional buoy imitating a buoy belonging to the
system. What is worse, we will not know that the gener-
ated position is be erroneous.

The automation of traditional radar navigation is an-
other positioning method (Praczyk, 2006a). In this case,
positioning is based on characteristic points of the coast
(ends of peninsulas, buoys, etc.), which constitute the
most reliable elements of the image and, what is also im-
portant, the positioning is reduced to the identification of
such landmarks and subsequent estimation of the position.
At the beginning, landmarks are extracted from the radar
image, then they are identified and, finally, the identified
landmarks are used as reference points, i.e. the bearing
and distance to each of them are determined, which suf-
fices to estimate the ship’s position. The method makes it
possible to estimate the position on all coastal stretches
where we can find landmarks. It does not require any
expensive measurements at sea in order to construct the
system. It only suffices to have knowledge that we can
acquire from a navigational chart. The system malfunc-
tioning is very difficult because every point that can con-
stitute detrimental noise should be detected by the system
and neglected in the process of position estimation.

The article presents the last of the presented position-
ing approaches, focusing particularly on a new landmark
identification method. The paper begins with the presen-
tation of a framework of the proposed positioning system

in Section 2. Section 3 outlines the first element of the
entire system, i.e. the landmark extraction subsystem. In
Section 4, the proposed method of landmark identification
is characterized. Experimental results are included in Sec-
tion 5 and conclusions are made at the end of the paper.

2. System Description

The proposed positioning system consists of five main el-
ements: a radar, a radar image registration subsystem, a
landmark extraction subsystem, a landmark identification
subsystem and a positioning subsystem. The structure of
the whole system is presented in Fig. 1.
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Fig. 1. Structure of the positioning system.

The role of the radar is evident and, therefore, we
shall focus only on the remaining four elements. The main
task of the radar image registration subsystem is transfor-
mation of the radar signal to a digital form. An additional
task of this subsystem is the elimination of echoes com-
ing from moving ships. In the image, they look like small
points so they can be interpreted as spurious landmarks
hindering the identification of the true landmarks. For that
reason, if it is possible, they should be eliminated from the
image. To this end, the subsystem should be able to track
every object that changes its location over time.

The detection of such an object could be accom-
plished, e.g. through simple summation of images and the
application of a threshold filter to the resulting image. It
removes all points whose brightness is less than the as-
sumed threshold. In two original images the echo of a
moving object is in different places, so in the resulting im-
age the echo of the object is visible as a short line. How-
ever, the brightness of this line is lower than that of the
remaining stationary objects visible in the image. It fol-
lows that after the application of a threshold filter the line
will be removed (Kuchariew, 1999).

The main task of the landmark extraction subsystem
is the preparation of a vector of characteristic points visi-
ble in the registered radar image. The method of landmark
extraction constitutes the subject of the next section. In the
subsequent phase, the landmark identification follows—a
position is assigned to each landmark. In the final step,



90 T. Praczyk

the system estimates the ship’s position using the identi-
fied landmarks and traditional radar navigational methods.

The entire system should work for various ranges of
radar observation. The application of longer ranges im-
plies that during reasoning we would use landmarks cov-
ering larger areas of the sea while neglecting points ap-
parent only for shorter ranges. The application of longer
ranges also entails that the estimates of bearings and dis-
tances necessary to identify the ship’s position may be in-
accurate. For that reason, after the initial landmark iden-
tification and a rough position determination, the system
should be run for shorter ranges in order to consider more
details present in the image, to verify the correctness of
the previous decisions, but also to estimate landmark po-
sitions more accurately.

The system needs a database of pattern points from
a chart. The points can be estimated either automatically
by the landmark extraction subsystem or manually by the
system operator by marking them on the chart. Each point
should be described and assigned an accurate position.
The pattern points should be both very marked points vis-
ible for large scales of the chart and less noticeable points
observable in the radar image only for shorter ranges of
the radar observation. In order to speed up the system, a
radar observation range should be assigned to every pat-
tern point, apart from a description and an accurate po-
sition. Thus, during identification for larger observation
ranges solely a part of points, not all of them, would be
taken into account. Less marked points apparent only for
shorter ranges would be omitted. Furthermore, for shorter
observation ranges the whole area considered should be
partitioned into sub-areas. In this way, only points located
near a rough position of the vessel estimated for a larger
range would be taken into account.

3. Landmark Extraction Subsystem

As far as landmark extraction from the radar image is con-
cerned, we should start from presenting the image consid-
ered in the form of a contour invariant. The contour in-
variant of an image is a notion introduced in (Kuchariew,
1999) and, regarding a radar image, it relates to the line of
coast visible from the ship, presented in a polar coordinate
system. We can define it as follows (Praczyk, 2006a):

ginv(BRG) =

⎧
⎨

⎩

A if PO
BRG,c = ∅,

min
p∈P O

BRG,c

|pcp| otherwise, (1)

where BRG ∈ [0◦, 360◦) is the bearing from the central
point of the image pc(nc, mc) (nc = 1

2 (H − 1), mc =
1
2 (W −1) and we assume that H and W which determine
the size of the image are odd), PO

BRG,c ⊂ PO is a subset of
the set of all radar image points that includes “bright” pix-
els lying on the bearing BRG and A is some value larger
than the distance between the central point and any other

point of the image. In order to simplify the landmark ex-
traction algorithm, the function (1) is replaced by

gb
inv(k) =

⎧
⎨

⎩

A if PO
BRGk,c = ∅,

min
p∈P O

BRGk,c

|pcp| otherwise, (2)

for k = 0, 1, . . . , 2(H + W ) − 4, where k is the index of
a border point

pb,k ∈ {(n, m) ∈ PO : n = H or m = W
}

in an ordered series of border points, and BRGk is the
bearing at the k-th border point of the image.

A continuous equivalent of gb
inv(k), defined in

C = {x ∈ R : 0 ≤ x ≤ 2(H + W ) − 4} ,

is gC
inv(x) such that gC

inv(k) = gb
inv(k). We can treat

gC
inv(x) as an analog radar image contour invariant. The

proposed method of landmark extraction is based on the
analysis of the second derivative of gC

inv(x). We do
not know gC

inv(x), but to estimate landmarks, we can
employ its estimator ĝC

inv(x) created based on the pairs
(k, gb

inv(k)). As the estimator, we may use the following:

ĝC
inv(x, σ) =

2(H+W )−5∑

k=0

gb
inv(k)ϕk(x, σ)

2(H+W )−5∑

k=0

ϕk(x, σ)

, (3)

where

ϕk(x, σ) = exp
(

− (x − k)2

2σ2

)

. (4)

The algorithm consist in calculating

z(x, σ) =
d2ĝC

inv

dx2

for a fixed σ at points x = k = 0, 1, . . . , 2(H + W ) − 4,
and then finding k for which the conditions

z(k) > λ, z(k) > z(k − 1),

z(k) ≥ z(k + 1), gb
inv(k) �= A

(5)

hold, where λ permits to partition the set of potential land-
marks into two subsets: visible (z(k) > λ) and hardly
visible (z(k) ≤ λ). Another parameter of the algorithm is
σ. We can say that λ eliminates hardly visible points from
the list of points while σ prevents generating them.

Denote by Φ the subset of the indexes of the border
image points that fulfil (5). Finally, the points

(n, m) = fPc

(
fϕd→xy

(
BRGk, gb

inv(k)
))

, k ∈ Φ, (6)
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are considered as landmarks in the radar image. fϕd→xy

is a conversion function between the polar coordinate sys-
tem and the Cartesian coordinate system, whereas

fPc(q) = arg min
p∈P O

|pq|

is a function which returns the radar image point which is
closest to a given point q(x, y), x, y ∈ R.

4. Landmark Identification Subsystem

After the landmarks have been extracted from the radar
image, their identification is performed. It consists in as-
signing them the positions of certain pattern characteris-
tic points which had been selected in a preparatory phase.
In (Praczyk, 2006a), an identification method was pre-
sented which consists in the comparison of coastlines vis-
ible from pattern and radar image points. The coastlines
for pattern points are generated from the image that is cre-
ated from an electronic chart. Given a bearing BRG, the
coastline visible from an image point p is defined as fol-
lows:

gp(BRG) =

⎧
⎨

⎩

A if PO
BRG,p = ∅,

min
q∈P O

BRG,p

|pq| otherwise, (7)

where PO
BRG,p is the set of “bright” pixels lying on the bear-

ing BRG estimated from the point p and A is some value
larger than the distance between any two points of the im-
age. According to (7), each coastline includes information
where we can see dry land (gp �= A) and where we cannot
(gp = A).

During identification, two factors are considered: the
similarity between the coastlines and the identification
risk. The similarity is expressed as the normalized Euclid-
ean distance between the coastlines. In turn, the identifica-
tion risk of a given radar image point depends on the total
length of the mainland visible from that point. The longer
the segment of the visible dry land, the lower the identifi-
cation risk. Radar image characteristic points that have
appropriately similar counterparts among pattern points
and their identification risk is suitably low are considered
as reference points in the position estimation process.

This approach has two basic drawbacks. The least
deformed element of a coast radar image is the coastline
visible from the ship that is in the centre of the image.
Fragments of the image located behind the coastline are
most uncertain and making a decision based on them is
very risky. The coastline visible from any point of the
radar image other than the central point does not agree
with the coastline appearing from the latter. The coast-
lines can partially include the same fragments of the land
but they can also be segments indicating distinct areas of
the radar image. Therefore, the representation of charac-
teristic points of the radar image may include only a part

of all reliable information that we can obtain from the im-
age, while omitting obscured fragments of the coastline
visible from the ship. What is more, it may also con-
tain fragments that are rather detrimental for the landmark
identification process.

The second drawback of the landmark identification
method proposed in (Praczyk, 2006a) is the determina-
tion of the similarity between the coastlines. Consider the
following situation: We have one pattern point and the
corresponding coastline generated from a chart. We have
also two characteristic points extracted from a radar im-
age together with their coastlines. The first point is noise-
corrupted, whereas the second point corresponds in reality
to our pattern point, but it has a strongly deformed coast-
line in some fragment of the image (for some range of
bearings). Most of the coastline is very similar to the
pattern coastline, but there is some continuous segment
which significantly differs from the pattern. We can en-
counter such a situation, e.g. in winter, when some areas
of the sea can be covered by ice. Consequently, the sim-
ilarities between the pattern coastline and the coastlines
representing both points extracted from the radar image
may be comparable and the point which should be cor-
rectly identified will be rejected by the identification sub-
system.

The application of the information about bearings
and distances between characteristic points of the coast is
the identification method that is devoided of all the short-
comings presented above. This time the identification of a
point is carried out based on the location of the remaining
characteristic points with respect to the point we wish to
identify. Therefore, the elements of the land visible from
the ship are solely taken into consideration during identi-
fication. Moreover, local image deformations should not
influence identification results. Noise-corrupted charac-
teristic points that can be generated in a deformed frag-
ment of the image differ significantly from pattern points
so they are easy to recognize and eliminate by the identi-
fication system.

4.1. Mathematical Formulation. Let P I ⊂ PO de-
note the set of all L landmarks pI

i (ni, mi), i = 1, . . . , L
generated from the radar image. The mutual location
of any two radar image landmarks pI

i and pI
j is deter-

mined by the bearing BRGI
ij from pI

i to pI
j and the bearing

BRGI
ji from pI

j to pI
i , where BRGI

ij = 360◦ − BRGI
ji and

dI
ij = dI

ji is the distance between the points. The above
situation could be presented in the form of a directed
graph GI , in which the landmarks from P I constitute the
vertices while the edges are described by bearings and dis-
tances. The graph GI can be defined by means of three
matrices: MGI

= [mGI

ij ]L×L, DGI

= [dGI

ij ]L×L and

BRGGI

= [BRGGI

ij ]L×L. BRGGI

and DGI

are respec-
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(a) (b)

(c)

(d) (e)

Fig. 2. (a) Contour invariant of a sample radar image, (b) ĝC
inv for σ=0.1, (c) z(k) for σ=0.1, (d) a sample radar image,

(e) the same image with characteristic points estimated for σ = 0.1, λ = 0.5.

tively bearing and distance matrices. Each edge gGI

ij of
the graph GI that connects the i-th and j-th points is de-
scribed by the pair (BRGGI

ij , dGI

ij ). MGI

is a neighbour-
hood matrix of the graph GI that determines which con-
nections between points occur and which do not. We have
that for each i, j = 1, . . . , L,

mGI

ij =
{

1 if i �= j,
0 otherwise.

Then, let GI,i be the tree describing the point pI
i

created through removing from GI all edges not running
from the point pI

i . The neighbourhood matrix MGI,i

of
GI,i could be defined as follows:

mGI,i

kj =

{
1 if k = i and k �= j.

0 otherwise,

where k, j = 1, . . . , L.
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Subsequently, let PW ⊂ PG be the set of the K
pattern landmarks pW

i (ϕi, λi), i = 1, . . . , K of the sea
area considered. ϕi and λi determine the position of
the i-th pattern landmark (latitude and longitude) and
PG is the set of all possible points on earth in the ge-
ographical coordinate system. Let GW be a directed
graph in which the vertices are the pattern landmarks and
every vertex is connected with other vertices except itself
through two reversely directed edges described by a bear-
ing and a distance. The matrices MGW

= [mGW

ij ]K×K ,

DGW

= [dGW

ij ]K×K (distance matrix) and BRGGW

=

[BRGGW

ij ]K×K (bearing matrix) complete the definition
of GW . We have that for each i, j = 1, . . . , K ,

mGW

ij =

{
1 if i �= j,

0 otherwise.

In much the same way as in the case of radar image
landmarks, we can represent every pattern landmark in the
form of a tree GW,i for which the neighbourhood matrix
MGW,i

could be defined as follows:

mGW,i

kj =

{
1 if k = i and k �= j,

0 otherwise,

where k, j = 1, . . . , K .
If we wish to compare radar image and pattern land-

marks from a chart, we should bear in mind that from a
given radar image landmark we can see only points whose
distance to the radar image landmark considered is no
greater than some value δR

j (BRG), where j is the index of
the analysed radar image point. This value is dependent
on the radar observation range R and the bearing BRG es-
timated from the radar image landmark considered. Until
now, the representation of every pattern landmark, i.e. the
tree GW,i has not taken account of the radar’s restricted
field of vision. In order to make GW,i and GI,j describing
the i-th pattern landmark and the j-th radar image land-
mark comparable, we should remove from GW,i every
landmark that for a given bearing BRG is located further
from the i-th pattern landmark than δR

j (BRG).
Denote by GW,i,j

R this new tree, where i and j are the
indices of the landmark and the radar image landmark,
respectively. The elements of the neighbourhood matrix

MG
W,i,j
R could be defined as follows:

mG
W,i,j
R

kl =

⎧
⎪⎨

⎪⎩

1 if k = i and k �= l

and dGW

kl ≤ δR
j (BRGGW

kl ),

0 otherwise,

for k, l = 1, . . . , K , where BRGGW

kl is the bearing be-
tween the k-th and l-th pattern landmarks.

The task of the identification system is to find in the
set of pattern landmarks and in the set of landmarks of

Fig. 3. Furthest points visible from a given radar im-
age point for BRG = 0◦ and BRG = 270◦ .

Fig. 4. Description of the point pW .

the radar image two elements for which the correspond-
ing trees match each other best. The matching of trees
concerns their edges, i.e. the bearings and distances that
describe every edge.

Take any two points pW
i ∈ PW and pI

j ∈ P I .
A tree corresponds to every such point. GI,j describes
a point of the radar image and GW,i,j

R defines a pattern
landmark. Assume that to every edge from GI,j there
is assigned a unique number from the range 1, . . . , M
(M = |P I |). A similar procedure is applied in relation
to edges from GW,i,j

R . They have indices from the range
1, . . . , N (N = |PW,i,j

R |), where PW,i,j
R is the set of pat-

tern landmarks present in GW,i,j
R .

Let us now represent the edges of either tree as ver-
tices of the graph GD

ij . GD
ij is constructed in such a way

that the set of its vertices is divided into two disjoint sub-
sets. The edges gGI,j

k , k = 1, . . . , M from GI,j constitute
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the first subset and the edges g
GW,i,j

R

l , l = 1, . . . , N from
GW,i,j

R belong to the second subset. The matrix of mutual
edge assignments

AGD
ij =

[

a
GD

ij

lk

]

N×M

completes the definition of the graph GD
ij . Here

a
GD

ij

lk =

{

1 there is a conection from g
GW,i,j

R

l to gGI,j

k ,

0 otherwise,

which fulfils the following condition:

If a
GD

ij

lk = 1 and a
GD

ij
pr = 1 then l �= p and k �= r,

∀ l, p = 1, . . . , N and k, r = 1, . . . , M (8)

for any i = 1, . . . , K and j = 1, . . . , L.
The condition (8) means that to every edge from GI,j

we can assign at most one edge from GW,i,j
R . The same

concerns edges from GW,i,j
R to which we can assign max-

imally one edge from GI,j .
The similarity between individual edges is described

by the matrix Bij = [bij
lk]N×M , where

bij
lk =

∣
∣
∣
∣g

GW,i,j
R

l gGI,j

k

∣
∣
∣
∣

=

√
(

BRG
GW,i,j

R

l − BRGGI,j

k

)2

+
(

d
GW,i,j

R

l − dGI,j

k

)2

.

(9)

Let us denote by bmax the maximal acceptable value
for the matching of edges. Now, it is possible to reduce the
number of valid assignments only to these assignments for
which all components fulfil the condition below:

a
GD

ij

lk = 1 ⇔ bij
lk ≤ bmax. (10)

Summarizing, the matrix Bij , the factor bmax and the con-
dition (8) determine the set Ωbmax

Bij
of acceptable graphs

GD
ij that we can create for a given pair (pW

i , pI
j).

4.2. Algorithm of Landmark Identification. The first
part of the algorithm consists in finding, for each pair of
points (pW

i , pI
j ), a graph that defines an edge assignment

for which we are not able to find a better assignment. De-
note by GD∗

ij the desired graph.

The evaluation of any graph GD ∈ Ωbmax
B yields

E1(GD) =
(
Z
(
AGD

)
, SB

(
AGD

))
, (11)

Z
(
AGD

)
=

N∑

l

M∑

k

aGD

lk , (12)

SB

(
AGD

)
=

1
N∑

l

M∑

k

blkaGD

lk

. (13)

Here Z(AGD

) informs us about the number of matched
edges at the level determined by bmax, whereas SB(AGD

)
determines the total matching degree of individual edges.

If we define the relation
2
 ⊂ N×R in the following

way:

(x, y)
2
 (z, r) ⇔ (x > z) or (x = z and y ≥ r) ,

(14)
then the definition of the graph GD∗

is

E1(GD∗)
2
E1(GD), ∀ GD ∈ Ωbmax

B . (15)

In practice, the situation in which more than one
graph fulfils (15) is rather impossible. Theoretically, how-
ever, we cannot exclude it. In this case, we have to choose
arbitrarily one graph which will represent the assignment
of points in further calculations.

The second task of the algorithm is to find a pair of
points (pW

i , pI
j)

∗ that fulfils the following relation:

E2
((

pW
i , pI

j

)∗) 3
E2
((

pW
k , pI

l

))
,

∀ i, k = 1, . . . , K, ∀ j, l = 1, . . . , L, (16)

where
3
 is the relation defined on N × R × R such that

(x, y, p)
3
(z, r, s) ⇔ (x > z) or (x = z and y > r)

or (x = p and y = r and p ≥ s). (17)

E2 is defined as follows:

E2
(
(pW

i , pI
j)
)
=

(

Z
(
AGD∗

ij

)
, SBij

(
AGD∗

ij

)
,

1
∣
∣pI

jpc

∣
∣

)

.

(18)
The above procedure of selecting (pW , pI)∗ means

that among all possible pairs we are most interested in a
pair whose graph GD∗

does not have a better equivalent
among the graphs representing the remaining pairs. An-
other important factor during the selection of (pW , pI)∗

is the distance of the point pI to the central point of the
radar image in which the ship is located. This distance is
important for the accuracy of the estimated position. The
point pI constitutes a basic reference point in the fixing
position process so its correct location in the radar image
is very important. Given that the position of any charac-
teristic point in the radar image is determined with some
error which is proportional to the distance to this point, it
is crucial that the point whereby the position of the ship is
estimated be located as close to our ship as possible.

The pair (pW
i , pI

j )
∗ and the graph GD∗

ij allow us to
determine the position of the point pI

j as well as other

points considered in the matrix AGD∗
ij and occurring in the

graph GI,j . Eventually, knowledge about the location of
radar image points and the application of traditional meth-
ods of radar navigation yields a potential to estimate the
ship’s position.
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5. Verification of the Algorithm

The verification of the algorithm was performed in the fol-
lowing way: A pattern image of 100×100 pixels size was
generated. Pattern points (60 or 20 points) imitating pat-
tern landmarks were located in the pattern image. The dis-
tribution of the points was uniform. In the pattern image,
test points were also located that imitated the ship’s po-
sition from which radar observations were conducted (81
evenly distributed points). Then, for each test point, points
that were noisy equivalents of the pattern landmarks, ob-
served from the test position, for the radar observation
range of 24 or 12 pixels (the size of the observed area)
were generated. The direction of the introduced noise
was random while its value depended on the distance of
a given pattern point to the test point (±30%, ±20% and
±10% of the distance between the points). Furthermore,
to simulate the possibility of generating by the landmark
extraction subsystem additional points that do not occur
in the database of pattern landmarks, points at random lo-
cation were introduced to the set of noisy pattern points
for each test point. The number of additional points was
dependent on the number of noisy pattern points observed
from the given test point (10% or 30% of this number).
During the experiments, four values of bmax were as-
sumed: 2, 5, 10 and 30.

Fig. 5. Sample deployment of pattern points.

The tests conducted consisted in fixing the pair
(pW , pI)∗ in each out of all test points (pW denotes one
of pattern points whereas pI is one of the noisy pattern
points visible from the test point). The following results
produced by the algorithm were possible: a proper point
assignment, a wrong assignment or a situation in which
the algorithm was not able to identify any characteristic
point of the radar image (a noisy pattern point). The lat-
ter could happen in the case when the value of bmax was
too demanding and for every landmarks of the radar image
the algorithm could not find a sufficiently good equivalent
among pattern points. Below, sample results of the exper-
iments are presented.

As the tests conducted have exhibited, the distribu-
tion of the pattern landmarks has larger influence on the
algorithm performance than the occurrence of additional

points. The algorithm is able to eliminate the additional
characteristic points generated by the landmark extraction
subsystem. If the additional points do not dominate in the
set of points observed in the radar image, then they should
not significantly affect the identification results.

Fig. 6. Influence of the number of additionally generated char-
acteristic points and the magnitude of displacement of
noisy pattern points with respect to the original pattern
points on landmarks identification (the number of pattern
points is 60, bmax = 2, R = 24).

Fig. 7. Influence of the number of pattern points memorized in
the database and the range of radar observations (R) on
the identification results (the number of additional points
is equal to 10% of pattern points visible from the test
point, the magnitude of displacement of pattern points is
equal to 10% of the distance to the test point, bmax = 2).
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Moreover, the tests revealed that the number of si-
multaneously observed landmarks has stronger influence
on the algorithm performance. For larger R more charac-
teristic points are visible and the algorithm is highly ef-
fective. It is so even though points further located, vis-
ible only for greater values of R, get more and more
noisy. In the case of the application of a shorter range,
the percentage of points correctly identified drastically de-
creases, causing at the same time a rapid growth in the “I
do not know” responses.

Figure 8 illustrates once again large influence of the
radar observation range on the obtained results. They also
show that the parameter bmax influences the gradual in-
crease in the number of “I do not know” responses in the
case of the application of a short radar observation range.
Its impact on the percentage of correct identifications is
not significant.

Fig. 8. Influence of bmax and R on the algorithm performance
(the number of additional pattern points equals 10% of
the points visible from the test point, the magnitude of
displacement of pattern points equals 10% of the dis-
tance to the test point, the number of pattern points
is 20).

6. Conclusions

An identification algorithm of radar image characteris-
tic points has been presented. The proposed approach is
based on the comparison of pattern bearings and distance

trees, fixed for pattern points (from a chart) and bearing
and distance trees representing points extracted from a
radar image. The tests conducted exhibited a potential
of the algorithm to perform the identification task. They
also revealed that the radar observation range and the dis-
tribution of characteristic points observed with respect to
their pattern positions have the greatest influence on the
algorithm performance. A very important feature of the
algorithm is its robustness to the presence, among visible
characteristic points, of additional points absent in the pat-
tern point database and generated by the landmark extrac-
tion subsystem. Moreover, it is worth remembering that
the decisions made by the presented identification system
can be verified by another identification system, e.g. by
the landmark identification system that makes decisions
based on the shape of the coast visible from a given pattern
point (Praczyk, 2006a). Both systems would complement
each other. They can, e.g. generate an ordered sequence
of pairs of points (a pattern point, a point appearing in
the radar image), from the best matched pair to the worst
matched one. The final decision, i.e. selecting the best
pair, would be taken based on the location of every pair
in both of the ordered lists. The pair whose total distance
from the beginning of each list would be the least would
constitute the basis in further calculations associated with
estimating the ship’s position.

An interesting issue demanding further research is
the possibility of applying bearing and distance trees to
estimate the most appropriate location for landmarks in
the radar image. Usually every characteristic point present
in the radar image is solely an approximation of the true
pattern point. Hence, the position estimated based on it
is frequently inaccurate. However, if we only could move
a radar image point to a more suitable place in the image,
the estimated position would be more accurate. In order to
achieve this result, it is perhaps necessary to move a given
point in different directions to adjust its tree to the pattern
tree.
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