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A language grounding problem is considered for nonuniform sets of modal conjunctions consisting of conjunctions extended
with more than one modal operator of knowledge, belief or possibility. The grounding is considered in the context of semiotic
triangles built from language symbols, communicative cognitive agents and external objects. The communicative cognitive
agents are assumed to be able to observe external worlds and store the results of observations in internal knowledge bases. It
is assumed that the only meaning accessible to these agents and assigned to modal conjunctions can be extracted from these
internal knowledge bases. Commonsense requirements are discussed for the phenomenon of grounding nonuniform sets of
modal conjunctions and confronted with an original idea of epistemic satisfaction relation used to define proper conditions
for language grounding. Theorems are formulated and proved to show that the communicative cognitive agents based on
the proposed model of grounding fulfill some commonsense requirements given for processing sets of nonuniform modal
conjunctions. The main result is that the communicative cognitive agents considered can be constructed in a way that makes
them rational and intentional as regards the processing of modal conjunctions and from the human point of view.
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1. Introduction

The grounding of modal conjunctions is a sub-case of a
broader phenomenon known as symbol grounding. This
phenomenon has to be considered in a richer context of
other research carried out in the field of artificial intelli-
gence and artificial cognition. In these two fields, in the
1990s a new paradigm was widely accepted according to
which systems need material bodies to produce intelligent
behavior. This approach to intelligent behavior was at first
developed in robotics, where an influential group of re-
searchers rejected the necessity to define intelligence on a
symbolic level and assumed it to be an emergent property
resulting from an autonomous activity of reactive modules
constituting the bodies of robots (Brooks 1991a; 1991b).
Soon this change in fundamental theoretical assumptions
resulted in the bulk of new ideas known under the term
“embodied artificial intelligence” (Chrisley, 2003). In the
meantime, a similar evolution was realized in cognitive
sciences, where previous assumptions of symbolic and
computational nature of cognition (Newell, 1990) have
been replaced by new ideas underlying the embodiment of
cognitive processes in natural cognitive systems (Lakoff
and Johnson, 1999). This assumed property of cognition
had originally been mainly attributed to biological cog-
nitive systems. However, it was soon accepted by many
research groups involved in the development of artificial

cognition (Tomasello, 2000). In the last two decades,
the theoretical similarity between embodied artificial in-
telligence and embodied artificial cognition (Anderson,
2003; Chrisley, 2003) has led to publishing many inter-
esting papers, some of which were directly dedicated to
the problem of grounding languages (Harnad, 1990; 1994;
Ziemke, 1999).

Developing computer systems that could carry out
meaningful conversations with human users has always
been one of the main research issues studied in artificial
intelligence and related fields of science and technology.
However, the usual approach to modeling language pro-
duction and comprehension assumed that the language
is a product of mechanically realized manipulations on
symbols and does not need material bodies to be created.
New paradigms in artificial intelligence and artificial cog-
nition forced researchers to change this assumption and
to take into account the embodiment and grounding as
necessary factors for the production of the language. In
consequence, since the mid-1990s, the field of language
comprehension and language production, which both be-
long to artificial intelligence and cognition, has seriously
evolved. The grounding problem and the related anchor-
ing problem (Tomasello, 2000; Vogt, 2002; 2003) have
become intensively studied in modern computer science
and technology (Roy and Ritter, 2005).
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Perhaps the most popular and influential definition
of language grounding accepted in artificial intelligence
and cognitive sciences was formulated by Harnad (1990):
“How can the semantic interpretation of formal sym-
bol system be made intrinsic to the system, rather than
just parasitic on the meanings in our heads? How can
the meanings of meaningless symbol tokens, manipulated
solely on the basis of their (arbitrary) shapes, be grounded
in anything but other meaningless symbols? The prob-
lem is analogous to trying to learn Chinese from a Chi-
nese/Chinese dictionary alone.” Unfortunately, this pop-
ular definition has been usually interpreted in a limited
way. Namely, for quite a long period the language ground-
ing problem was usually studied on the level at which the
internal cognitive processes carried out by agents are re-
lated to empirical data incoming from the external world.
This interpretation of grounding is based on the fact that
many symbols of real languages for semantic commu-
nication consist of complicated symbols that cannot be
grounded directly to the external world and require inter-
mediate processing of meaning on various levels of em-
bodied conceptualization. This simplified interpretation
resulted in an undesirable and generally wrong impres-
sion that effective implementations of grounding (and an-
choring) do not need to deal with multilevel systems of
mental structures. A further result was that the major-
ity of previous work on the grounding and anchoring of
symbols was concentrated on relatively simple classes of
languages (Vogt, 2002; 2003). (Which does not mean that
these works are not valuable.) Latest attempts known from
the literature have tried to fill this gap in theoretical mod-
els, and the grounding problem has become to be assumed
to consist of a richer collection of problems. In particular,
the study of a direct relation between simple communica-
tion languages and the external reality was extended with
similar research carried out for more advanced and richer
symbols. To be grounded, these symbols seem to require
a consideration of higher-level structures. An interesting
example of such an extension is given in the work (Roy,
2005), where the so-called semiotic schemas were consid-
ered in order to cover advanced cases of grounding. An-
other example is given in this work, where symbols to be
grounded are complex syntactic structures built from less
combined symbols for atom predicates, logic negation,
logic conjunction, modal operators of belief, possibility,
knowledge, etc. Moreover, the important feature is that in
order to relate symbols of the language considered below,
it is necessary to take into account the content of empirical
experience stored in dedicated and embodied knowledge
bases of communicative systems. Otherwise, the model of
grounding would be incomplete on the theoretical level.

In what follows, the phenomenon of grounding is
considered for communicative cognitive agents which are
expected to produce intentional language behavior pro-

vided that the intentionality of behavior is understood as
in the cognitive paradigm (Denett, 1996; Newell, 1990).
The phenomenon of grounding is often considered in the
context of the semiotic triangle (Eco, 1991) consisting of
three elements: a symbol of a language, an agent which is
able to produce, perceive and interpret this symbol, and an
object that is external to the agent and pointed at by this
symbol. The application of the semiotic triangle to studies
of language grounding has been intensively used in many
works (see, e.g., Roy, 2005; Vogt, 2002; 2003), and has
been accepted in the approach proposed in this one and
previous papers (see, e.g., Katarzyniak, 2005). In this re-
search, modal conjunctions are language symbols used by
communicative cognitive agents in order to communicate
their state of knowledge about an external object. Each
modal conjunction is produced in order to attract the at-
tention of potential receivers towards this external object
and represents a piece of subjective knowledge about this
object. This piece of knowledge is always autonomously
developed by the communicative cognitive agent.

According to the accepted definition of ground-
ing, this original approach to study the phenomenon
of language grounding developed in the previous works
(Katarzyniak, 2004a, 2004c) assumes that there exists
a subtle relation between each communicative cognitive
agent and each language symbol produced by this agent
in order to communicate its internal states of knowledge.
In this approach, such a relation is treated as equivalent to
the phenomenon of grounding known from the case of nat-
ural communicative cognitive agents, and due to its nature
is called the epistemic satisfaction relation (Katarzyniak,
2005). The epistemic satisfaction relation is complemen-
tary to the classic satisfaction of formulas developed by
Tarski in his well-known theory of truth, where the sat-
isfaction relation always binds an external object with a
language symbol instead of binding it with a subjective
state of knowledge (Tarski, 1935).

The basic role of the epistemic satisfaction relation
is to define internal states of communicative cognitive
agents in which a proper binding (not contradictory to
the commonsense of language production) between ex-
ternal language messages and internal knowledge states
takes place. The appropriateness of a particular case of
grounding is evaluated according to some criteria devel-
oped in the commonsense perspective of natural language
discourse. Moreover, in the proposed approach it is ex-
pected that a particular modal conjunction would be used
by a communicative cognitive agent as an external repre-
sentation of knowledge in these, and only in these, situ-
ations in which a natural communicative cognitive agent
would use the natural language counterpart for this con-
junction to communicate the same content of knowledge.
The latter assumption is in common with the intentional
systems paradigm (Denett, 1996; Newell, 1990).
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The detailed research target defined in this paper is
to prove that the originally proposed definition of epis-
temic satisfaction of modal conjunctions makes it possible
to generate language behavior exhibiting at least some of
the basic commonsense properties of natural language se-
mantics and pragmatics. The grounding is considered for
a case of nonuniform sets of modal conjunctions in which
conjunctions are extended with different modal operators
of knowledge, belief or possibility.

The organization of the text is as follows: In Sec-
tion 2, a brief overview of the basic formal concepts
used in the model of grounding and related to the idea
of semiotic triangle is presented. Section 2 consists of
the original definition of epistemic grounding given for
the case of modal conjunctions. In Section 3, some re-
sults from the previous analysis of the proposed defini-
tion of grounding uniform sets of modal conjunctions are
briefly overviewed. These results are considered in de-
tail in other works (Katarzyniak, 2005a; 2006). Section 4
contains two groups of results: a detailed discussion of
commonsense requirements for the grounding of nonuni-
form sets of modal conjunctions, and a detailed presenta-
tion of theorems in which the most important properties
of grounding modal conjunctions are covered. The final
section contains comments on practical consequences re-
sulting from this study.

2. Overview of a Model for Grounding
Modal Conjunctions

Let the language L of modal conjunctions considered
in this paper be given as in other works (Katarzyniak,
2005a; 2006). This language is a set of all formu-
las of the form ‘α’ or ‘Σ(α)’, where α ∈ {p(o) ∧
q(o), p(o)¬q(o), ¬p(o)∧ q(o), ¬p(o)∧¬q(o)}, p �= q,
and Σ ∈ {Know, Bel, Pos}. It is assumed that o ∈
O = {o1, o2, . . . , oM} denotes an object from the external
world and the symbols ‘p’ and ‘q’ are referred to the prop-
erties P and Q of the external object o, respectively. Each
conjunction is assigned intentional (commonsense) mean-
ing, e.g., the conjunction p(o)∧q(o) represents the content
that is communicated in the natural language by the sen-
tence “Object o exhibits the property P and exhibits the
property Q.” The role and interpretation of other conjunc-
tions are similar. The modal extensions Pos, Bel, Know
are interpreted as usual and stand for possibility, belief and
knowledge, respectively (Katarzyniak, 2005a; 2006).

In the actual language behavior in which formulas
are used as interpreted, each modal conjunction belongs
to an instantiation of the general idea of the semiotic tri-
angle. The artificial communicative cognitive agent is as-
sumed to embody a collection of observations of proper-
ties P and Q for an object o. These representations of ob-
servations differ from one to another as regards their con-

tent, and all of them can reflect the object o as exhibiting a
particular distribution of both properties P and Q. These
distributions reflect the observed states of the object o at
time points when observations were taken by the agent.
As was given in (Katarzyniak, 2004c; 2005; Katarzyniak
and Nguyen, 2000), the content of each individual obser-
vation is stored in the so-called base profile:

BP (t) =
{〈O, P+

1 (t), P−
1 (t), P+

2 (t), P−
2 (t), . . . ,

P+
K (t), P−

K (t)〉}, (1)

where t ∈ T = {0, 1, 2, . . .} is a time point at which the
observation was realized, O = {o1, . . . , oM} is the set of
all individual objects known to the communicative cog-
nitive agents, P1, P2, . . . , PK are properties that can be
exhibited by objects from O, and for each i = 1, 2, . . . , K
and o ∈ O:

• P+
i (t) ⊆ O and P−

i (t) ⊆ O hold,

• o ∈ P+
i (t) holds if and only if o was observed as

exhibiting Pi at the time point t,

• o ∈ P−
i (t) holds if and only if o was observed as

nonexhibiting Pi at the time point t.

Obviously, in this case for each i = 1, 2, . . . , K , the
condition P +

i (t) ∩ P−
i (t) = ∅ has to be fulfilled, and at

each time point t ∈ T the overall state of empirical knowl-
edge is given by the following temporally ordered set of
base profiles:

KnowledgeState(t)

=
{
BP (tn) : tn ∈ T and tn ≤TM t

}
, (2)

where the symbol ≤TM denotes temporal precedence.
As was already explained in other works (Katarzyniak,
2004a; 2004c; 2005; 2005a), each group of base profiles
in which observations with the same distribution of the
properties P and Q in the object o are stored induces a
related mental model for nonmodal conjunction from L.
In this approach, the role of mental models is understood
similarly as it is assumed for the case of natural cognitive
systems, namely, each mental model represents the mean-
ing of assigned nonmodal conjunction (Johnsons-Laird,
1983). Following the approach suggested in (Katarzyniak,
2004c), individual symbols for particular mental models
are given:

• mc
1 representing the mental model for the nonmodal

conjunction p(o) ∧ q(o),
• mc

2 representing the mental model for the nonmodal
conjunction p(o) ∧ ¬q(o),

• mc
3 representing the mental model for the nonmodal

conjunction ¬p(o) ∧ q(o),
• mc

4 representing the mental model for the nonmodal
conjunction ¬p(o) ∧ ¬q(o).
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It is assumed that at each time point t, all men-
tal models m1

c , mc
2, mc

3 and m4
c are extracted (induced)

from the related subsets of base profiles defined below
(Katarzyniak, 2004c):

C1(t) =
{

BP (tn) : tn ≤TM t

and BP (tn) ∈ KnowledgeState(t)

and o ∈ P+(tn) and o ∈ Q+(tn)
}
, (3)

C2(t) =
{

BP (tn) : tn ≤TM t

and BP (tn) ∈ KnowledgeState(t)

and o ∈ P +(tn) and o ∈ Q−(tn)
}

, (4)

C3(t) =
{

BP (tn) : tn ≤TM t

and BP (tn) ∈ KnowledgeState(t)

and o ∈ P−(tn) and o ∈ Q+(tn)
}

, (5)

C4(t) =
{

BP (tn) : tn ≤TM t

and BP (tn) ∈ KnowledgeState(t)

and o ∈ P−(tn) and o ∈ Q−(tn)
}
, (6)

where each C i(t) corresponds to mc
i , i = 1, 2, 3, 4. In

other works (Katarzyniak, 2004a; 2004c; 2005a; 2006), it
was assumed that mental models are more or less strong
(comparing one to another), and these mental models
are relatively stronger, which is induced (extracted) from
the relatively richer subsets C1(t), C2(t), C3(t) or C4(t).
The so-called relative grounding values are used to mea-
sure this level of intensity (Katarzyniak, 2006):

λ
(
t, p(o) ∧ q(o)

)
=

card(C1(t))
4∑

j=1

(card(Cj(t)))
, (7)

λ
(
t, p(o) ∧ ¬q(o)

)
=

card(C2(t))
4∑

j=1

(card(Cj(t)))
, (8)

λ
(
t,¬p(o) ∧ q(o)

)
=

card(C3(t))
4∑

j=1

(card(Cj(t)))
, (9)

λ
(
t,¬p(o) ∧ ¬q(o)

)
=

card(C4(t))
4∑

j=1

(card(Cj(t)))
. (10)

For each communicative cognitive agent, the related
grounding values are evaluated against the so-called sys-
tem of modality thresholds. The latter system consists of

four numbers, 0 < λmin Pos < λmax Pos < λmin Bel <
λmax Bel < 1 which define the basic intervals of grounding
intensity [λmin Pos, λmax Pos], [λmin Bel, λmax Bel] and [1, 1],
correlating with the assigned modal operators of possi-
bility, belief and knowledge, respectively. The concept
of systems of similarity thresholds is discussed in other
works (Katarzyniak, 2006). Similar ideas were defined
for the language of modal literals called simple modalities
(Katarzyniak, 2005b) and suggested for other binary logic
connectives (Katarzyniak, 2004a).

Conscious
level

Cognitive
agent

Environment

mc
1 mc

4 mc
3

Unconscious
level

C1(t)

C4(t) C3(t)

C2(t)

 

Fig. 1. Induction of mental models for
nonmodal conjunctions.

Let us now illustrate the above concepts. In Fig. 1,
the sets C1(t), C3(t) and C4(t) are nonempty. This
means that the agent has already experienced all related
distributions of properties P and Q in the object o at least
once for each distribution. The only empty set is C 2(t). In
consequence, the mental model mc2 is treated as nonac-
tivated and in this sense inaccessible to the agent’s inter-
nal cognitive processes. In other words, the commonsense
meaning assigned to the symbol p(o)∧¬q(o) is not ratio-
nal from the agent’s point of view.

Another element of the model presented in Fig. 1 is
the division of the internal cognitive space of the agent
into the so-called conscious and nonconscious levels of
cognition. The rationale for the integration of this prop-
erty of natural cognition with the artificial cognition con-
sidered in this work was given in (Katarzyniak, 2004a;
2005) and results from theoretical assumptions known
from cognitive linguistics (Freeman, 2000; Lakoff and
Johnson, 1999; Paivio, 1986). It is assumed below that
at each time point t ∈ T , the content of the empirical
knowledge base should be treated as distributed over two
interconnected but different levels of knowledge process-
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ing. The result is the following partition:

CognitionState(t) =
{
CM(t), NM(t)

}
, (11)

called “the state of cognition”, in which CM(t) states for
this part of experience that is located in the conscious cog-
nitive subspace, NM(t) is the remaining empirical mate-
rial located on nonconscious levels of knowledge repre-
sentation, CM(t) ∪ NM(t) = KnowledgeState(t) and
CM(t) ∩ NM(t) = ∅. Obviously, this division can be
applied to the grounding sets given by Eqns. (3)–(6), too,
and leads to the following distribution of base profiles
(Katarzyniak, 2005):

DC(t) =
{

RC1(t), TC1(t), RC2(t), TC2(t),

RC3(t), TC3(t), RC4(t), TC4(t)
}

, (12)

where for each i = 1, 2, 3, 4 the following is assumed:

RCi(t) = CM(t) ∩ Ci(t),

TCi(t) = NM(t) ∩ Ci(t),

RCi(t) ∩ TCi(t) = ∅,

RCi(t) ∪ TCi(t) = Ci(t).

The partition into conscious and unconscious levels
of knowledge representations makes the model of inter-
nal organization more complex. However, it is needed to
take into account the actual nature of cognitive processes
which always have to be perceived as highly integrated
ones. In particular, no piece of data located on the con-
scious level of processing can be treated as a separated
one if there are other copies of this piece located under
the level of consciousness. In fact, this other part of the
whole base profiles’ collection influences participates in-
directly in processes realized on the conscious level.

In the situation presented in Fig. 1, the set CM(t)
is empty. This means that the communicative cogni-
tive agent has not collected any empirical experience that
could relate the mental model mc

2 to the actual world. In
this sense, this model is presented as a potential and un-
grounded structure.

The above concepts cover the required set of ele-
ments that are used to define conditions for the proper
grounding of modal conjunctions in the stored empirical
knowledge, provided that the expected semantics of these
modal conjunctions is given as in the commonsense lan-
guage discourse. These requirements are given in the form
of the epistemic satisfaction relation (Katarzyniak, 2004c;
2005a; 2006):

Definition 1. (Epistemic satisfaction of modal extensions
of p(o) ∧ q(o)) Let the time point t ∈ T , the state of

knowledge KnowledgeState(t) with the distribution

DC(t) =
{
RC1(t), TC1(t), RC2(t), TC2(t),

RC3(t), TC3(t), RC4(t), TC4(t)
}
,

and the system of modality thresholds 0 < λmin Pos <
λmax Pos < λmin Bel < λmax Bel < 1 be given. For each
P, Q ∈ {P1, . . . , PK} such that P �= Q and for each
object o, the following epistemic satisfaction relation is
defined:

The epistemic satisfaction
KnowledgeState(t) |=GPos(p(o) ∧ q(o))
holds if and only if all requirements
o ∈ O\(P+(t) ∪ P−(t)),
o ∈ O\(Q+(t) ∪ Q−(t)),
RC1(t) �= ∅
and λmin Pos ≤ λ(t, p(o) ∧ q(o)) ≤ λmax Pos hold.

(13)

The epistemic satisfaction relation
KnowledgeState(t) |=GBel(p(o) ∧ q(o))
holds if and only if all requirements
o ∈ O\(P+(t) ∪ P−(t)),
o ∈ O\(Q+(t) ∪ Q−(t)),
RC1(t) �= ∅
and λmin Bel ≤ λ(t, p(o) ∧ q(o)) ≤ λmax Bel hold.

(14)

The epistemic satisfaction relations
KnowledgeState(t) |=GKnow(p(o) ∧ q(o))
and KnowledgeState(t) |=G p(o) ∧ q(o)
hold if and only if either the conjunction
of requirements o ∈ P +(t) and o ∈ Q+(t)
holds or the conjunction of requirements
o ∈ O\(P+(t) ∪ P−(t)),
o ∈ O\(Q+(t) ∪ Q−(t)),
RC1(t) �= ∅ and λ(t, p(o) ∧ q(o)) = 1 holds.

(15)

The epistemic satisfaction relations for all modal
extensions of the remaining three conjunctions p(o) ∧
¬q(o), ¬p(o) ∧ q(o) and ¬p(o) ∧ ¬q(o) are similarly de-
fined. A more detailed discussion of the rationale under-
lying this set of definitions can be found in other works
(see, e.g., Katarzyniak, 2004c; 2005a).

A simple extension of this idea is the epistemic satis-
faction of sets of conjunctions. This concept can be given
in the following way:

Definition 2. (Epistemic satisfaction of the set of modal
conjunctions) Let S ⊆ L, where L is the assumed lan-
guage of modal conjunctions. The generalized epistemic
satisfaction relation KnowledgeState(t) |=G S holds
if and only if for each formula α ∈ S the relation
KnowledgeState(t) |=G α holds.
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3. Previous Research into the Properties of
Grounding Modal Conjunctions

An important research issue related to the epistemic satis-
faction relation (and grounding) is to prove that it makes it
possible for a communicative cognitive agent to produce
rational language behavior. A subdimension of this re-
search issue covers the problem of possibility to ground
sets of modal conjunctions acceptable in the natural lan-
guage discourse, and the opposite problem of permanent
rejection of grounding these sets that are not acceptable
at all. This issue has already been partly discussed for
the case of uniform sets of modal conjunctions in which
conjunctions extended with the same modal operator are
included (Katarzyniak, 2005a; 2006). For four mutually
different conjunctions α, β, δ, φ ∈ {p(o) ∧ q(o), ¬p(o) ∧
q(o), p(o) ∧ ¬q(o), ¬p(o) ∧ ¬q(o)}, the list of possible
uniform sets can be given as follows:

S1 = {Know(α), Know(β), Know(δ), Know(φ)},
S2 = {Know(α), Know(β), Know(δ)},
S3 = {Know(α), Know(β)},
S4 = {Bel(α), Bel(β), Bel(δ), Bel(φ)},
S5 = {Bel(α), Bel(β), Bel(δ)},
S6 = {Bel(α), Bel(β)},
S7 = {Pos(α), Pos(β), Pos(δ), Pos(φ)},
S8 = {Pos(α), Pos(β), Pos(δ)},
S9 = {Pos(α), Pos(β)}.

The following requirements have to be fulfilled in or-
der to implement (commonsense) rationality into artificial
language behavior:

• The sets S1–S3 cannot be satisfied in the epistemic
sense for the same state of cognition. This constraint
follows from the natural expectation that if the agent
knows that a certain distribution of the properties P
and Q is realized in an object o, then it is not possible
for this agent to know that anything opposite holds.

• The sets S4–S6 cannot be satisfied in the epistemic
sense for the same state of cognition. This constraint
would be similar to the pragmatic rule known from
the natural language discourse where the use of the
belief operator with one conjunction excludes this
operator as an extension of another conjunction.

• The sets S7–S9 cannot be forbidden for the commu-
nicative cognitive agent because they are acceptable
in the natural language discourse as external reflec-
tions of internal knowledge.

An additional assumption for the interpretation of the
above-given sets is that each modal conjunction excluded
from a set Si, i = 1, 2, . . . , 9 is treated as unsatisfied in
the epistemic sense. For instance, if we say that the set
S8 = Pos(α), Pos(β), Pos(δ) is satisfied in the epistemic
sense, this also means that the modal conjunction Pos(φ)
is not satisfied in the epistemic sense.

In (Katarzyniak, 2005a; 2006), several theorems
were already proved to show that the accepted definition
of the epistemic satisfaction of modal conjunctions makes
the above-mentioned and desired properties of grounding
possible. In this particular sense, the desirable rational-
ity of artificial language behavior and its correspondence
to natural language behavior is said to be proved. Results
covered by these theorems can be divided into two groups.
Namely, there are some theorems which say that some de-
sirable properties of grounding follow directly from the
accepted definitions of the epistemic satisfaction of con-
junctions. The other group of results says that, in order
to achieve other desirable properties of language ground-
ing, it is necessary to implement appropriate systems of
modality thresholds. Detailed proofs of these properties
of epistemic satisfaction can be found in (Katarzyniak,
2005a; 2006). A brief overview of these theorems is given
as follows:

Theorem 1. The definition of the epistemic satisfaction re-
lation of modal conjunctions ensures that it is not possible
to ground more than one modal conjunction Know(p(o)∧
q(o)), Know(p(o) ∧ ¬q(o)), Know(¬p(o) ∧ q(o)) or
Know(¬p(o) ∧ ¬q(o)) in the same state of cognition
KnowledgeState(t).

Theorem 2. Let four mutually different conjunctions
α, β, γ, χ ∈ {p(o) ∧ q(o), p(o) ∧ ¬q(o), ¬p(o) ∧ q(o),
¬p(o) ∧ ¬q(o)} be given. In order to make the simulta-
neous grounding of more than two formulas from the set
{Bel(α), Bel(β), Bel(γ), Bel(χ))} impossible for each
state of cognition KnowledgeState(t), the cognitive com-
municative agent has to be equipped with a system of
modality thresholds (λmin Pos, λmax Pos, λmin Bel, λmax Bel)
in which the condition 1/2 < λmin Bel or λmax Bel < 1/2
is fulfilled.

Theorem 3. Let four mutually different conjunctions
α, β, γ, χ ∈ {p(o) ∧ q(o), p(o) ∧ ¬q(o), ¬p(o) ∧ q(o),
¬p(o) ∧ ¬q(o)} be given. In order to make the si-
multaneous grounding of all modal conjunctions possi-
ble, Pos(α), Pos(β), Pos(γ)andPos(χ), the communica-
tive cognitive agent has to be equipped with a system of
modality thresholds (λmin Pos, λmax Pos, λmin Bel, λmax Bel)
in which the condition λmin Pos ≤ 1/4 ≤ λmax Pos is ful-
filled.

Theorem 4. Let four mutually different conjunctions
α, β, γ, χ ∈ {p(o) ∧ q(o), p(o) ∧ ¬q(o), ¬p(o) ∧ q(o),
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¬p(o) ∧ ¬q(o)} and a system of modality thresholds
(λmin Pos, λmax Pos, λmin Bel, λmax Bel) in which the condi-
tions 0 < λmin Pos < 1/6 < 1/2 < λmax Pos < 1 are
fulfilled be given. It makes it possible to ground the sets
of modal conjunctions {Pos(α), Pos(β), Pos(δ)} and
{Pos(α), Pos(β)} provided that an appropriate empiri-
cal content has been collected by the communicative cog-
nitive agent up to the time point t.

Theorem 5. Let a system of modality thresholds
(λmin Pos, λmax Pos, λmin Bel, λmax Bel) be given in which
the conditions 0 < λmin Pos < 1/6 < 1/2 < λmin Bel <
λmax Bel < 1 are fulfilled. The communicative cognitive
agent equipped with this system of modality thresholds
makes it permanently impossible to ground the sets S1–
S6 and makes it possible to ground the sets S7–S9 pro-
vided that the latter can happen if the appropriate empir-
ical content has been developed and stored in this agent.

4. Commonsense Requirements for
Nonuniform Sets of Modal Conjunctions

In the works (Katarzyniak, 2005a; 2006), no attention was
paid to other interesting sets of modal conjunctions. These
sets will be further called nonuniform sets and are grouped
into two classes.

The so-called first type nonuniform sets of modal
conjunctions are defined each for a particular conjunction
ϕ ∈ {p(o) ∧ q(o), p(o) ∧ ¬q(o), ¬p(o) ∧ q(o), ¬p(o) ∧
¬q(o)}. These sets can be enumerated as follows:

S10 = {Know(ϕ), Bel(ϕ)},
S11 = {ϕ, Bel(ϕ)},
S12 = {Know(ϕ), Pos(ϕ)},
S13 = {ϕ, Pos(ϕ)},
S14 = {Bel(ϕ), Pos(ϕ)}.

A natural requirement for the acceptability of the si-
multaneous grounding of the sets S10–S14 of modal con-
junctions is obvious and can be stated in the following
way: in the natural language discourse, the above sets of
modal conjunctions are never used to communicate an in-
dividual agent’s opinion on the same state of the proper-
ties P and Q in an external object o. Such a requirement
should be fulfilled by the definition for epistemic satis-
faction. Below some research into this issue is presented
and the related results are covered by the appropriate the-
orems:

Theorem 6. Let ϕ ∈ {p(o)∧q(o), p(o)∧¬q(o), ¬p(o)∧
q(o), ¬p(o) ∧ ¬q(o)}.

1. If the relation KnowledgeState(t) |=G Pos(ϕ) holds
then the relation KnowledgeState(t) |=GBel(ϕ) does
not hold.

2. If the relation KnowledgeState(t) |=GBel(ϕ) holds,
then the relation KnowledgeState(t) |=GPos(ϕ) does
not hold.

Proof. For any conjunction ϕ, this property follows
directly from the assumption that the system of modal-
ity thresholds 0 < λmin Pos < λmax Pos < λmin Bel <
λmax Bel < 1 is implemented in the communicative cog-
nitive agent.

Theorem 7. Let ϕ ∈ {p(o)∧q(o), p(o)∧¬q(o), ¬p(o)∧
q(o), ¬p(o) ∧ ¬q(o)}.

1. If the relation KnowledgeState(t) |=G Pos(ϕ)
holds, then the relations KnowledgeState(t) |=G

Know(ϕ)andKnowledgeState(t) |=G ϕ do not hold.

2. If the relations KnowledgeState(t) |=GKnow(ϕ) and
KnowledgeState(t) |=G ϕ hold, then the relation
KnowledgeState(t) |=GPos(ϕ) does not hold.

Proof. Let us consider the case of the conjunction p(o) ∧
q(o). If the relation KnowledgeState(t) |=G Pos(p(o) ∧
q(o)) holds, then from Definition 1 it follows that the
statements o ∈ O\(P+(t) ∪ P−(t)), o ∈ O\(Q+(t) ∪
Q−(t)) and λmin Pos ≤ λ(t, p(o) ∧ q(o)) ≤ λmax Pos are
true. From this fact and the additional assumption that the
system of modality thresholds 0 < λmin Pos < λmax Pos <
λmin Bel < λmax Bel < 1 is implemented, it can be de-
duced that the three statements o �=∈ P +(t), o �=∈ Q+(t)
and λ(t, p(o) ∧ q(o)) �= 1 are true. In consequence, none
of the two alternative requirements given in the definition
of the epistemic satisfaction of Know(p(o) ∧ q(o)) and
p(o) ∧ q(o) is fulfilled.

The proofs for the remaining conjunctions p(o) ∧
¬q(o),¬p(o) ∧ q(o) and ¬p(o) ∧ ¬q(o) are similar. This
completes the proof.

Theorem 8. Let ϕ ∈ {p(o)∧q(o), p(o)∧¬q(o), ¬p(o)∧
q(o), ¬p(o) ∧ ¬q(o)}.

1. If the relation KnowledgeState(t) |=G Bel(ϕ)
holds, then the relations KnowledgeState(t) |=G

Know(ϕ)andKnowledgeState(t) |=Gϕ do not hold.

2. If the relations KnowledgeState(t) |=GKnow(ϕ) and
KnowledgeState(t) |=G ϕ hold, then the relation
KnowledgeState(t) |=GBel(ϕ) does not hold.

The proof is similar to that of Theorem 6.

The second type of the nonuniformity of sets con-
sisting of modal conjunctions is considered for all sets
of mutually different conjunctions α, β, δ, φ ∈ {p(o) ∧
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q(o), ¬p(o) ∧ q(o), p(o) ∧ ¬q(o), ¬p(o) ∧ ¬q(o)}. The
cases considered are as follows:

S15 = {Know(α), β, δ, φ},
S16 = {Know(α), β, δ},
S17 = {Know(α), β},
S18 = {Know(α), Bel(β), Bel(δ), Bel(φ)},
S19 = {Know(α), Bel(β), Bel(δ)},
S20 = {Know(α), Bel(β)},
S21 = {Know(α), Pos(β), Pos(δ), Pos(φ)},
S22 = {Know(α), Pos(β), Pos(δ)},
S23 = {Know(α), Pos(β)},
S24 = {Bel(α), Pos(β), Pos(δ), Pos(φ)},
S25 = {Bel(α), Pos(β), Pos(δ)},
S26 = {Bel(α), Pos(β)},
S27 = {Bel(α)}.

For these sets, the following commonsense require-
ments need to be fulfilled in order to achieve the rational-
ity of the language behavior produced by artificial com-
municative cognitive agents:

• The sets S15–S23 cannot be satisfied in the epistemic
sense in the same state of cognition. For each set,
the reason is that any conjunction extended with the
modal operator of knowledge excludes the possibil-
ity to ground modal extensions of the remaining con-
junctions from the same set.

• The sets S24–S27 cannot be forbidden and should be
sometimes used by artificial communicative cogni-
tive agents as appropriate (adequate) descriptions of
their opinions, provided that these agents have col-
lected necessary sets of empirical data.

Similarly to the case of the sets Si, i = 1, 2, . . . , 9,
it is assumed that all modal conjunctions not included
in a certain set S15–S27 are treated as unsatisfied in the
epistemic sense. For instance, for the mutually differ-
ent conjunctions α, β, δ, φ ∈ {p(o) ∧ q(o), ¬p(o) ∧
q(o), p(o) ∧ ¬q(o), ¬p(o) ∧ ¬q(o)}, if we say that the
set S15 is satisfied in the epistemic sense, this means that
φ, Know(φ), Bel(φ) and Pos(φ) are assumed to be unsat-
isfied in the epistemic sense.

Let us now analyze the properties of the epistemic
satisfaction relation related to the above commonsense re-
quirements for the unacceptability of the sets S15–S23.
This issue is covered by Theorems 9 and 10:

Theorem 9. Let α, β ∈ {p(o) ∧ q(o), p(o) ∧
¬q(o), ¬p(o) ∧ q(o), ¬p(o) ∧ ¬q(o)} and α �= β. If
the relation KnowledgeState(t) |=GKnow(α) holds, then
the relation KnowledgeState(t) |=Gβ does not hold.

Proof. Let us consider a general case in which α
represents the conjunctions p(o) ∧ q(o), and β repre-
sents another conjunction from {p(o) ∧ ¬q(o), ¬p(o) ∧
q(o), ¬p(o) ∧ ¬q(o)}. If the epistemic satisfaction re-
lation KnowledgeState(t) |=G Know(p(o) ∧ q(o)) holds,
then from Definition 1 it follows that one of the following
two cases can happen:

(a) o ∈ P +(t) and o ∈ Q+(t),

(b) o ∈ O\(P +(t) ∪ P−(t)), o ∈ O\(Q+(t) ∪
Q−(t)), RC1(t) �= ∅, λ(t, p(o) ∧ q(o)) = 1.

Case (a): In this situation, it is true that o �=∈ Q−(t)
and o �=∈ O\(Q+(t) ∪ Q−(t)). Therefore, none of the
conjunctions given below is true:

– o ∈ P+(t) and o ∈ Q−(t),

– o ∈ P−(t) and o ∈ Q+(t),

– o ∈ P−(t) and o ∈ Q−(t),

– o ∈ O\(P+(t) ∪ P−(t)) and o ∈ O\(Q+(t) ∪
Q−(t)).

This means that if the epistemic satisfaction of
Know(p(o) ∧ q(o)) holds because both o ∈ P +(t) and
o ∈ Q+(t) are satisfied, then the requirements given in
Eqns. (14) and (15) are not true for any conjunction from
{p(o)∧¬q(o), ¬p(o)∧q(o), ¬p(o)∧¬q(o)}. This com-
pletes the proof for Case (a).

Case (b): From the fact that o ∈ O\(P +(t) ∪ P−(t)) and
o ∈ O\(Q+(t) ∪ Q−(t)), it can be deduced that none of
the conjunctions given below is true:

– o ∈ P+(t) and o ∈ Q−(t),

– o ∈ P−(t) and o ∈ Q+(t),

– o ∈ P−(t) and o ∈ Q−(t).

This means that the definition requirements given
in Eqn. (14) are not fulfilled for any conjunction from
{p(o) ∧ ¬q(o), ¬p(o) ∧ q(o), ¬p(o) ∧ ¬q(o)}. At the
same time, from the equality λ(t, p(o) ∧ q(o)) = 1 and
Eqns. (7)–(10), the following set of requirements has to
be simultaneously considered:

λ
(
t, p(o) ∧ q(o)

)
= 1,

λ
(
t, p(o) ∧ q(o)

)
+ λ

(
t, p(o) ∧ ¬q(o)

)
+ λ(t,¬p(o)

∧ q(o)) + λ
(
t,¬p(o) ∧ ¬q(o)

)
= 1,

λ
(
t, p(o) ∧ q(o)

) ≥ 0,
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λ
(
t, p(o) ∧ ¬q(o)

) ≥ 0,

λ
(
t,¬p(o) ∧ q(o)

) ≥ 0,

λ
(
t,¬p(o) ∧ ¬q(o)

) ≥ 0.

It is quite obvious that this may happen if and only if
λ(t, p(o) ∧ ¬q(o)) = λ(t,¬p(o) ∧ q(o)) = λ(t,¬p(o) ∧
¬q(o)) = 0. In consequence, the definitional require-
ments given in Eqn. (15) are not fulfilled for any conjunc-
tion from {p(o)∧¬q(o), ¬p(o) ∧ q(o), ¬p(o) ∧ ¬q(o)}.
The theorem has thus been proved for α equal to p(o) ∧
q(o). The proofs for α equal to the remaining conjunc-
tions p(o) ∧ ¬q(o) ¬p(o) ∧ q(o) or ¬p(o) ∧ ¬q(o)} are
similar.

Theorem 9 covers the case of the commonsense un-
acceptability of S17. It has, however, to be stressed that
the above proof for Theorem 9 should be the same as the
proof for the required permanent lack of the epistemic sat-
isfaction of S3. This fact follows from Definition 1 and the
following result:

Theorem 10. Let α, β ∈ {p(o) ∧ q(o), p(o) ∧
¬q(o), ¬p(o) ∧ q(o), ¬p(o) ∧ ¬q(o)} and α �= β. If the
relation KnowledgeState(t) |=GKnow(α) holds, then the
relation KnowledgeState(t) |=GKnow(β) does not hold.

It is enough to notice that Theorem 10 follows di-
rectly from Theorem 1, and the proof for Theorem 9 has
been given in detail to show the proof methodology used
in the forthcoming sections.

Theorem 11. Let α, β, δ, φ ∈ {p(o) ∧ q(o), ¬p(o) ∧
q(o), p(o)∧¬q(o), ¬p(o)∧¬q(o)} be mutually different.
The sets S15 and S16 cannot be satisfied in the sense of
Definition 2.

The proof follows directly from Theorem 9.

Theorem 12. Let α, β ∈ {p(o) ∧ q(o), p(o) ∧
¬q(o), ¬p(o) ∧ q(o), ¬p(o) ∧ ¬q(o)} and α �= β. If
the relation KnowledgeState(t) |=GKnow(α) holds, then
the relation KnowledgeState(t) |=GBel(β) does not hold.

Proof. As in the proof of Theorem 9, let us start with α de-
noting the conjunction p(o) ∧ q(o) and β denoting any of
the other conjunctions p(o)∧¬q(o),¬p(o)∧q(o),¬p(o)∧
¬q(o). It is necessary to consider the following two gen-
eral cases:

(a) o ∈ P +(t) and o ∈ Q + (t),

(b) o ∈ O\(P +(t) ∪ P−(t)), o ∈ O\(Q+(t) ∪
Q−(t)), RC1(t) �= ∅, λ(t, p(o) ∧ q(o)) = 1.

It can be easily proved that in both cases it is not pos-
sible to ground any of the modal conjunctions Bel(p(o) ∧
¬q(o)), Bel(¬p(o) ∧ q(o)), Bel(¬p(o) ∧ ¬q(o)).

Case (a): It is true that both o ∈ O\(P +(t) ∪ P−(t)) and
o ∈ O\(Q+(t)∪Q−(t)) are not true. In consequence, the
set of definitional requirements given in Eqn. (14) can-
not be fulfilled for the conjunctions p(o) ∧ q(o), p(o) ∧
¬q(o), ¬p(o) ∧ q(o) and ¬p(o) ∧ ¬q(o). In this case,
the epistemic satisfaction relation KnowledgeState(t) |=G

Bel(β) does not hold.

Case (b): It follows from these assumptions that
λ(t, p(o) ∧ q(o)) = 1. Now, based on Eqns. (7)–(10) it
can be deduced that λ(t, p(o) ∧ ¬q(o)) = λ(t,¬p(o) ∧
q(o)) = λ(t,¬p(o) ∧ ¬q(o)) = 0. This means that
for each conjunction p(o) ∧ ¬q(o), ¬p(o) ∧ q(o), and
¬p(o) ∧ ¬q(o), its grounding values do not belong to
the interval [λmin Bel, λmax Bel]. This means that the epis-
temic satisfaction relation KnowledgeState(t) |=GBel(β)
does not hold, either. The proofs for each α ∈ {p(o) ∧
¬q(o), ¬p(o) ∧ q(o), ¬p(o) ∧¬q(o)} are similar.

Theorem 12 covers the desired unacceptability
of S20.

Theorem 13. Let α, β, δ, φ ∈ {p(o) ∧ q(o), ¬p(o) ∧
q(o), p(o)∧¬q(o), ¬p(o)∧¬q(o)} be mutually different.
The sets S18 and S19 cannot be satisfied in the sense of
Definition 2.

The proof follows directly from Theorem 12.

Theorem 14. Let α, β ∈ {p(o) ∧ q(o), p(o) ∧
¬q(o), ¬p(o) ∧ q(o), ¬p(o) ∧ ¬q(o)} and α �= β. If
the relation KnowledgeState(t) |=GKnow(α) holds, then
the relation KnowledgeState(t) |=GPos(β) does not hold.

The proof is similar to that of Theorem 12, pro-
vided that instead of [λmin Bel, λmax Bel], the interval
[λmin Pos, λmax Pos] is considered.

Theorem 15. Let α, β, δ, φ ∈ {p(o) ∧ q(o), ¬p(o) ∧
q(o), p(o)∧¬q(o), ¬p(o)∧¬q(o)} be mutually different.
The sets S21 and S22 cannot be satisfied in the epistemic
sense.

The proof follows directly from Theorem 14.

Let us now consider all situations for which it is
required that exactly one modal conjunction Bel(α) and
three modal conjunctions Pos(β), Pos(δ) and Pos(φ) be
satisfied in the epistemic sense (see set S24). It is possible
to prove that such a situation is not excluded and may hap-
pen, provided that appropriate empirical experience is col-
lected and the mechanism of epistemic satisfaction given
by Definition 1 is implemented in the artificial commu-
nicative cognitive agent. The following theorem covers
this case of grounding:

Theorem 16. There exists a system of modality thresholds
that ensures the epistemic satisfaction of the set S24 pro-
vided that an appropriate collection of base profiles has
been developed and stored in the communicative cogni-
tive agent.
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Proof. At first, from Theorem 5 it follows that implement-
ing the system of modality thresholds in which the condi-
tion 1/2 < λmin Bel < λmax Bel < 1 holds makes it pos-
sible to ground at most one modal conjunction Bel(α) in
the same state of cognition. Let us assume that the system
of modality thresholds fulfils this condition.

Now, let us determine what conditions are needed for
the pair of modality thresholds λmin Pos and λmax Pos in or-
der to make the remaining three modal conjunctions si-
multaneously satisfied in the same state of cognition. Let
the following symbols be introduced:

g1 = λ(t, α), g2 = λ(t, β),

g3 = λ(t, γ), g4 = λ(t, χ).

It is possible to determine the highest value of
λmin Pos, which makes it possible to ground simultane-
ously the above three possibility conjunctions. The ex-
planation is as follows: From the definition of relative
grounding values it follows that g1 = 1 − g2 − g3 − g4.
This means that the value g1 can be treated as a de-
creasing function of three values, g2, g3 and g4. It can
be seen now that the highest value acceptable for g2, g3

and g4 equals 1/6. Namely, if g1 describes the relative
grounding value for the modal conjunction Bel(α), then
1/2 < λmin Bel < g1. Let K represent the highest possible
value for all measures g2, g3 and g4. Now, in the border
case it follows that the inequality g1 = 1 − 3K > 1/2
holds, which leads to the inequality K < 1/6. This
means, too, that the epistemic satisfaction of the modal
conjunctions Pos(β), Pos(δ) and Pos(φ) with the simul-
taneous epistemic satisfaction of the modal conjunction
Bel(α) takes place if and only if g2, g3, g4 ∈ [λmin Pos, K],
provided that K < 1/6 and λmin Pos �= K . A practi-
cal consequence is that in order to design a communica-
tive cognitive agent with intentional language behavior in
which the epistemic satisfaction of the set S24 is achiev-
able, one needs to implement a system of modality thresh-
olds for which the requirement λmin Pos < 1/6 is fulfilled.

The requirement given in the proof of Theorem 16
is not contradictory with the previously assumed proper-
ties of the system of modality thresholds, namely, with the
system of inequalities 0 < λmin Pos < 1/2 < λmin Bel <
λmax Bel < 1. This means that, to complete the proof, it
is enough to implement a system of modality thresholds
in which the conditions 0 < λmin Pos < 1/6 < 1/2 <
λmin Bel < λmax Bel < 1 are satisfied.

Let us notice now that the set of requirements 0 <
λmin Pos < 1/6 < 1/2 < λmin Bel < λmax Bel < 1 ac-
cepted in Theorem 16 for the system of modality thresh-
olds (λmin Pos, λmax Pos, λmin Bel, λmax Bel) does not contra-
dict the assumptions given in Theorems 1–5. However, an
additional comment is needed to explain why the system
of modality thresholds accepted for Theorem 4 consists

of an additional inequality 1/2 < λmax Pos, which is nei-
ther mentioned in the previous theorems nor follows from
any of them. The main premise for including this inequal-
ity into the set of assumptions is a commonsense require-
ment that the shift from each situation in which the pos-
sibility operator is used to another situation in which the
modal operator of belief has to be used should be smooth
to ensure the continuity of modality usage. Obviously,
it can be realized by setting the value of λmax Pos very
close to the value of λmin Bel provided that the demand
for their difference is actually needed and rational. Since
the length of [1/2, λmin Bel] is not equal to 0, the modal-
ity threshold λmax Pos can always be located between 1/2
and λmin Bel, which can be described in a direct way by
two inequalities, 1/2 < λmax Pos < λmin Bel, accepted in
Theorem 16. However, it has to be stressed that the ex-
istence of such an nonempty interval is an additional re-
search issue which is not discussed in this paper in detail.
Two solutions to this problem are possible: the complete
reduction of [λmax Pos, λmin Bel] by assuming the equality
λmax Pos = λmin Bel, or the introduction of additional lan-
guage symbols to capture these relative grounding values,
which are related neither to the operator of possibility nor
to the modal operator of belief. However, the choice of
a proper solution should be based on a deeper analysis of
rules used in the natural language discourse, where addi-
tional language symbols may sometimes be used to cover
the naturally fuzzy border between possibility- and belief-
related cognitive states.

A remaining research issue is now to develop fur-
ther requirements for the upper modality thresholds
λmax Pos, λmin Bel, and λmax Bel. The forthcoming analy-
sis will show that in order to make the grounding of the
sets S25–S27 possible, the communicative cognitive agent
needs to use a system of modality thresholds in which the
lower belief threshold λmin Bel depends on the lower pos-
sibility threshold λmin Pos. Let us take into account the
following discussion:

An important property of the intentional language
behavior studied in this paper is that there exists a cer-
tain commonsense correlation between changes observ-
able in relative grounding values and the agent’s inten-
tion to move from the epistemic satisfaction of one set
of modal conjunctions from the sets S24–S27 to the oth-
ers. For instance, let us assume that the set S7 is sat-
isfied in the epistemic sense. In this situation, the con-
stant increase in the grounding value of α should trans-
form this state of cognition to a state in which the set S24

is grounded. Further changes should lead to other situ-
ations in which the list of grounded modal conjunctions
Pos(β), Pos(δ), Pos(φ) is subsequently reduced. Namely,
at the next step an increase in the relative grounding value
for α should result in the grounding of the set S25, then the
grounding of the set S26 and, finally, the grounding of the
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set S27. This logic of the desirable shift from the set S7 to
the set S27 leads to a conclusion that in each communica-
tive cognitive agent a particular threshold K should exist
which belongs to the interval [λmin Pos, 1/6] and divides
this interval into two nonempty intervals, [λmin Pos, K] and
[K, 1/6]. The role of this threshold is as follows: if all rel-
ative grounding values related to the conjunctions β, δ, φ
are moved from [K, 1/6] to [λmin Pos, K], then the modal
operator of possibility assigned to the conjunction α is re-
placed with the modal operator of belief. This remark will
help us while proving the next result.

Theorem 17. Let a system of modality thresholds
(λmin Pos, λmax Pos, λmin Bel, λmax Bel) be given in which
the set of requirements 0 < λmin Pos < 1/6 < 1/2 <
λmax Pos ≤ λmin Bel < λmax Bel < 1 is fulfilled. It is pos-
sible to implement two modality thresholds, λmax Pos and
λmin Bel, which ensure the possibility of grounding the sets
S7 and S24, provided that an appropriate empirical con-
tent has been collected.

Proof. Let a number K ∈ (λmin Pos, 1/6) be given which
defines the threshold of balanced relative grounding val-
ues for the conjunctions β, δ, φ such that if these values
are lower than K , then the conjunction α is extended with
the modal operator of belief. This means that if these rela-
tive grounding values decrease to the level K , then the rel-
ative grounding value assigned to α increases to the level
above which the operator Bel has to be applied (instead of
the operator Pos). The following assumptions for λmax Pos

and λmin Bel are compatible with the above remarks:

λmax Pos = 1 − 3K − 3Δ,

Δ ∈ (0, 1/6 − K) and Δ → 0,

λmin Bel = 1 − 3K ,

1 − 3λmin Pos < λmax Bel.

Case (a). It can be easily proved that the numbers
g1, g2, g3 and g4 which fulfill the following requirements:

g1 = 1 − (g2 + g3 + g4),

K + Δ < g2 < 1/6,

K + Δ < g3 < 1/6,

K + Δ < g4 < 1/6

can be relative grounding values for the modal conjunc-
tions Pos(α), Pos(β), Pos(δ) and Pos(φ), respectively.

Namely, having summed up the above inequalities,
the following can be obtained:

3K + 3Δ ≤ g2 + g3 + g4 < 1/2,

1 − 3K − 3Δ < 1 − (g2 + g3 + g4) > 1/2,

1 − 3K − 3Δ < g1 > 1/2.

This means that the following inequalities hold:

λmin Pos ≤ g1 < λmax Pos,

λmin Pos ≤ g2 < λmax Pos,

λmin Pos ≤ g3 < λmax Pos,

λmin Pos ≤ g4 < λmax Pos,

1 = g1 + g2 + g3 + g4.

This means that a state of cognition is possible in
which the stored empirical experience makes four modal
conjunctions, Pos(α), Pos(β), Pos(δ) and Pos(φ), well
grounded (satisfied in the epistemic sense) because all
conditions given in Definition 1 are fulfilled as regards the
case of relations

KnowledgeState(t) |=GPos(α),
KnowledgeState(t) |=GPos(β),
KnowledgeState(t) |=GPos(δ),
KnowledgeState(t) |=GPos(φ).

Case (b). For the case of the set S24 the following as-
sumptions can be accepted:

g1 = 1 − (g2 + g3 + g4),
λmin Pos ≤ g2 < K ,

λmin Pos ≤ g3 < K ,

λmin Pos ≤ g4 < K .

From the above it follows that

3λmin Pos ≤ g2 + g3 + g4 < 3K ,

1 − 3λmin Pos ≥ 1 − (g2 + g3 + g4) > 1 − 3K ,

1 − 3λmin Pos > g1 ≥ 1 − 3K .

Having considered all the assumptions made above,
we obtain the following result:

1 − 3λmin Pos > g1 ≥ 1 − 3K = λmin Bel,

λmin Pos ≤ g2 < λmax Pos.

Accordingly, the inequalities

λmin Bel ≤ g1 < λmax Bel,

λmin Pos ≤ g2 < λmax Pos,

λmin Pos ≤ g3 < λmax Pos,

λmin Pos ≤ g4 < λmax Pos,

and the equality 1 = g1 + g2 + g3 + g4 are true.
The conclusion is that in the situation which is char-

acterized by the accepted assumptions, the following rela-
tions hold:

KnowledgeState(t) |=GBel(α),
KnowledgeState(t) |=GPos(β),
KnowledgeState(t) |=GPos(δ),
KnowledgeState(t) |=GPos(φ).
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The general conclusion is that, in order to make the
grounding of the sets S7 and S24, the system of modality
thresholds (λmin Pos, λmax Pos, λmin Bel, λmax Bel) needs to
satisfy the set of inequalities 0 < λmin Pos < 1/6 < 1/2 <
λmax Pos ≤ λmin Bel < 1 − 3λmin Pos < λmax Bel < 1.
Obviously, even if such a system is implemented in the
communicative cognitive agent, it is still required that the
appropriate content of empirical experience be embodied
(stored) in the agent, namely, the content described by the
assumed relative grounding values. This completes the
proof.

The above result has to be further evaluated in order
to prove that, with this system of modality thresholds, the
communicative cognitive agent can ground the acceptable
sets of modal conjunctions S25–S27. Theorem 18 covers
these cases.

Theorem 18. Let a system of modality thresholds
(λmin Pos, λmax Pos, λmin Bel, λmax Bel) be given in which
the inequalities 0 < λmin Pos < 1/6 < 1/2 < λmax Pos ≤
λmin Bel < 1 − 3λmin Pos < λmax Bel < 1 are satisfied.
This system of modality thresholds ensures the possibility
to satisfy in the epistemic sense the sets S25–S27, provided
that appropriate empirical experience has been collected
and stored by the communicative cognitive agent.

Proof. Let us take into account a number K ∈
(λmin Pos, 1/6). Let the following assumptions be made
for the modality thresholds λmax Pos and λmin Bel:

λmax Pos = 1 − 3K − 3Δ,

Δ ∈ (0, 1/6− K) and Δ → 0,

λmin Bel = 1 − 3K ,

1 − 3λmin Pos < λmax Bel < 1, λmax Bel → 1.

It follows that there always exists ε such that λmax Bel =
1 − ε, where ε satisfies λmin Pos > 1/3, ε > 0.

Let us take into account four numbers, g1, g2, g3, and
g4, fulfilling the requirements

g1 = 1 − (g2 + g3 + g4),
0 < g2 < K ,

0 < g3 < K ,

0 < g4 < K .

This means that 1 > 1 − (g2 + g3 + g4) > 1 − 3K
and, in consequence, 1 > g1 > 1 − 3K . Let us now
consider three sets of additional assumptions, each for an
individual set S25–S27.

The assumptions for the set S25 are as follows:

g1 = 1 − (g2 + g3 + g4),
λmin Pos ≤ g2 < K ,

λmin Pos ≤ g3 < K ,

1/3ε < g4 < λmin Pos.

Consequently, we get

1/3ε ≤ g2 < K ,

1/3ε ≤ g3 < K ,

which yields

ε < g2 + g3 + g4 < 2K + λmin Pos,

1 − ε > g1 > 1 − 2K − λmin Pos,

λmax Bel = 1 − ε > g1 > 1 − 2K − λmin Pos

> 1 − 3K = λmin Bel.

This means that if the empirical content stored in the
agent’s knowledge base is represented by the four num-
bers g1, g2, g3, and g4, then all conditions proposed in De-
finition 1 are satisfied for the relations

KnowledgeState(t) |=GBel(α),
KnowledgeState(t) |=GPos(β),
KnowledgeState(t) |=GPos(δ).

In consequence, this means that the set consisting of
modal conjunctions Bel(α), Pos(β), Pos(δ) is satisfied in
the epistemic sense and the remaining conjunction is not
satisfied.

The assumptions for the set S26 are

g1 = 1 − (g2 + g3 + g4),
λmin Pos ≤ g2 < K ,

1/3ε ≤ g3 < λmin Pos,

1/3ε < g4 < λmin Pos.

Similar reasoning leads to the conclusion that this
collection of relative grounding values g1, g2, g3, and g4

results in the satisfaction of {Bel(α), Pos(β)}.

The assumptions for the set S27 are

g1 = 1 − (g2 + g3 + g4),
1/3ε ≤ g2 < λmin Pos,

1/3ε ≤ g3 < λmin Pos,

1/3ε < g4 < λmin Pos.

This can be used to prove that the only modal con-
junction that is satisfied in the epistemic sense is Bel(α).
This completes the proof.

5. Conclusions

The above results have important practical consequences.
Namely, they suggest in a systematic way a certain organi-
zation of artificial cognition for the class of artificial com-
municative cognitive agents considered in this paper. It
has been proved that, as regards the processing of nonuni-
form sets of modal conjunctions, communicative cogni-
tive agents based on the idea of epistemic satisfaction ful-
fil important commonsense requirements known from the
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natural language discourse. In particular, they are not al-
lowed to produce these nonuniform sets of modal con-
junctions that are not acceptable in the natural language
discourse and are able to produce sets of modal conjunc-
tions that are acceptable in the context of this discourse.
In other words, if an agent uses epistemic satisfaction to
choose grounded formulas as acceptable language mes-
sages to be “spoken”, then unacceptable sets of modal
conjunctions are not produced externally for any distrib-
ution of stored empirical experiences, and acceptable sets
of modal conjunctions can happen if the internal distribu-
tion of stored empirical experience fulfils the requirements
given in the definition for epistemic satisfaction.

The proposed model of grounding based on the idea
of the epistemic satisfaction relation can be applied in var-
ious situations. Obviously, the most advanced implemen-
tation would be realized in a humanoid cognitive agent.
However, in such a case the main technical problem is to
develop an adequate knowledge base in which huge col-
lections of individual observations could be stored. An-
other interesting application is to use this model in soft-
ware modules filled up with data stored in organizational
resources and producing linguistic representations of par-
ticular pieces of the collected knowledge resources. This
idea was already partly presented in (Katarzyniak, 2004b).
A simplified model of grounding was also applied in or-
der to describe artificial cognitive processes of producing
responses to queries about objects’ states. These queries
are directed to an artificial cognitive agent that is orga-
nized according to the assumptions given for artificial cog-
nitive agents in this paper (Katarzyniak and Pieczyńska-
Kuchtiak, 2004). Other simplified implementations are
artificial cognitive processes of producing modal mes-
sages including modal conjunctions (Katarzyniak and
Pieczyńska-Kuchtiak, 2002; Pieczyńska-Kuchtiak 2004).
All these implementations cover collections of formulas
extended with modal exclusive and inclusive alternatives.
However, they are simplified in the sense that they do not
apply systems of modality thresholds with properties de-
veloped by the research given in this paper and the pre-
vious works (Katarzyniak, 2005b; 2006). The general
idea underlying the above implementations is that artifi-
cial cognitive agents are asked questions about the states
of properties in particular objects. If these states of prop-
erties can be observed by the agents directly, an answer
is chosen which is properly grounded in the latest results
of the observation of these objects. However, if these ob-
jects are not accessible, the agents need to compensate for
the lack of knowledge by applying empirical experience
stored in internal knowledge bases. This kind of knowl-
edge forms the actual relation between the language sym-
bol (an appropriate modal formula) representing a relevant
answer and the actual world with the objects pointed at in
the question. In this sense, properly chosen answers are
formulas which are satisfied in the epistemic sense.

To conclude, it is necessary to mention that similar
research into the nature of grounding has already been
carried out for other classes of modal formulas, and re-
lated results from this research have been published for
the case of uniform and nonuniform sets of simple modal-
ities where simple modalities are understood as modal ex-
tensions of positive literals p(o) and modal extensions of
negative literals ¬p(o) (Katarzyniak, 2005b). All these
results are complementary to and consistent with results
developed for the case of uniform and nonuniform sets
of modal conjunctions. The remaining classes of formu-
las are modal inclusive alternatives and modal exclusive
alternatives (Katarzyniak, 2002), modal implications and
modal equivalences (Katarzyniak, 2004a). It has already
been discovered that for some of these classes, additional
constraints need to be introduced for systems of modality
thresholds and some minor extensions are needed to refor-
mulate definitions of the epistemic satisfaction of modal
alternatives (Katarzyniak, 2005a).
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Pieczyńska-Kuchtiak A. (2004): Experience-based learning of
semantic messages generation in resource-bounded envi-
ronment. — Syst. Sci., Vol. 30, No. 2, pp. 115–132.

Roy D. (2005): Semiotic schemas: A framework for ground-
ing language in action and perception. — Artif. Intell.,
Vol. 167, Nos. 1–2, pp. 170–205.

Roy D. and Reiter E. (2005): Connecting language to the world.
— Artif. Intell., Vol. 167, Nos. 1–2, pp. 1–12.

Tarski A. (1935): Der Warheitsbegriff in den formalisierten
Sprachen. — Studia Philosophica, Vol. 1, No. 1, pp. 261–
405.

Tomasello M. (2000): Primate cognition: Introduction to the
issue. — Cognit. Sci., Vol. 24, No. 3, pp. 351–361.

Vogt P. (2002): The physical symbol grounding problem. —
Cognit. Syst. Res., Vol. 3, No. 3, pp. 429–457.

Vogt P. (2003): Anchoring of semiotic symbols. — Robot. Au-
tonom. Syst., Vol. 43, Nos. 2–3, pp. 109–120.

Ziemke T. (1999): Rethinking grounding, In: Understand-
ing Representation in the Cognitive Sciences (Riegler A.,
Peschl M., von Stein A., Eds.). — New York: Plenum
Press, pp. 177–190.

Received: 18 January 2005
Revised: 25 July 2006


