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The problem of diagnostic filter design is studied. Algebraic and geometric approaches to solving this problem are inves-
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1. Introduction

An existing approach to maintaining fault tolerance and
safety for critical purpose systems consists in timely de-
tection and isolation of faults followed by system accom-
modation. Therefore, the design of such systems necessi-
tates on-line fault detection and isolation (FDI) methods.

Numerous methods of FDI have been proposed
within the scope of the analytical redundancy concept
(Chow and Willsky, 1984). According to this idea, FDI
includes residual generation as a result of a mismatch be-
tween the system behaviour and its reference model be-
haviour and, then, decision making based on the evalua-
tion of the residual. This paper is concentrated only on
first stage, i.e. on the residual generation.

The methods used for residual generation are based
on closed-loop (diagnostic observers or filters) and open-
loop (parity relations) techniques. This paper deals with
the problem of diagnostic filter design for nonlinear dy-
namic systems. By definition (Alcorta-Garcia and Frank,
1997; Frank, 1990; 1996), the diagnostic filter is an ob-
server (or a bank of observers) whose output (residual) is
structured according to faults arising in the system under
monitoring. Up to now, several approaches to diagnostic
filter design have been developed; in this paper our at-
tention will be concentrated on geometric and algebraic
approaches.

In the framework of the geometric approach, a so-
lution to the diagnostic filter design problem was first
proposed by Massoumnia (1986) and Massoumnia et al.
(1989) for linear systems. Later, this solution was de-

veloped for nonlinear systems by De Persis and Isidori
(2001) and, then, by Join et al. (2002a; 2002b). Also, in
(Edelmayer et al., 2004), nonlinear system inversion tech-
niques were considered for diagnostic filter design within
the scope of the geometric approach.

Using the Lie algebra, a solution to the diagnostic
filter design problem was obtained by Frank and Ding
(1997) in another manner: the result involves the so-called
unknown input observer approach.

For linear systems, an algebraic approach based on
the Kronecker canonical form of the system under consid-
eration was developed by Mironovskii (1980) and Frank
(1990). In the nonlinear case, the algebraic approach
considered in the present paper is based on the algebra
of functions, which is an extension of the pare algebra
proposed by Hartmanis and Stearns (1996) for finite au-
tomata. In contrast to the former algebra, whose con-
structions are determined on the set of partitions, the al-
gebra of functions uses the constructions determined on
the set of vector functions. The main feature of this alge-
bra is the possibility to obtain algorithms that are similar
for both discrete- and continuous-time nonlinear systems
(Zhirabok and Shumsky, 1993a; 1993b).

The algebra of functions was first proposed for fault
detection in nonlinear systems by Zhirabok and Shumsky
(1987). Then, this algebra was developed for solving var-
ious diagnostic tasks (Shumsky, 1988; 1991; Zhirabok,
1997) and for nonlinear systems (Zhirabok and Shumsky,
1993a; 1993b).

Independently of the approach in use, fault diagnos-
tic filter design involves a full decoupling problem. The
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solution of this problem in differential geometric terms
can be reduced to finding some controllability conditioned
invariant (or (h, f) invariant) distributions (De Persis and
Isidori, 2001). On the other hand, in the framework of the
algebraic approach, one concentrates on finding “special”
vector functions (Shumsky, 1991), which play the same
role as these distributions (it will be shown below that the
annihilator of the controllability (h, f) invariant distri-
bution is spanned by the exact differential of the above
“special” vector function).

The aim of this paper is to consider the connec-
tion that exists between the algebraic and geometric ap-
proaches and, then, to propose a design algorithm for
affine systems involving new conditions of fault de-
tectability and isolability. A conference version of this
paper is (Shumsky and Zhirabok, 2005).

The paper is organised as follows: Section 2 de-
scribes the problem in detail. It starts with the speci-
fication of the nonlinear dynamic system under diagno-
sis. Then, definitions of strong/weak detectability and
isolability are introduced and a new form for the matrix
specifying the structure of the residual (the so-called fault
syndrome matrix) is proposed. After this, using Petrov’s
two-channel principle as a starting point, an approach to
diagnostic filter design is formulated and some defining
equations are given. Section 3 is devoted to the algebraic
approach. First, a brief description of algebraic tools in
use is given. Then, involving these tools, the solution of
the full decoupling problem is considered and the way of
constructing the fault syndrome matrix is discussed. In
Section 4, a geometric interpretation of the algebraic ap-
proach is given. At the beginning of this section, the con-
nection existing between algebraic and geometric tools is
investigated for affine systems. After this, the ultimate
designing procedure for diagnostic filter is formulated in
geometric terms. An example is considered in Section 5.
Section 6 concludes the paper.

2. Problem Description and Preliminary
Results

Consider the system

ẋ(t) = f
(
x(t), u(t), ϑ(t)

)
, (1)

y(t) = h
(
x(t)

)
, (2)

where x(t) ∈ X ⊆ R
n is the state vector, u(t) ∈ U ⊆

R
m is the control vector, y(t) ∈ Y ⊆ R

l is the measur-
able output vector, ϑ(t) ∈ R

s is the vector of parame-
ters, f and h are nonlinear vector functions assumed to
be smooth for x(t) and ϑ(t). It is also assumed that f
is such that a solution of (1) exists for every initial state
x(t0), and for a faultless system ϑ(t) = ϑ0 holds for

every t, where ϑ0 is a given nominal value of the para-
meter vector.

The set of faults considered for the design of
the diagnostic filter is specified by a list of faults
{ρ1, ρ2, . . . , ρd}, d ≥ s. Single and multiple faults
are distinguished. It is assumed that every single fault
ρi, i = 1, 2, . . . , s, results in unknown time behaviour of
the appropriate parameter ϑi(t) such that ϑi(t) �= ϑ0

i .
A multiple fault is considered as a collection of single
faults occurring simultaneously. Notice that this represen-
tation of faults corresponds not only to actuator or plant
faults, but also to sensor faults, considered as pseudoactu-
ator faults, see e.g. (Massoumnia et al., 1989; Park et al.,
1994).

To detect and isolate faults in the system (1), (2), a
diagnostic filter in the form of a bank of reduced-order
nonlinear observers is involved. Every observer gener-
ates the appropriate subvector of the residuals r (j), j =
1, 2, . . . , q, and the residual vector r is composed of
these subvectors.

Usually, see e.g. (Gertler and Kunwer, 1993), the
structure properties of the residual vector are character-
ized by the binary matrix S of fault syndromes (FS) with
the elements Sji = 1 if the subvector r(j) is sensitive
to the single fault ρi, otherwise (if r(j) is insensitive to
ρi) Sji = 0, j = 1, 2, . . . , q and i = 1, 2, . . . , s. Various
ways of choosing the FS matrix were discussed (Chen and
Patton, 1994; Gertler and Kunwer, 1993). In the case of
a square matrix S (q = s), it was shown that a diagonal
structure of this matrix guarantees the isolation of multiple
faults but imposes strong demands on the system. Also,
the matrix with zeros only on its diagonal allows isolat-
ing only single faults, but gives more possibilities for the
design.

The notion of sensitivity to a given fault looks triv-
ial and means that if the fault distorts the state vector at
some instant of time, then an appropriate residual subvec-
tor or, at least, some of its time derivatives are nonzero at
the same instant of time. But as soon as the state vector is
directly unobservable, while the output vector is directly
measurable, it is reasonable to reformulate the above no-
tion in the following manner: Let t0 be an instant of time
when the fault ρi results in a distortion of the system out-
put. The subvector r(j) is called sensitive to the fault ρi

if for some τ ≥ 0 we have r(j)(t0 + τ) �= 0. For non-
linear systems, the delay τ between the first distortion
of the system output due to the fault ρi and the instant
of time when the subvector r(j) takes a nonzero value
depends on control and may be significant (or even infi-
nite), which prevents making the decision on time. As a
result, in the nonlinear case, characteristics of the residual
structure become more exhaustive when using, instead of
the term “sensitivity”, the term “detectability” of the fault
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via the residual subvector, drawing a distinction between
weak and strong detectabilities.

Definition 1. The fault ρi is called weakly detectable via
the residual r(j) if there exist a state x(t0), a finite time
interval T = [t0, t], t0 < t, and control u(τ) ∈ U, τ ∈
[t0, t], such that r(j)(t) �= 0.

Definition 2. The fault ρi is called strongly detectable
via the residual r(j) if r(j)(t0) �= 0.

As soon as the notions of weak and strong detectabil-
ities are introduced, the elements of the FS matrix take
three values: Sji = 1 if the fault ρi is strongly detectable
via the residual r(j), Sji = 0 if r(j) is insensitive to the
fault ρi, and Sji = z if the fault ρi is weakly detectable
via the residual r(j). Now, the FS matrix is constructed
not only for single faults, but for multiple ones, too. It is
also worth introducing the following definitions of weak
and strong fault distinguishability and isolability.

Definition 3. The faults ρi and ρj are called weakly
(strongly) distinguishable if the corresponding columns of
the FS matrix do not coincide under z = 1 (z = 0).

Definition 4. The faults ρ1, ρ2, . . . , ρd are called weakly
(strongly) isolable if no two columns of the FS matrix co-
incide under z = 1 (z = 0).

Weak distinguishability (isolability) of faults means
that these faults (all faults) are distinguishable (isolable)
under some “favourable” control. In contrast to this,
strong distinguishability (isolability) means that these
faults are distinguishable (isolable) under arbitrary con-
trol.

The key problem of finding the FS matrix for a given
system and the set of faults is related to solving two tasks:
(i) fully decoupling effects of faults in the output space of
a diagnostic filter and (ii) analysing fault detectability via
subvectors of the residual.

The idea of full decoupling is based on the compen-
sation of fault effects in the output space of the observer.
If no assumption is made about the time behaviour of the
system parameters affected by faults, such a compensation
is possible only if there exist at least two different ways
(channels) of fault effect propagation (Petrov’s two chan-
nels principle). According to Fig. 4 in the survey (Frank,
1990), the first channel is the actual system; the second
is the unfaulty model with the feedback gain matrix or a
residual observer-based generator.

To illustrate the way of implementing this principle
in the framework of the problem under consideration, con-
sider the structure interpretation given in Fig. 1 (Shum-
sky, 1991). Notice that this interpretation is considered in

 
 
 
 
 
                                        Observer 

 
 
 
 
                                 System 

∑(i) 

∑* 
 

h* 

∑o h(i) − ξ(i) 

r(i) 

y 
u 

Fig. 1. Structure interpretation of observer-based residual
generation involving the two-channel principle.

the survey (Alcorta-Garcia and Frank, 1997) as one of the
ways to solve the full decoupling problem.

In Fig. 1, the system (1), (2) is decomposed into two
subsystems Σ(i), Σ∗and the function h∗, which are spec-
ified as follows:

Σ(i): ẋ(i)(t) = f (i)
(
x(i)(t), y(t), u(t), ϑ(i)(t)

)
, (3)

Σ∗: ẋ∗(t) = f∗(x∗(t), x(i)(t), u(t), ϑ(t)
)
, (4)

h∗: h∗(x∗(t), x(i)(t)
)

= h
(
x(t)

)
, (5)

where ϑ(i) is some subvector of ϑ unaffected by the fault
ρi. The observer in Fig. 1 has the following description:

Σo: ẋ(o)(t) = f (i)(x(o)(t), y(t), u(t), ϑ(i, 0))

+ G
(
x(o)(t), y(t), u(t)

)
r(i)(t), (6)

r(i): r(i)(t) = h(i)
(
x(o)(t)

) − ξ(i)
(
y(t)

)
, (7)

with the functions ξ(i), h(i) satisfying the equality

ξ(i)
(
h∗(x∗(t), x(i)(t)

))
= h(i)

(
x(i)(t)

)
. (8)

In (6), ϑ(i,0) denotes a nominal value of the subvector
ϑ(i), and G is the gain matrix function.

In Fig. 1, the subsystems Σ(i), Σ∗ and the functions
h∗, ξ(i) pertain to the first channel, while the subsystem
Σo and the function h(i) belong to the second channel.
To explain this scheme, let x(o)(0) = x(i)(0). Consider
first the fault-free case when ϑ(t) = ϑ0 for all t. Notice
that from (2), (5), (7), and (8) it follows that r (i)(0) = 0.
Since ϑ(i)(t) = ϑ(i, 0) for all t, descriptions of the chan-
nels coincide, which automatically results in r(i)(t) = 0
for all t. Then, because ϑ(i) is unaffected by the fault ρi

(i.e. ϑ(i)(t) = ϑ(i, 0) for all t), the equality r(i)(t) = 0
also holds in the presence of this fault.
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Now let x(o)(0) �= x(i)(0), and assume that there
is no fault in the system. The design of an asymptoti-
cally stable observer with the property that t → ∞ im-
plies x(o)(t) − x(i)(t) → 0 (r(i)(t) → 0) involves
the appropriate choice of the gain matrix function. The
above problem has been extensively studied (see, e.g.,
the survey (Misawa and Hedrick, 1989) and the papers
by Birk and Zeitz (1988), Ding and Frank (1990), Gau-
thier and Kupca (2000)). This is the reason for concen-
trating below only on the problem of finding the func-
tions f (i), h(i), ξ(i), i = 1, 2, . . . , q assuming that
x(o)(0) = x(i)(0).

According to Shumsky (1991), the solution to the
above problem is based on the following assumption:
there exists a global coordinate transformation given by
a smooth vector function α(i) such that for the faultless
system and every t we have

x(i)(t) = α(i)
(
x(t)

)
, x(t) ∈ X. (9)

Using (1), (3), and (9), we obtain the defining equa-
tion for f (i):

f (i)
(
α(i)(x), h(x), u, ϑ(i)

)
=

∂α(i)

∂x
f(x, u, ϑ), (10)

where ∂α/∂x is the functional (Jacobi) matrix:

∂α

∂x
=

⎡
⎢⎢⎢⎢⎣

∂α1/∂x1 ∂α1/∂x2 . . . ∂α1/∂xn

∂α2/∂x1 ∂α2/∂x2 . . . ∂α2/∂xn

...
...

...
...

∂αp/∂x1 ∂αp/∂x2 . . . ∂αp/∂xn

⎤
⎥⎥⎥⎥⎦ ,

p is a number of the components of the vector function α.

Because ϑ(i) is unaffected by the fault ρi, from (10)
it follows that

∂f (i)

∂ϑk

(
α(i)(x), h(x), u, ϑ(i)

)

=
∂

∂ϑk

(∂α(i)

∂x
f(x, u, ϑ)

)

=
∂α(i)

∂x

( ∂f

∂ϑk
(x, u, ϑ)

)
= 0 (11)

for every ϑk subjected to the distortion by this fault. Vice
versa, if (11) holds, then ϑ(i) is unaffected by the fault
ρi. Then, from (2), (5), (8), and (9) we also obtain the
defining equation for h(i):

h(i)
(
α(i)(x)

)
= ξ(i)

(
h(x)

)
. (12)

Thus, the functions f (i) and h(i) are found
from (10) with ϑ(i) = ϑ(i,0), ϑ = ϑ0, and (12), respec-
tively, under the known functions α(i) and ξ(i). This is

why in the next section attention is focused on finding the
functions α(i), ξ(i) and studying their properties, taking
into account both the solvability condition for (10)–(12)
and the demands imposed on a structure of the FS matrix
by the set of faults.

3. Algebraic Approach

In this section, the algebra of functions is used for solving
the general problem of finding α(i) and ξ(i) for every
i = 1, 2, . . . , q, and determining the FS matrix.

3.1. Algebraic Tools

Denote by �S the set of smooth vector functions with
the domain S. For α, β ∈ �S , the partial preordering
relation ≤ is defined as follows: α ≤ β if and only if
there exists some differentiable function γ, determined on
the set of values of α such that β = γ ◦ α, where ‘◦’
is the symbol of composition. To verify if α ≤ β, one
can check the equality of ranks for the functional matrices
Jα(s) = ∂α(s)/∂s and Jα×β(s) = ∂(α(s) × β(s))/∂s:

α ≤ β ⇔ rankJα(s) = rankJα×β(s), ∀s ∈ S,

where the symbol ‘×’ is used to simplify (but not only)
the notation for the composite vector function, namely,
α × β = (αT, βT)T, and ‘T’ is the symbol of transpo-
sition. If α ≤ β and β ≤ α, then α and β are called
equivalent: α ∼ β. Thus, the relation ∼ splits the set
�S into equivalent function classes.

Every function α ∈ �S specifies the equivalence
Eα on S: (s1, s2) ∈ Eα ⇔ α(s1) = α(s2). The rela-
tion Eα defines the appropriate partition of S. One can
easily see that equivalent functions give the same parti-
tions of S. Moreover, if Eα and Eβ represent equiva-
lence corresponding to the functions α and β, then

[α ≤ β] ⇔ [
(s1, s2)∈Eα ⇒ (s1, s2)∈Eβ , ∀s1, s2∈S

]
.

Therefore, the set of equivalent function classes cor-
responds to the partial ordering set of partitions of S,
and the first is a grid with zero, given by an arbitrary
one-to-one function (in particular, the identity function
i(s) = s, ∀s ∈ S), and unity, given by arbitrary constant
function (c(s) = Const, ∀s ∈ S).

The operations × and ⊕ are defined as follows:[
α × β ∈ �S

]
&

[
α × β ≤ α, α × β ≤ β

]
&

[
γ ≤ α, γ ≤ β ⇒ γ ≤ α × β

]
,

[
α ⊕ β ∈ �S

]
&

[
α ≤ α ⊕ β, β ≤ α ⊕ β

]
&

[
α ≤ γ, β ≤ γ ⇒ α ⊕ β ≤ γ

]
.
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From these definitions it follows that the function α×β is
a maximum bottom of the functions α and β, and α⊕β
is a minimal top of those. Therefore, the operations ×
and ⊕ defined on the set �S correspond to the product
and the sum of the partitions of S specified by the func-
tions α and β, respectively.

For a healthy system (1), the relation Δ ⊂ �X×�X

is introduced as follows:[
(α, β) ∈ Δ

] ⇔ [
πu × α ◦ πx ≤ Jβf

]
,

where πu, πu(x, u) = u and πx, πx(x, u) = x are pro-
jections.

Some useful properties of the partial preordering re-
lation ≤, the relation Δ, and the operations × and ⊕ are
given below:

(i) α ≤ β ⇒ α × γ ≤ β × γ,

(ii) α ≤ β ⇒ α ⊕ γ ≤ β ⊕ γ,

(iii) α ≤ β ⇔ α ⊕ β ∼ β,

(iv) α ∼ β ⇒ α × γ ∼ β × γ,

(v)
[
(α, β) ∈ Δ & γ ≤ α

] ⇒ (γ, β) ∈ Δ.

Notice that the properties (i)–(iv) follow immediately
from grid theory, see, e.g. (Hartmanis and Stearns, 1966):
the property (v) was proved in (Zhirabok and Shumsky,
1987).

3.2. Fault Decoupling

Our task is now to describe the properties of the functions
α(i) and ξ(i), i = 1, 2, . . . , q, with a language of the alge-
bra of functions and to give a procedure for finding them.
To solve this task, introduce the vector function α (i,0)

such that
∂α(i,0)

∂x

( ∂f

∂ϑk
(x, u, ϑ)

)
= 0 (13)

for every ϑk subjected to a distortion by the fault ρi

and α(i,0) ≤ α(i) for every function α(i) satisfying (11).
Thus, α(i,0) forms a basis for the functions satisfying the
condition (11). The solvability condition for (10)–(12) is
given by the following theorem (Shumsky, 1991):

Theorem 1. Equations (10)–(12) are solvable if and only
if (

h × α(i), α(i)
) ∈ Δ, α(i,0) ≤ α(i), (14)

α(i) ≤ ξ(i) ◦ h. (15)

Proof. (Sufficiency) Let (h × α(i), α(i)) ∈ Δ. Ac-
cording to the definition of the relation Δ, the inequality
πu × (h × α(i)) ◦ πx ≤ Jα(i) f holds. From this func-
tional inequality, according to the definition of the partial

preordering relation, one can find some function, denoted
by f (i), such that (10) holds. Then, from the functional
inequality α(i,0) ≤ α(i) one can write α(i) = γ ◦ α(i, 0)

for some vector function γ defined on the set of α (i, 0)

values. Differentiating both the sides of the above equality
for t and ϑk, from (13) it follows that

∂α(i)

∂x

( ∂f

∂ϑk
(x, u, ϑ)

)

=
∂γ

∂α(i, 0)

∂α(i,0)

∂x

∂f

∂ϑk
(x, u, ϑ) = 0.

Hence, (11) also holds. Concluding the proof of suffi-
ciency, consider the functional inequality (15). According
to the definition of partial preordering, one can find some
function, denoted by h(i), such that (12) holds.

(Necessity) For a given function α(i), let (10)
and (12) be solvable. In this case, the functional inequal-
ity (15) follows immediately from (12). Then (10) results
in the functional inequality πu×(h×α)◦πx ≤ Jα f , and
the inclusion (h × α(i), α(i)) ∈ Δ follows immediately.
The functional inequality α(i,0) ≤ α(i) is a result of the
above assumption about α(i, 0).

The next theorem gives a regular rule for finding the
minimal function α(i) satisfying (14), and constitutes a
modified version of the theorem proposed by Shumsky
(1991). Note that this function corresponds to the sub-
system Σ(i) of a maximal dimension, and this subsystem
is free from the fault ρi.

Theorem 2. Let α(i,j), j = 0, 1, 2, . . . , be a sequence of
functions satisfying the conditions

(i)
(
α(i, j) ≤ α(i, j+1)

)
&

(
h × α(i, j), α(i, j+1)

) ∈ Δ,

(ii)
(
α(i, j) ≤ β

)
&

(
h × α(i, j), β

) ∈ Δ ⇒ α(i, j+1) ≤ β,

and suppose that there exists a natural number k such
that α(i, k+1) ∼ α(i, k). Then the function α(i, k) satisfies
(14), and for every function α(i) satisfying (14) we have

α(i,k) ≤ α(i). (16)

Proof. To show that the function α(i, k) satisfies (14), it is
sufficient to write (h × α(i, k), α(i, k+1)) ∈ Δ and sub-
stitute α(i, k) for α(i, k+1) on the right-hand side of this
relation using the properties (iv) and (v) of the relation Δ.
Let the function α(i) satisfy (14). Observe that α(i, 0) ≤
α(i). From the property (v) of the relation Δ and the im-
plication (ii), it follows that (h × α(i,0), α(i)) ∈ Δ and
α(i, 1) ≤ α(i). By analogy, α(i, 2) ≤ α(i), . . . , α(i, k) ≤
α(i).
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So, one can let α(i, k) = α(i) for the minimal func-
tion α(i), i = 1, 2, . . . , q. The above theorem implies the
following result:

Corollary 1. There holds

α(i, k) ⊕ h ≤ ξ(i) ◦ h. (17)

Indeed, from (15) and (16) we have that α (i,k) ≤
ξ(i) ◦ h. Since h ≤ ξ(i) ◦ h, from the properties (ii) and
(iii) of the operation ⊕ it follows that α(i,k)⊕h ≤ (ξ(i) ◦
h) ⊕ h ∼ ξ(i) ◦ h.

Theorems 1 and 2 result in the following algorithm
for finding the functions α(i) and ξ(i) such that the resid-
ual subvector r(i) is insensitive to the fault ρi:

Algorithm 1.

1. From Eqn. (13) find the function α (i,0) with a max-
imum number of functionally independent compo-
nents .

2. Find the function α(i,k) using the rule of Theorem 2
and let α(i, k) = α(i).

3. Find the function ξ (i) satisfying the relation

ξ(i) ◦ h ∼ α(i) ⊕ h. (18)

Remark 1. The relation (18) characterizes the minimal
function ξ(i) satisfying (17). Indeed, if some function β
satisfies (17), i.e., α(i,k) ⊕ h ≤ β ◦ h, then ξ(i) ◦ h ≤
β ◦ h due to the relation (18), or γ ◦ ξ (i) ◦ h = β ◦ h
for some function γ. As a rule, the function h is onto Y
and, therefore, the last equality implies γ ◦ ξ (i) = β, or
ξ(i) ≤ β.

The implementation of Algorithm 1 needs perform-
ing the operation ⊕ and a special algebraic operator.
If necessary, we can define rules for their calculation in
(Zhirabok and Shumsky, 1993a). In Section 4 the appro-
priate rules are given in geometric terms for affine sys-
tems.

So, using Algorithm 1, we obtain the functions α (i)

and ξ(i) for every fault ρi, i = 1, 2, . . . , d.

3.3. Detectability Analysis and FS Matrix
Construction

Let the inequality α(i) ≤ ξ(j) ◦ h be true. According to
Theorem 1 this means that the residual subvector r (j) is
insensitive to the fault ρi. But as soon as (15) holds, we
can write the implication ξ(i) ≤ ξ(j) ⇒ α(i) ≤ ξ(j) ◦ h.
Therefore, the inequality

ξ(i) ≤ ξ(j) (19)

constitutes the sufficient condition for residual subvector
r(j) insensitivity to the fault ρi.

If (19) does not hold, then r (j) is sensitive to the
fault ρi. Thus, a violation of (19) is a condition of weak or
strong detectability of ρi via the residual subvector r(j).

Remark 2. To check if (19) is violated, it is sufficient to
prove the following rank condition for some y ∈ Y :

rank
∂(ξ(i) × ξ(j))

∂y
> rank

∂ξ(i)

∂y
. (20)

Theorem 3. The fault ρi is strongly detectable via the
residual r(j), j �= i, if

ξ(i) × ξ(j)iY , (21)

where iY is the identity function with the domain Y .

Proof. Let y(i)(t) denote an output of the system with the
fault ρi and t0 be an instant of the first output distortion,
i.e. y(i)(t0) �= y(t0). Consider first the observer insensi-
tive to the fault ρi. As soon as the vector y(t) appears on
the right-hand side of the equation for the derivatives ẋ (i)

and ẋ(o) (see (3) and (6)), only these derivatives are dis-
torted by the fault ρi at t = t0 whereas the variables x(i)

and x(o) are unaffected by this fault at t = t0. There-
fore, ξ(i)(y(i)(t0)) = ξ(i)(y(t0)) and from (21) we have
ξ(j)(y(i)(t0)) �= ξ(j)(y(t0)). Consider now the observer
insensitive to the fault ρj . Because its state vector x(o)(t)
is also unaffected by the fault ρj at t = t0 and, as a re-
sult, h(j)(x(o)(t0)) = ξ(j)(y(t0)), from the above we get
r(j)(t0) = h(j)(x(o)(t0)) − ξ(j)(y(i)(t0)) �= 0.

Remark 3. To check if (21) holds, it is sufficient to prove
the following rank condition:

rank
∂(ξ(i) × ξ(j))

∂y
= l, ∀y ∈ Y. (22)

The primary FS d × d matrix is constructed as fol-
lows: The diagonal elements of this matrix are zero be-
cause the residual subvector r(i) is insensitive to the
fault ρi by definition. Then, applying the conditions (20)
and (22), we write the (j, i)-nondiagonal elements of
this matrix: it is unity whenever (22) is true, “z” when
only (20) holds, and zero if (20) fails (or, which is the
same, (19) holds). Involving the primary FS matrix, fault
isolability is investigated. The final FS matrix is obtained
by excluding the redundant rows (i.e. rows whose exclud-
ing does not influence fault isolability).
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4. Geometric Interpretation

In this section, the connection between algebraic and geo-
metric tools is investigated for nonlinear systems, whose
dynamics are affine in the control and the fault action:

ẋ(t) = f
(
x(t)

)
+ g

(
x(t)

)
u(t) + w

(
x(t)

)
ϑ(t), (23)

where g(x) and w(x) are smooth matrix functions of ap-
propriate dimensions.

4.1. Functions, Codistributions and Distributions

For the vector function α ∈ �S , the codistribution Ωα

is introduced as follows: Ωα = span {Jαi(s), 1 ≤ i ≤
pα}, where Jαi(s) is the i-th row of the Jacobian matrix
Jα(s), and pα is the dimension of the vector function α.

Let α, β ∈ �S . It is easy to see that α ≤ β iff
Ωα ⊇ Ωβ . Indeed, if α ≤ β, then β = γ ◦ α for some
differentiable function β and

Jβi =
∂βi

∂x
=

∂γ

∂α
Jα =

pα∑
i=1

∂γ

∂αi
Jαi , 1 ≤ i ≤ pβ,

which implies

Ωβ = span
{
Jβi(s), 1 ≤ i ≤ pβ

} ⊆ Ωα

= span
{
Jαi(s), 1 ≤ i ≤ pα

}
.

Conversely, if Ωα ⊇ Ωβ , then Jβ(s) = C(s)Jα(s),
where C(s) is an appropriate matrix function. Therefore,

rankJα×β(s) = rank

[
Jα(s)
Jβ(s)

]

= rank

[
Jα(s)

C(s)Jα(s)

]
= rankJα(s),

which implies α ≤ β. It also follows that α ∼ β iff
Ωα = Ωβ .

By the definition of the function α × β, the inequal-
ities α × β ≤ α and α × β ≤ β hold. Therefore,
Ωα×β ⊇ Ωα and Ωα×β ⊇ Ωβ . Since α × β is a
maximum bottom, the codistribution Ωα×β is the mini-
mal one that contains both codistributions Ωα and Ωβ ,
i.e. Ωα×β = Ωα + Ωβ . By analogy, α ≤ α ⊕ β and
β ≤ α⊕β and, therefore, Ωα ⊇ Ωα⊕β and Ωβ ⊇ Ωα⊕β .
Since α ⊕ β is a minimal top, the codistribution Ωα⊕β

is the maximum one included in the intersection of the
codistributions Ωα and Ωβ , i.e. Ωα⊕β ⊆ Ωα ∩ Ωβ .

At a given point s, the intersection Ωα ∩ Ωβ can be
found by solving the homogeneous equation

pα∑
i=1

ai(s)Jαi(s)
T−

pβ∑
i=1

bi(s)Jβi(s)
T =0 (24)

for the unknown functions ai(s), 1 ≤ i ≤ pα, and
bi(s), 1 ≤ i ≤ pβ (Isidori, 1989, p. 18). Because
the codistribution Ωα⊕β is spanned by the exact dif-
ferential of the function α ⊕ β, the coefficient matrix
(a1(s), a2(s), . . . , apα(s), b1(s), b2(s), . . . , bpβ

(s))
must additionally satisfy (Korn and Korn, 1961, p. 300 1):

∂
(
ai(s)Jαi(s)T

)
∂sj

=
∂
(
aj(s)Jαj (s)T

)
∂si

. (25)

(A similar equation can be written for the coefficients
bi(s), 1 ≤ i ≤ pβ , and the function β.) The set of in-
dependent solutions of (24), (25) forms the basis for the
codistribution Ωα⊕β .

In the geometric approach, codistributions are intro-
duced as dual objects for distributions. In the case of affine
systems, the description of the computational procedure
for the functions α(i,j), j = 1, 2, . . . , k, from Theorem 2
in terms of distributions looks more effective than in alge-
braic terms.

Let Ωα be a codistribution specified by Ωα = Λ⊥
α ,

where Λα is some distribution and the symbol ‘⊥’ is used
for the annihilator. The basis for the codistribution Ωα

is formed by the exact differential Jα of the function α
satisfying the condition

Jαλα = 0, ∀λα ∈ Λα. (26)

The procedure of finding the function α from (26) is
known as the procedure of integrating the distribution Λα.
Necessary and sufficient conditions for the integration of
Λα (as well as the procedure of integration) are given by
the Frobenius theorem (Isidori, 1989, p. 23). According to
the Frobenius theorem, the distribution Λα is integrable
iff it is involutive with respect to the operation of differen-
tiating the Lie brackets.

4.2. Realization of the Geometric Approach

For the beginning, consider the first step of Algorithm 1,
which deals with computing the function α(i,0) accord-
ing to (13). Denote by w(i) the matrix composed of the
columns of the matrix w which correspond to the para-
meters affected by the fault ρi. According to (13), the
function α(i,0) is such that (∂α(i,0)/∂x)w(i) = 0. Let
Λα(i, 0) be the minimal involutive distribution spanned by
w(i). In this case, the function α(i,0) is found by the inte-
gration of Λα(i, 0) .

To formulate the second step of Algorithm 1
in geometric terms, consider the construction (h ×
α(i, j), α(i, j+1)) ∈ Δ of Theorem 2. From the defini-
tion of the relation Δ it follows that πu × (α(i, j) × h) ◦
πx ≤ Jα(i, j+1)f for the system (1). For the system (23),

1 The number of this page corresponds to the Russian edition.
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the last inequality implies the inequalities α(i, j) × h ≤
J

α
(i, j+1)
k

f and α(i, j)×h ≤ J
α

(i, j+1)
k

gv for every k, 1 ≤
k ≤pα(i, j+1) , and v, 1 ≤ v ≤ m, or, which is the
same, LϕJ

α
(i, j+1)
k

⊆ Ωα(i, j) +Ωh, ϕ ∈ {f, g1, . . . , gm},

where LϕJ
α

(i, j+1)
k

denotes the Lie derivative of the cov-

ector field J
β

(i, j+1)
k

along the vector field ϕ.

Let Λα(i, j) be a distribution such that Ωα(i, j) =
Λ⊥

α(i, j) . Let also ω(j) ∈ Λα(i, j) ∩ kerJh. Clearly,
〈LϕJ

α
(i, j+1)
k

, ω(j)〉 = 0, where the symbol 〈·, ·〉 denotes

the inner product. As soon as α(i, j) ≤ α(i, j+1), the in-
clusions Ωα(i, j) ⊇ Ωα(i, j+1) and Ω⊥

α(i, j)
= Λα(i, j) ⊆

Ω⊥
α(i, j+1)

= Λα(i, j+1) hold. As a result, if ω(j) ∈ Λα(i, j) ,

then ω(j) ∈ Λα(i, j+1) and 〈J
α

(i, j+1)
k

, ω(j)〉 = 0, 1 ≤
k ≤ pα(i, j+1) . Taking into account the well-known iden-
tity (Isidori, 1989, p. 10)

Lϕ〈Jα
(i, j+1)
k

, ω(j)〉 = 〈LϕJ
α

(i, j+1)
k

, ω(j)〉

+ 〈J
α

(i, j+1)
k

, [ϕ, ω(j)]〉,
where [·, ·] denotes the Lie brackets, we obtains
〈J

α
(i, j+1)
k

, [ϕ, ω(j)]〉 = 0.

Now, if Λα(i, j+1) is a minimal involutive dis-
tribution containing Λα(i, j) + span {[ϕ, ω(j)], ϕ ∈
{f, g1, . . . , gm}, ω(j) ∈ Λα(i, j) ∩ kerJh}, then the func-

tion α(i,j+1) is found by the integration of Λα(i, j+1) .
Indeed, because of Λα(i, j+1) ⊇ Λα(i, j) , the inequal-
ity α(i, j) ≤ α(i, j+1) holds. Then the inclusion
ω(j) ∈ Λα(i, j) ∩ kerJh implies 〈J

α
(i, j+1)
k

, ω(j)〉 = 0

and 〈J
α

(i, j+1)
k

, [ϕ, ω(j)]〉 = 0. From the above iden-

tity we obtain 〈LϕJ
α

(i, j+1)
k

, ω(j)〉 = 0, which means

LϕJ
α

(i, j+1)
k

⊆ Ωα(i, j) + Ωh, or, which is the same,

(h × α(i, j), α(i, j+1)) ∈ Δ. This proves the property
(i) of Theorem 2.

The property (ii) of Theorem 2 follows immediately
from constructing Λα(i, j+1) as a minimal involutive dis-
tribution containing

Λα(i, j) + span
{

[ϕ, ω(j)], ϕ ∈ {f, g1, . . . , gm},

ω(j) ∈ Λα(i, j) ∩ kerJh

}
.

Finally, if for some k one has Λα(i, k+1) = Λα(i, k) , it
means that α(i, k+1) ∼ α(i, k).

Consequently, the computation of the function α (i)

needs the integration of the distribution Λα(i, k) obtained
by the application of the following recursive formula:

Λα(i, j+1) ⊇Λα(i, j) +span
{
[ϕ, ω(j)], ϕ∈{f, g1, . . . , gm},

ω(j)∈Λα(i, j)∩kerJh

}
, 0 ≤ j ≤ k, (27)

where Λα(i, j+1) is a minimal involutive distribution.
Note, that the same formula was used in (De Persis and
Isidori, 2001) and it results in the so-called controllabil-
ity (h, f) invariant distribution. An advantage of (27) (in
spite of the appropriate calculating constructions of the
algebraic approach) is the possibility of using only the in-
tegration of the distribution Λα(i, k) to find the function
α(i, k), while the appropriate computational constructions
of the algebraic approach (Zhirabok and Shumsky, 1993a)
need solving nonhomogeneous partial differential equa-
tions at every step of the procedure given by Theorem 2 2.

The third step of Algorithm 1 assumes calculating the
functions ξ(i), i = 1, 2, . . . , q. A geometric realization
of this step involves finding the codistributions Ωξ(i)◦h,
and is based on the solution of Eqns. (24) and (25) for
the functions α(i, k) and h to obtain the codistribution
Ωα(i,k)⊕h = Ωξ(i)◦h.

To conclude this section, the detectability conditions
are reformulated in geometric terms. From Remark 2 (cf.
(20)) it follows that the fault ρi is weakly detectable via
the residual subvector r(j) if

rank
(
Ωξ(i)◦h + Ωξ(j)◦h

)
> rankΩξ(i)◦h. (28)

Note that we use the codistribution Ωξ◦h instead of Ωξ to
avoid calculation of Ωξ (this does not alter the rank of the
codistribution). It also follows from Remark 3 (cf. (22))
that the fault ρi is strongly detectable via the residual sub-
vector r(j) if

rank
(
Ωξ(i)◦h + Ωξ(j)◦h

)
= l. (29)

5. Example

Consider the system described by (23) and (2) with the
matrix functions

f(x) =

⎡
⎢⎢⎢⎣

x1x4

x3(1 − x3)
0
0

⎤
⎥⎥⎥⎦ , h(x) =

[
x1

x2

]
,

g(x) = w(x) =

⎡
⎢⎢⎢⎣

0 0
0 0
0 x1

1 0

⎤
⎥⎥⎥⎦ .

(30)

The system (30) assumes only actuator faults. The struc-
ture of the system (30) is given in Fig. 2.

2 To justify the algebraic approach, it is worth noticing that computa-
tional constructions of this approach allow us to solve the problem
of finding the function not only for continuous-time systems which
do not belong to the class of affine systems, but for discrete-time
systems, too, see (Zhirabok and Shumsky, 1993a).
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Fig. 2. Structure of the system (30).

Firstly, consider calculating the functions α(i), ξ(i),
1 ≤ i ≤ 3, and constructing the FS matrix. For the sin-
gle faults we have Λα(1, 0) = span {w(1)}, Λα(2, 0) =
span {w(2)}, and for the multiple fault Λα(3, 0) =
span {w(1), w(2)}, where w(i) is the appropriate column
of the matrix w. Making necessary calculations, from
(27) we get

Λα(1, 1)(x) = Λα(1, 2)(x) = span

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

⎡
⎢⎢⎢⎣

0 x1

0 0
0 0
1 0

⎤
⎥⎥⎥⎦
⎫⎪⎪⎪⎬
⎪⎪⎪⎭

,

Λα(2, 1)(x) = Λα(2, 2)(x)

= span

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

⎡
⎢⎢⎢⎣

0
0
x1

0

0
x1(1 − 2x3)

−x1x4

0

⎤
⎥⎥⎥⎦

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

,

Λα(3, 1)(x) = Λα(3, 2)(x)=Λα(1, 1)(x) + Λα(2, 1)(x)

= span

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

⎡
⎢⎢⎢⎣

0 x1 0 0
0 0 0 x1(1 − 2x3)
0 0 x1 −x1x4

1 0 0 0

⎤
⎥⎥⎥⎦
⎫⎪⎪⎪⎬
⎪⎪⎪⎭

.

Then, according to (24) and (25), we also obtain

Ωξ(1)◦h(x) = Λ⊥
α(1, 1)(x) ∩ span {Jhi(x), i = 1, 2}

= span {0, 1, 0, 0},
Ωξ(2)◦h(x) = Λ⊥

α(2, 1)(x) ∩ span {Jhi(x), i = 1, 2}
= span {1, 0, 0, 0},

Ωξ(3)◦h(x) = Λ⊥
α(3, 1)(x) ∩ span {Jhi(x), i = 1, 2} = 0.

The functions α(i), 1 ≤ i ≤ 3 are obtained by integrating
the distributions Λ

α(i, 1)(x):

α(1)(x) =

[
x2

x3

]
, α(2)(x) =

[
x1

x4

]
,

α(3)(x) = const.

Finally, the functions ξ(i), 1 ≤ i ≤ 3 are ob-
tained from the codistributions Ωξ(i)◦h(x) in the follow-
ing form:

ξ(1)(y) = y2, ξ(2)(y) = y1, ξ(3)(y) = const.

We apply the above results to the isolability analysis.
Because of fulfilling (22) (or, which is the same, (29)) for
i = 1, j = 2 and i = 2, j = 1, we conclude that the
fault ρ2 is strongly detectable via the residual subvector
r(1) and, respectively, ρ1 is strongly detectable via the
residual subvector r(2). In contrast to this, for i = 1,
j = 3 and i = 2, j = 3 only (20) (or (28)) holds, i.e. the
fault ρ3 is only weakly detectable via the residuals r(1)

and r(2). Then, because (19) holds for i = 3, j = 1 and
i = 3, j = 2, the residual subvector r(3) is insensitive to
both faults ρ1 and ρ2. The primary FS matrix is given in
Table 1.

Table 1. Primary FS matrix for the system (30).

Residual
Faults

ρ1 ρ2 ρ3

r(1) 0 1 z

r(2) 1 0 z

r(3) 0 0 0

An analysis of this matrix shows that the single faults
ρ1 and ρ2 are strongly distinguishable whereas every sin-
gle fault and the multiple fault ρ3 are only weakly distin-
guishable. To explain this, consider the situation when the
fault ρ1 affects the system output such that at some in-
stant of time t∗ it takes y1(t∗) = 03. Under this assump-
tion, y2(t) becomes insensitive to the fault ρ2 for every
t ≥ t∗ and the arbitrary control u(τ) ∈ U, τ ∈ [t∗, t].
Thus, in this situation, the system with the single fault ρ1

shows the same behaviour as the system with the multiple
fault ρ3 at t ≥ t∗.

Similarly, if the fault ρ2 distorts the output y2 at t0
and y1(t0+τ) = 0 is true, then the system with the single
fault ρ2 shows the same behaviour as the system with the
multiple fault ρ3 arising at t ≥ t0 + τ . Also observe that

3 To understand the reasoning given below, it is sufficient to look at
the structure of the system (30) given in Fig. 2.
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if for some t∗ we have x1(t∗) = 0 and the system (30) is
healthy at t∗, then each fault ρi, 1 ≤ i ≤ 3, occurring at
some t ≥ t∗, will never be detected, because it will never
affect the system output.

Clearly, the final FS matrix is obtained by exclud-
ing the third row. So, a two-component residual genera-
tor (including the subsystems Σ(i) and the functions ξ(i),
h(i), i = 1, 2, corresponding to the rows of the final FS
matrix) should be designed. Taking the following coor-
dinate transformation specified by the functions α (1)(x)
and α(2)(x):

x(1) =

[
x2

x3

]
, x(2) =

[
x1

x4

]

and applying the relations (10) and (12) to finding f (i)

and h(i), respectively, we obtain

Σ(1): ẋ(1)(t) =

[
x

(1)
2 (t)

(
1 − x

(1)
2 (t)

)
0

]

+

[
0 0
0 y1(t)

]
u(t), (31)

r(1): r(1)(t) = x
(1)
1 (t) − y2(t)

for the first component, and

Σ(2): ẋ(2)(t) =

[
x

(2)
1 (t)x(2)

2 (t)
0

]

+

[
0 0
1 0

]
u(t), (32)

r(2): r(2)(t) = x
(2)
1 (t) − y1(t)

for the second one.

Some of the above results are proved by simula-
tion. In the simulations, the initial coordinates of the sys-
tem (30) (as well as the initial coordinates of the observers
(31) and (32)) are assumed to be equal to zero. The con-
trol values are u1 = 0.1 sin(t) and u2 = 0.1 cos(t).
Figures 3 and 4 illustrate the residual behaviour under a
single fault, while Figs. 5 and 6 are given for the multi-
ple one. Then a nonzero value of ϑ1 emerges at t = 5,
while a nonzero value of ϑ2 is observed at t = 7. It is
clearly seen from Figs. 5 and 6 that the isolability of the
multiple fault depends on the fault mode. It is also worth
noting that if we take another value of the control u 1,
e.g. u1 = 0.5, the multiple fault in the mode ϑ1 = −5,
ϑ2 = 0.05 becomes isolable, see Fig. 7.

6. Conclusion

In this paper, former results obtained by the authors in
the framework of the algebraic approach were extended
for nonlinear diagnostic filter design. The relations exist-
ing between the algebraic and differential geometric ap-
proaches were investigated. For systems that are affine in
control and fault actions, it was shown that the procedure
developed for finding “special” vector functions results
in a known procedure proposed by De Persis and Isidori
(2001). Taking into account the fact that the algebraic ap-
proach was developed for both continuous- and discrete-
time nonlinear systems, while the geometric one was pro-
posed only for continuous time systems, this result can be
considered as a step towards extending the geometric ap-
proach to the case of discrete-time nonlinear systems.

As nominal control is assumed for the fault diagno-
sis, due to the nonlinear character of the systems under
consideration, the next feature of this paper follows imme-
diately from an obvious idea: a fault should be detected
and isolated only if it distorts the system output. This
allowed us to introduce new definitions of weak/strong
fault detectability/isolability. Relations were proposed for
checking these conditions. These relations deal with the
system behaviour in the output space. It looks simpler and
more reasonable in spite of the known relations given in
papers by De Persis and Isidori (2001), Join et al. (2002b),
which assume the analysis of the system behaviour in the
state space.
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Fig. 3. Residual behaviour under the single fault ρ1 (ϑ1 = 0.05, ϑ2 = 0).
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Fig. 4. Residual behaviour under the single fault ρ2 (ϑ1 = 0, ϑ2 = 0.05).
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Fig. 5. Residual behaviour under the multiple fault ρ3 (ϑ1 = 0.05, ϑ2 = 0.05)

and the control values u1 = 0.1 sin(t), u2 = 0.1 cos(t).
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Fig. 6. Residual behaviour under the multiple fault ρ3 (ϑ1 = −5, ϑ2 = 0.05)

and the control values u1 = 0.1 sin(t), u2 = 0.1 cos(t).
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Fig. 7. Residual behaviour under the multiple fault ρ3 (ϑ1 = −5, ϑ2 = 0.05) and the control values u1 = 0.5, u2 = 0.1 cos(t).
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